Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction

En este trabajo presentamos estudios complementarios de películas delgadas de In(O;OH)S depositadas sobre películas delgadas de AgInS2 para fabricar un sistema capa absorbente/capa buffer utilizado en celdas solares tipo tándem o celdas de juntura simple. Como se demostró en trabajos anteriores real...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/3430
Acceso en línea:
http://hdl.handle.net/11407/3430
Palabra clave:
Ventana óptica
AgInS2; In(O:OH)S
Capa buffer
Capa absorbente
Película delgada
Celdas solares
Absorber layer thin film
AgInS2
Buffer layer
In(O,OH)S
Optic window
Solar cells
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUDEM2_301518f6f3a85083fc7d2473f891e173
oai_identifier_str oai:repository.udem.edu.co:11407/3430
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
Síntesis y caracterización de interfase de heterojuntura In(O;OH)S/AgInS2
title Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
spellingShingle Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
Ventana óptica
AgInS2; In(O:OH)S
Capa buffer
Capa absorbente
Película delgada
Celdas solares
Absorber layer thin film
AgInS2
Buffer layer
In(O,OH)S
Optic window
Solar cells
title_short Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
title_full Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
title_fullStr Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
title_full_unstemmed Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
title_sort Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction
dc.subject.spa.fl_str_mv Ventana óptica
AgInS2; In(O:OH)S
Capa buffer
Capa absorbente
Película delgada
Celdas solares
Absorber layer thin film
AgInS2
Buffer layer
In(O,OH)S
Optic window
Solar cells
topic Ventana óptica
AgInS2; In(O:OH)S
Capa buffer
Capa absorbente
Película delgada
Celdas solares
Absorber layer thin film
AgInS2
Buffer layer
In(O,OH)S
Optic window
Solar cells
description En este trabajo presentamos estudios complementarios de películas delgadas de In(O;OH)S depositadas sobre películas delgadas de AgInS2 para fabricar un sistema capa absorbente/capa buffer utilizado en celdas solares tipo tándem o celdas de juntura simple. Como se demostró en trabajos anteriores realizados por los autores, las capas de AgInS2 crecieron por coevaporación de los metales precursores en un proceso de dos etapas; y las películas delgadas de In(O:OH)S se depositaron por baño químico. Las medidas de rayos X indican que las películas de AgInS2 crecen con estructura tipo calcopirita y las de In(O:OH)S con estructura policristalina. Las películas de AgInS2 presentan conductividad tipo P, y de las medidas de transductancia se encontró un coeficiente de absorción alto (mayor a 104 cm-1), y un gap de 1.95 eV; las películas de In(O:OH)S presentaron un gap de 3.01 eV; el análisis morfológico indica que bajo estas condiciones de síntesis, las películas de In(O:OH)S recubren completamente la capa absorbente de AgInS2 . Finalmente, en este trabajo se aplicó la ecuación de Avrami-Erofeev para estudiar la tasa de crecimiento de las películas delgadas de In(O:OH)S sobre el substrato de AgInS2 . Los resultados indican que el sistema desarrollado puede utilizarse en celdas solares de juntura simple o multijuntura.
publishDate 2014
dc.date.created.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2017-06-15T22:05:20Z
dc.date.available.none.fl_str_mv 2017-06-15T22:05:20Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Vallejo, W., Díaz Uribe, C., Arredondo, C., Luna, M., Hernández, J., & Gordillo, G. (2014). Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction. Revista Tecnura, 18, 30-40
dc.identifier.issn.none.fl_str_mv 0123921X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3430
dc.identifier.doi.none.fl_str_mv DOI: http://doi.org/10.14483/udistrital.jour.tecnura.2014.DSE1.a02
dc.identifier.eissn.none.fl_str_mv 22487638
identifier_str_mv Vallejo, W., Díaz Uribe, C., Arredondo, C., Luna, M., Hernández, J., & Gordillo, G. (2014). Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction. Revista Tecnura, 18, 30-40
0123921X
DOI: http://doi.org/10.14483/udistrital.jour.tecnura.2014.DSE1.a02
22487638
url http://hdl.handle.net/11407/3430
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.spa.fl_str_mv http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9240/10492
dc.relation.ispartofes.spa.fl_str_mv Tecnura. Vol. 18 - Special Edition Doctorate 2014, pp. 30-40
dc.relation.references.spa.fl_str_mv Albor, M., Aguilar, J., González, M., & Ortega, C. G. (2007). Photoluminescence studies of alcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique, Thin Solid Films, 515(31), 6272–6275.
