Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
The adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals correc...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5996
- Acceso en línea:
- http://hdl.handle.net/11407/5996
- Palabra clave:
- Adsorption
Binding energy
Carbon
Carbon dioxide
Catalyst activity
Catalyst deactivation
Catalyst poisoning
Copper
Density functional theory
Dissociation
Monolayers
Tungsten carbide
Van der Waals forces
Catalytic properties
Dissociation barrier
Dissociation products
Perdew-Burke-Ernzerhof exchange-correlation functional
Promoting effect
Reaction paths
Surface poisoning
Van der Waals correction
Copper compounds
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_2e3771258f3d51e99afc2f910b5ba2d9 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5996 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
title |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
spellingShingle |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction Adsorption Binding energy Carbon Carbon dioxide Catalyst activity Catalyst deactivation Catalyst poisoning Copper Density functional theory Dissociation Monolayers Tungsten carbide Van der Waals forces Catalytic properties Dissociation barrier Dissociation products Perdew-Burke-Ernzerhof exchange-correlation functional Promoting effect Reaction paths Surface poisoning Van der Waals correction Copper compounds |
title_short |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
title_full |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
title_fullStr |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
title_full_unstemmed |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
title_sort |
Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction |
dc.subject.keyword.eng.fl_str_mv |
Adsorption Binding energy Carbon Carbon dioxide Catalyst activity Catalyst deactivation Catalyst poisoning Copper Density functional theory Dissociation Monolayers Tungsten carbide Van der Waals forces Catalytic properties Dissociation barrier Dissociation products Perdew-Burke-Ernzerhof exchange-correlation functional Promoting effect Reaction paths Surface poisoning Van der Waals correction Copper compounds |
topic |
Adsorption Binding energy Carbon Carbon dioxide Catalyst activity Catalyst deactivation Catalyst poisoning Copper Density functional theory Dissociation Monolayers Tungsten carbide Van der Waals forces Catalytic properties Dissociation barrier Dissociation products Perdew-Burke-Ernzerhof exchange-correlation functional Promoting effect Reaction paths Surface poisoning Van der Waals correction Copper compounds |
description |
The adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals corrections. In addition, dipole corrections were also included. The catalytic properties of supported Cu on both carbon- and metal-terminated WC(0001) surfaces were explored. On carbon-terminated WC(0001) surfaces, Cu tends to be oxidized, while on the metallic terminated surface, it gains charge. The results indicate that all studied Cu/WC(0001) surfaces bind all adsorbates stronger than the extended Cu(111). For CO, the binding energy is so large in some cases (1.6-2.2 eV) that it could potentially lead to catalyst deactivation. Nevertheless, surfaces with an adsorbed Cu monolayer, CuML, are less prone to this deactivation, since there are not WC surface atoms; and thus, the contribution of strong CO adsorption from the support does not play a role. Energy barriers for HCOO formation, relative to direct dissociation barriers of CO2, indicate that a hydrogen-assisted reduction path is more likely to occur on Cu/WC(0001) materials, with CuML/metallic termination being the most active system for this reaction path. On the other hand, CO2 adsorption on CuML surfaces is slightly weaker on a C-terminated surface than on a metal-terminated surface, although both surfaces have similar dissociation barriers. This fact together with the weaker CO adsorption on CuML/C-terminated WC(0001) than on metal-terminated WC(0001) suggests that the former system may be a better catalyst for CO2 reduction, due to the lower surface poisoning by the CO2 dissociation products. Possible deactivation of Cu/WC(0001) materials may be prevented by the introduction of hydrogen into the system, thus promoting the formation of HCOO and avoiding CO and O formation. © 2020 the Owner Societies. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:30Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:30Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
14639076 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5996 |