Arredondo, C., & Gordillo, G. (2010). Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation. Physica B: Condensed Matter, 405, 3694-3699.
Arredondo, C., Vallejo, W., Hernández, J., & Gordillo, G. (2012). In (O, OH) S/AgInS2 absorbent layer/ buffer layer system for thin film solar cells. 38th IEEE Photovoltaic Specialists Conference (PVSC), 001988-001991.
Asenjo, B. et al. (2007). Study of CuInS2 /buffer/ZnO solar cells, with chemically deposited ZnS-In2S3 buffer layers. Thin Solid Films, 515(15). 6036-6040.
Barreau, N., Marsillac, S., Albertini, D., & Bernede, J. (2002). Structural, optical and electrical properties of β-In2 S3-3xO3x thin films obtained by PVD. Thin Solid Films. 403, 331-334.
Bayon, R. et al. (1989). Preparation of Indium Hydroxy Sulfide Inx (OH)ySz Thin Films by Chemical Bath Deposition. Journal of the Electrochemical Society. 145(8), 2775-2779.
Bayon, R., & Herrero, J. (2000). Structure and morphology of the indium hydroxy sulphide thin films. Applied Surface Science. 58(1-2), 49-57.
Bhattacharya, R., Ramanathan, K., Gedvilas, L., & Keyes, B. (2005). Cu (In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers. Journal of Physics and Chemistry of Solids. 66(11), 1862-1864.
Contreras, M. et al. (2003). ZnO/ZnS(O,OH)/Cu(In,Ga) Se2/Mo solar cell with 18.6% efficiency. 3rd World Conference on Phorovoltaics Energy Conversion, Osaka. Japan.
Ennaoui, A. et al. (2005). New Chemical Route for the Deposition of ZnS Buffer Layers: Cd-freeCuInS2-based thin film solar cells with efficiencies above 11%. 20th European Photovoltaic Solar Energy Conference.
Froment, M., & Lincot, D. (1995). Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors. Electrochimica Acta. 40(10). 1293-1303.
Goetzberger, A., Hebling, C., & Schock, H.-W. (2003). Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports. 40(1), 1-46.
Gracia, M., Rojas, F., & Gordillo, G. (2005). Morphological and optical characterization of SnO2: F thin films deposited by spray pyrolysis. 20th European PV Solar Energy Conference, 1874-1877.
Green, M. et al. (2014). Solar cell efficiency tables (version 43). Progress in Photovoltaics: Research and Applications. 22(1), 1–9.
Hariskos, D., Spiering, S., & Powalla, M. (2005). Buffer layers in Cu (In,Ga)Se2 solar cells and modules. Thin Solid films. 480, 99-109.
Huang, C. et al. (2001). Study of Cd-free buffer layers using Inx (OH, S) y on CIGS solar cells. Solar Energy Materials & Solar Cells. 69(2), 131-137.
Larina, L. et al. (2003). Thin film CIGS-based solar cells with an In-based buffer layer fabricated by chemical bath deposition. 3rd World Conference on Photovoltaic Energy and Conversion. 1, 531- 534
Lee, C. et al. (2012). Design of energy band alignment at the Zn1−xMgxO/Cu (In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells. Physical Chemistry Chemical Physics. 14, 4789-4795.
Loferski, J. et al. (s. d.). RF-sputtered CuInSe2 thin films.13th IEEE photovoltaic specialists Conference, 190.
Lokhande, C. et al. (1999). Chemical bath deposition of indium sulphide thin films: preparation and characterization. Thin Solid Films, 340(1-2), 18-23.
McEvoy, A., Markvart, T., & Castañer, L. (2013). Solar Cells: Materials, Manufacture and Operation. Second Edition. The Netherlands. Elsevier, 2, 35-45.
Naghavi, N. et al. (2006). From CdS to Zn(S, O, OH): A better understanding of chemical bath deposition parameters and cells properties using electrodeposited CuIn(S,Se)2 and coevaporated Cu(In,Ga)Se2 absorbers. 21st European Photovoltaic Solar Energy Conference, Dresden, 1843.
O’Brien, P., & McAleese, J. (1998). Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. Journal of Materials Chemistry, 8(11), 2309–2314.