dc.identifier.doi.none.fl_str_mv |
10.1039/d0cp00358a |
identifier_str_mv |
14639076 10.1039/d0cp00358a |
url |
http://hdl.handle.net/11407/5996 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087097413&doi=10.1039%2fd0cp00358a&partnerID=40&md5=f9ef8e6b8bf2ab62de90977273bf3151 |
dc.relation.citationvolume.none.fl_str_mv |
22 |
dc.relation.citationissue.none.fl_str_mv |
24 |
dc.relation.citationstartpage.none.fl_str_mv |
13666 |
dc.relation.citationendpage.none.fl_str_mv |
13679 |
dc.relation.references.none.fl_str_mv |
Pera-Titus, M., (2014) Chem. Rev., 114, pp. 1413-1492 Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., (2008) J. Environ. Sci., 20, pp. 14-27 MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Fennell, P., (2010) Energy Environ. Sci., 3, pp. 1645-1669 Darensbourg, D.J., (2010) Inorg. Chem., 49, pp. 10765-10780 Dibenedetto, A., Angelini, A., Stufano, P., (2014) J. Chem. Technol. Biotechnol., 89, pp. 334-353 Corsten, M., Ramírez, A., Shen, L., Koornneef, J., Faaij, A., (2013) Int. J. Greenhouse Gas Control, 13, pp. 59-71 Boix, A.V., Ulla, M.A., Petunchi, J.O., (1996) J. Catal., 162, pp. 239-249 Alayoglu, S., Beaumont, S.K., Zheng, F., Pushkarev, V.V., Zheng, H., Iablokov, V., Liu, Z., Somorjai, G.A., (2011) Top. Catal., 54, pp. 778-785 Hori, Y., Kikuchi, K., Suzuki, S., (1985) Chem. Lett., pp. 1695-1698 Hori, Y., Takahashi, R., Yoshinami, Y., Murata, A., (1997) J. Phys. Chem. B, 101, pp. 7075-7081 Sagar, G.V., Rao, P.V.R., Srikanth, C.S., Chary, K.V.R., (2006) J. Phys. Chem. B, 110, pp. 13881-13888 Van Den Berg, R., Zečević, J., Sehested, J., Helveg, S., De Jongh, P.E., De Jong, K.P., (2016) Catal. Today, 272, pp. 87-93 Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278 Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., (2013) J. Catal., 307, pp. 162-169 Vidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280 Levy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549 Patterson, P.M., Das, T.K., Davis, B.H., (2003) Appl. Catal., A, 251, pp. 449-455 Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425 Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., (2011) J. Am. Chem. Soc., 133, pp. 2378-2381 Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709 Ono, L.K., Sudfeld, D., Roldan Cuenya, B., (2006) Surf. Sci., 600, pp. 5041-5050 Qi, K.Z., Wang, G.C., Zheng, W.J., (2013) Surf. Sci., 614, pp. 53-63 Kunkel, C., Viñes, F., Illas, F., (2016) Energy Environ. Sci., 9, pp. 141-144 Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921 Li, N., Chen, X., Ong, W.J., MacFarlane, D.R., Zhao, X., Cheetham, A.K., Sun, C., (2017) Acs Nano, 11, pp. 10825-10833 Leitner, W., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 2207-2221 Grabow, L.C., Mavrikakis, M., (2011) Acs Catal., 1, pp. 365-384 Choudhury, J., (2012) ChemCatChem, 4, pp. 609-611 Li, Y.N., Ma, R., He, L.N., Diao, Z.F., (2014) Catal. Sci. Technol., 4, pp. 1498-1512 Posada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., (2015) Top. Catal., 58, pp. 159-173 Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777 Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883 Dubois, J.-L., Sayama, K., Arakawa, H., (1992) Chem. Lett., pp. 5-8 Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2015) ChemSusChem, 8, pp. 2745-2751 Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2017) J. Phys. Chem. C, 121, pp. 20306-20314 Yang, Y., Evans, J., Rodriguez, J.A., White, M.G., Liu, P., (2010) Phys. Chem. Chem. Phys., 12, pp. 9909-9917 Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Norskov, N.K., Chorkendorff, I., (1994) Catal. Lett., 26, p. 373 Taylor, P.A., Rasmussen, P.B., Ovesen, C.V., Chorkendorff, I., (1992) Surf. Sci., 261, p. 191 Wang, G.C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.S., Pan, Y.M., Zhao, X.Z., (2004) Surf. Sci., 570, pp. 205-217 Liu, X., Sun, L., Deng, W.-Q., (2018) J. Phys. Chem. C, 122, pp. 8306-8314 Freund, H.J., Roberts, M.W., (1996) Surf. Sci. Rep., 25, pp. 225-273 Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079 Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704 Kresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561 Kresse, G., Hafner, J., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 14251-14269 Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 Kresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50 Blöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979 Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775 Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868 Grimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473 Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192 Methfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621 Bader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, Oxford, UK Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360 Koverga, A.A., Frank, S., Koper, M.T.M., (2013) Electrochim. Acta, 101, pp. 244-253 Momma, K., Izumi, F., (2011) J. Appl. Crystallogr., 44, pp. 1272-1276 Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38 Henkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904 Henkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985 Hammer, B., Nørskov, J.K., Electronic Factors Determining the Reactivity of Metal Surfaces (1995) Surf. Sci., 343, pp. 211-220 Hammer, B., Nørskov, J.K., Why Gold is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240 Ou, L., (2015) Rsc Adv., 5, pp. 57361-57371 Torres, D., Neyman, K.M., Illas, F., (2006) Chem. Phys. Lett., 429, pp. 86-90 Xu, L., Lin, J., Bai, Y., Mavrikakis, M., (2018) Top. Catal., 61, pp. 736-750 Hao, X., Zhang, R., He, L., Huang, Z., Wang, B., (2018) Mol. Catal., 445, pp. 152-162 Tong, Y.J., Wu, S.Y., Chen, H.T., (2018) Appl. Surf. Sci., 428, pp. 579-585 Gajdoš, M., Eichler, A., Hafner, J., (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164 Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.J., Rösch, N., (2012) Nano Lett., 12, pp. 2134-2139 Neef, M., Doll, K., (2006) Surf. Sci., 600, pp. 1085-1092 Ferrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606 (78), pp. 679-689 Luo, M., Hu, G., Lee, M., (2007) Surf. Sci., 601 (6), pp. 1461-1466 Padama, A.A.B., Ocon, J.D., Nakanishi, H., Kasai, H., (2019) J. Phys.: Condens. Matter, 31, p. 415201 Ou, L., Chen, Y., Jin, J., (2016) Rsc Adv., 6, pp. 67866-67874 Yuan, D., Liao, H., Hu, W., (2019) Phys. Chem. Chem. Phys., 21, pp. 21049-21056 Klaja, O., Szczygieł, J., Trawczyński, J., Szyja, B.M., (2017) Theor. Chem. Acc., 136, p. 98 Muttaqien, F., Hamamoto, Y., Inagaki, K., Morikawa, Y., (2014) J. Chem. Phys., 141, p. 034702 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
Physical Chemistry Chemical Physics |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159148351225856 |
spelling |
20202021-02-05T14:58:30Z2021-02-05T14:58:30Z14639076http://hdl.handle.net/11407/599610.1039/d0cp00358aThe adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals corrections. In addition, dipole corrections were also included. The catalytic properties of supported Cu on both carbon- and metal-terminated WC(0001) surfaces were explored. On carbon-terminated WC(0001) surfaces, Cu tends to be oxidized, while on the metallic terminated surface, it gains charge. The results indicate that all studied Cu/WC(0001) surfaces bind all adsorbates stronger than the extended Cu(111). For CO, the binding energy is so large in some cases (1.6-2.2 eV) that it could potentially lead to catalyst deactivation. Nevertheless, surfaces with an adsorbed Cu monolayer, CuML, are less prone to this deactivation, since there are not WC surface atoms; and thus, the contribution of strong CO adsorption from the support does not play a role. Energy barriers for HCOO formation, relative to direct dissociation barriers of CO2, indicate that a hydrogen-assisted reduction path is more likely to occur on Cu/WC(0001) materials, with CuML/metallic termination being the most active system for this reaction path. On the other hand, CO2 adsorption on CuML surfaces is slightly weaker on a C-terminated surface than on a metal-terminated surface, although both surfaces have similar dissociation barriers. This fact together with the weaker CO adsorption on CuML/C-terminated WC(0001) than on metal-terminated WC(0001) suggests that the former system may be a better catalyst for CO2 reduction, due to the lower surface poisoning by the CO2 dissociation products. Possible deactivation of Cu/WC(0001) materials may be prevented by the introduction of hydrogen into the system, thus promoting the formation of HCOO and avoiding CO and O formation. © 2020 the Owner Societies.engRoyal Society of ChemistryFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087097413&doi=10.1039%2fd0cp00358a&partnerID=40&md5=f9ef8e6b8bf2ab62de90977273bf315122241366613679Pera-Titus, M., (2014) Chem. Rev., 114, pp. 1413-1492Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., (2008) J. Environ. Sci., 20, pp. 14-27MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Fennell, P., (2010) Energy Environ. Sci., 3, pp. 1645-1669Darensbourg, D.J., (2010) Inorg. Chem., 49, pp. 10765-10780Dibenedetto, A., Angelini, A., Stufano, P., (2014) J. Chem. Technol. Biotechnol., 89, pp. 