Roth, R., Parker, H., & Brower, S. (1973). Synthesis of mercury bismuth sulfide HgBi2S4. Materials Research Bulletin, 8(7), 859-862 Sandoval Paz, M. et al. (2005). Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique, Thin Solid Films, 472(1-2), 5-10.
Sankapal, B., Sartale, S., Lokhande, C., & Ennaoui, A. (2004). Chemical synthesis of Cd-free wide band gap materials for solar cells, Solar Energy aterials & Solar Cells. 83(4), 447-458.
Sharma, R. P. (1995). Influence of annealing in vacuum on opto-electronic characteristics of solution grown AgInSe2 films. Indian Journal of Pure & Applied Physics, 33, 711.
Ueno, Y., Kojima, Y., Sugiura, T., & Minoura, H. (1990). Electrodeposition of AgInSe2 films from a sulphate bath. Thin Solid Films. 189(1), 91-101.
Vallejo, W., Clavijo., & J. Gordillo, G. (2010). CGS Based Solar Cells with In2 S3 Buffer Layer Deposited by CBD and Coevaporation. Brazilian Journal of Physics, 40(1), 30-37.
Vallejo, W., Hurtado, M., & Gordillo, G. (2010). Kinetic study on Zn (O, OH)S thin films deposited by chemical bath deposition. Electrochimica Acta, 55(20), 5610-5616.
Wang, W. et al. (2012). Synthesis of CuInSe2 monodisperse nanoparticles and the nanorings shape evolution via a green solution reaction route. Materials Science in Semiconductor Processing. 15(5), 467-471.
Yoshinory, E., & Hamakawa. N. (1995). Formation and Properties of AgInSe2 Thin Films deposited from Alloy Chunks. Japanese Journal of Applied Physics. 34(1) 3260-3265.
Yousfi, E. et al. (2000). Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells, Thin Solid Films, 361, 183-186.
Zhai, R. et al. (2007). Kinetic studies on CaWO4 thin films by chemical bath deposition. Journal of Physics D: Applied Physics. 40, 4039.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Universidad Distrital Francisco Jose de Caldas
dc.publisher.program.spa.fl_str_mv Ingeniería en Energía
Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Tecnura
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3430/1/portada.JPG
bitstream.checksum.fl_str_mv cff694330aec2aabf55560c35ad3eee5
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159101008019456
spelling 2017-06-15T22:05:20Z2017-06-15T22:05:20Z2014Vallejo, W., Díaz Uribe, C., Arredondo, C., Luna, M., Hernández, J., & Gordillo, G. (2014). Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction. Revista Tecnura, 18, 30-400123921Xhttp://hdl.handle.net/11407/3430DOI: http://doi.org/10.14483/udistrital.jour.tecnura.2014.DSE1.a0222487638En este trabajo presentamos estudios complementarios de películas delgadas de In(O;OH)S depositadas sobre películas delgadas de AgInS2 para fabricar un sistema capa absorbente/capa buffer utilizado en celdas solares tipo tándem o celdas de juntura simple. Como se demostró en trabajos anteriores realizados por los autores, las capas de AgInS2 crecieron por coevaporación de los metales precursores en un proceso de dos etapas; y las películas delgadas de In(O:OH)S se depositaron por baño químico. Las medidas de rayos X indican que las películas de AgInS2 crecen con estructura tipo calcopirita y las de In(O:OH)S con estructura policristalina. Las películas de AgInS2 presentan conductividad tipo P, y de las medidas de transductancia se encontró un coeficiente de absorción alto (mayor a 104 cm-1), y un gap de 1.95 eV; las películas de In(O:OH)S presentaron un gap de 3.01 eV; el análisis morfológico indica que bajo estas condiciones de síntesis, las películas de In(O:OH)S recubren completamente la capa absorbente de AgInS2 . Finalmente, en este trabajo se aplicó la ecuación de Avrami-Erofeev para estudiar la tasa de crecimiento de las películas delgadas de In(O:OH)S sobre el substrato de AgInS2 . Los resultados indican que el sistema desarrollado puede utilizarse en celdas solares de juntura simple o multijuntura.In this work, we presented some complementary studies for In(O,OH)S thin films deposited on AgInS2 thin films to fabricate a new system absorbent-layer/ buffer-layer to be used in tandem and/or in one-junction solar cells. As showed in previous works carried out for us, AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process; and In(O,OH)S thin films were deposited by Chemical Bath deposition. X-ray diffraction measurements indicated that AgInS2 thin film grown with chalcopyrite structure; and In(O,OH)S films grown with polycrystalline structure. The AgInS2 thin films presented p-type conductivity, and from transductance measurements it was found a high absorption coefficient (greater than 104 cm−1) and an energy band gap of 1.95 eV; and In(O,OH)S thin films presented Eg about 3.01 eV; morphological analysis indicated that under this synthesis conditions, In(O,OH) S thin films coated completely the AgInS2 absorber layer. Finally, the Avrami-Erofeev equation was used in this work to study In(O,OH)S thin film growth rate on AgInS2 substrate. Results indicate that the developed system can be used in single-junction and multiple junction solar cells.spaUniversidad Distrital Francisco Jose de CaldasIngeniería en EnergíaIngeniería AmbientalFacultad de Ingenieríashttp://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9240/10492Tecnura. Vol. 18 - Special Edition Doctorate 2014, pp. 30-40Albor, M., Aguilar, J., González, M., & Ortega, C. G. (2007). Photoluminescence studies of alcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique, Thin Solid Films, 515(31), 6272–6275.Arredondo, C., & Gordillo, G. (2010). Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation. Physica B: Condensed Matter, 405, 3694-3699.Arredondo, C., Vallejo, W., Hernández, J., & Gordillo, G. (2012). In (O, OH) S/AgInS2 absorbent layer/ buffer layer system for thin film solar cells. 38th IEEE Photovoltaic Specialists Conference (PVSC), 001988-001991.Asenjo, B. et al. (2007). Study of CuInS2 /buffer/ZnO solar cells, with chemically deposited ZnS-In2S3 buffer layers. Thin Solid Films, 515(15). 6036-6040.Barreau, N., Marsillac, S., Albertini, D., & Bernede, J. (2002). Structural, optical and electrical properties of β-In2 S3-3xO3x thin films obtained by PVD. Thin Solid Films. 403, 331-334.Bayon, R. et al. (1989). Preparation of Indium Hydroxy Sulfide Inx (OH)ySz Thin Films by Chemical Bath Deposition. Journal of the Electrochemical Society. 145(8), 2775-2779.Bayon, R., & Herrero, J. (2000). Structure and morphology of the indium hydroxy sulphide thin films. Applied Surface Science. 58(1-2), 49-57.Bhattacharya, R., Ramanathan, K., Gedvilas, L., & Keyes, B. (2005). Cu (In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers. Journal of Physics and Chemistry of Solids. 66(11), 1862-1864.Contreras, M. et al. (2003). ZnO/ZnS(O,OH)/Cu(In,Ga) Se2/Mo solar cell with 18.6% efficiency. 3rd World Conference on Phorovoltaics Energy Conversion, Osaka. Japan.Ennaoui, A. et al. (2005). New Chemical Route for the Deposition of ZnS Buffer Layers: Cd-freeCuInS2-based thin film solar cells with efficiencies above 11%. 20th European Photovoltaic Solar Energy Conference.Froment, M., & Lincot, D. (1995). Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors. Electrochimica Acta. 40(10). 1293-1303.Goetzberger, A., Hebling, C., & Schock, H.-W. (2003). Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports. 40(1), 1-46.Gracia, M., Rojas, F., & Gordillo, G. (2005). Morphological and optical characterization of SnO2: F thin films deposited by spray pyrolysis. 20th European PV Solar Energy Conference, 1874-1877.Green, M. et al. (2014). Solar cell efficiency tables (version 43). Progress in Photovoltaics: Research and Applications. 22(1), 1–9.Hariskos, D., Spiering, S., & Powalla, M. (2005). Buffer layers in Cu (In,Ga)Se2 solar cells and modules. Thin Solid films. 480, 99-109.Huang, C. et al. (2001). Study of Cd-free buffer layers using Inx (OH, S) y on CIGS solar cells. Solar Energy Materials & Solar Cells. 69(2), 131-137.Larina, L. et al. (2003). Thin film CIGS-based solar cells with an In-based buffer layer fabricated by chemical bath deposition. 3rd World Conference on Photovoltaic Energy and Conversion. 1, 531- 534Lee, C. et al. (2012). Design of energy band alignment at the Zn1−xMgxO/Cu (In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells. Physical Chemistry Chemical Physics. 14, 4789-4795.Loferski, J. et al. (s. d.). RF-sputtered CuInSe2 thin films.13th IEEE photovoltaic specialists Conference, 190.Lokhande, C. et al. (1999). Chemical bath deposition of indium sulphide thin films: preparation and characterization. Thin Solid Films, 340(1-2), 18-23.McEvoy, A., Markvart, T., & Castañer, L. (2013). Solar Cells: Materials, Manufacture and Operation. Second Edition. The Netherlands. Elsevier, 2, 35-45.Naghavi, N. et al. (2006). From CdS to Zn(S, O, OH): A better understanding of chemical bath deposition parameters and cells properties using electrodeposited CuIn(S,Se)2 and coevaporated Cu(In,Ga)Se2 absorbers. 21st European Photovoltaic Solar Energy Conference, Dresden, 1843.O’Brien, P., & McAleese, J. (1998). Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. Journal of Materials Chemistry, 8(11), 2309–2314.Roth, R., Parker, H., & Brower, S. (1973). Synthesis of mercury bismuth sulfide HgBi2S4. Materials Research Bulletin, 8(7), 859-862 Sandoval Paz, M. et al. (2005). Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique, Thin Solid Films, 472(1-2), 5-10.Sankapal, B., Sartale, S., Lokhande, C., & Ennaoui, A. (2004). Chemical synthesis of Cd-free wide band gap materials for solar cells, Solar Energy aterials & Solar Cells. 83(4), 447-458.Sharma, R. P. (1995). Influence of annealing in vacuum on opto-electronic characteristics of solution grown AgInSe2 films. Indian Journal of Pure & Applied Physics, 33, 711.Ueno, Y., Kojima, Y., Sugiura, T., & Minoura, H. (1990). Electrodeposition of AgInSe2 films from a sulphate bath. Thin Solid Films. 189(1), 91-101.Vallejo, W., Clavijo., & J. Gordillo, G. (2010). CGS Based Solar Cells with In2 S3 Buffer Layer Deposited by CBD and Coevaporation. Brazilian Journal of Physics, 40(1), 30-37.Vallejo, W., Hurtado, M., & Gordillo, G. (2010). Kinetic study on Zn (O, OH)S thin films deposited by chemical bath deposition. Electrochimica Acta, 55(20), 5610-5616.Wang, W. et al. (2012). Synthesis of CuInSe2 monodisperse nanoparticles and the nanorings shape evolution via a green solution reaction route. Materials Science in Semiconductor Processing. 15(5), 467-471.Yoshinory, E., & Hamakawa. N. (1995). Formation and Properties of AgInSe2 Thin Films deposited from Alloy Chunks. Japanese Journal of Applied Physics. 34(1) 3260-3265.Yousfi, E. et al. (2000). Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells, Thin Solid Films, 361, 183-186.Zhai, R. et al. (2007). Kinetic studies on CaWO4 thin films by chemical bath deposition. Journal of Physics D: Applied Physics. 40, 4039.TecnuraVentana ópticaAgInS2; In(O:OH)SCapa bufferCapa absorbentePelícula delgadaCeldas solaresAbsorber layer thin filmAgInS2Buffer layerIn(O,OH)SOptic windowSolar cellsSynthesis and characterization of In(O;OH)S/AgInS2 interface heterojunctionSíntesis y caracterización de interfase de heterojuntura In(O;OH)S/AgInS2Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vallejo, WilliamDíaz Uribe, CarlosArredondo, Carlos AndrésLuna, Mario AlbertoHernández, JohannGerardo GordilloVallejo, William; Universidad del AtlánticoDíaz Uribe, Carlos; Universidad del AtlánticoArredondo, Carlos Andrés; Universidad de MedellínLuna, Mario Alberto; Universidad de MedellínHernández, Johann; Universidad Distrital Francisco José de CaldasGerardo Gordillo; Universidad Nacional de ColombiaTHUMBNAILportada.JPGportada.JPGimage/jpeg15223http://repository.udem.edu.co/bitstream/11407/3430/1/portada.JPGcff694330aec2aabf55560c35ad3eee5MD5111407/3430oai:repository.udem.edu.co:11407/34302020-05-27 15:42:33.339Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co