334-353Corsten, M., Ramírez, A., Shen, L., Koornneef, J., Faaij, A., (2013) Int. J. Greenhouse Gas Control, 13, pp. 59-71Boix, A.V., Ulla, M.A., Petunchi, J.O., (1996) J. Catal., 162, pp. 239-249Alayoglu, S., Beaumont, S.K., Zheng, F., Pushkarev, V.V., Zheng, H., Iablokov, V., Liu, Z., Somorjai, G.A., (2011) Top. Catal., 54, pp. 778-785Hori, Y., Kikuchi, K., Suzuki, S., (1985) Chem. Lett., pp. 1695-1698Hori, Y., Takahashi, R., Yoshinami, Y., Murata, A., (1997) J. Phys. Chem. B, 101, pp. 7075-7081Sagar, G.V., Rao, P.V.R., Srikanth, C.S., Chary, K.V.R., (2006) J. Phys. Chem. B, 110, pp. 13881-13888Van Den Berg, R., Zečević, J., Sehested, J., Helveg, S., De Jongh, P.E., De Jong, K.P., (2016) Catal. Today, 272, pp. 87-93Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., (2013) J. Catal., 307, pp. 162-169Vidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280Levy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549Patterson, P.M., Das, T.K., Davis, B.H., (2003) Appl. Catal., A, 251, pp. 449-455Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., (2011) J. Am. Chem. Soc., 133, pp. 2378-2381Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709Ono, L.K., Sudfeld, D., Roldan Cuenya, B., (2006) Surf. Sci., 600, pp. 5041-5050Qi, K.Z., Wang, G.C., Zheng, W.J., (2013) Surf. Sci., 614, pp. 53-63Kunkel, C., Viñes, F., Illas, F., (2016) Energy Environ. Sci., 9, pp. 141-144Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921Li, N., Chen, X., Ong, W.J., MacFarlane, D.R., Zhao, X., Cheetham, A.K., Sun, C., (2017) Acs Nano, 11, pp. 10825-10833Leitner, W., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 2207-2221Grabow, L.C., Mavrikakis, M., (2011) Acs Catal., 1, pp. 365-384Choudhury, J., (2012) ChemCatChem, 4, pp. 609-611Li, Y.N., Ma, R., He, L.N., Diao, Z.F., (2014) Catal. Sci. Technol., 4, pp. 1498-1512Posada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., (2015) Top. Catal., 58, pp. 159-173Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883Dubois, J.-L., Sayama, K., Arakawa, H., (1992) Chem. Lett., pp. 5-8Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2015) ChemSusChem, 8, pp. 2745-2751Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2017) J. Phys. Chem. C, 121, pp. 20306-20314Yang, Y., Evans, J., Rodriguez, J.A., White, M.G., Liu, P., (2010) Phys. Chem. Chem. Phys., 12, pp. 9909-9917Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Norskov, N.K., Chorkendorff, I., (1994) Catal. Lett., 26, p. 373Taylor, P.A., Rasmussen, P.B., Ovesen, C.V., Chorkendorff, I., (1992) Surf. Sci., 261, p. 191Wang, G.C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.S., Pan, Y.M., Zhao, X.Z., (2004) Surf. Sci., 570, pp. 205-217Liu, X., Sun, L., Deng, W.-Q., (2018) J. Phys. Chem. C, 122, pp. 8306-8314Freund, H.J., Roberts, M.W., (1996) Surf. Sci. Rep., 25, pp. 225-273Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704Kresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561Kresse, G., Hafner, J., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 14251-14269Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Kresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50Blöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868Grimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192Methfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621Bader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, Oxford, UKHenkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360Koverga, A.A., Frank, S., Koper, M.T.M., (2013) Electrochim. Acta, 101, pp. 244-253Momma, K., Izumi, F., (2011) J. Appl. Crystallogr., 44, pp. 1272-1276Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38Henkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904Henkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985Hammer, B., Nørskov, J.K., Electronic Factors Determining the Reactivity of Metal Surfaces (1995) Surf. Sci., 343, pp. 211-220Hammer, B., Nørskov, J.K., Why Gold is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240Ou, L., (2015) Rsc Adv., 5, pp. 57361-57371Torres, D., Neyman, K.M., Illas, F., (2006) Chem. Phys. Lett., 429, pp. 86-90Xu, L., Lin, J., Bai, Y., Mavrikakis, M., (2018) Top. Catal., 61, pp. 736-750Hao, X., Zhang, R., He, L., Huang, Z., Wang, B., (2018) Mol. Catal., 445, pp. 152-162Tong, Y.J., Wu, S.Y., Chen, H.T., (2018) Appl. Surf. Sci., 428, pp. 579-585Gajdoš, M., Eichler, A., Hafner, J., (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.J., Rösch, N., (2012) Nano Lett., 12, pp. 2134-2139Neef, M., Doll, K., (2006) Surf. Sci., 600, pp. 1085-1092Ferrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606 (78), pp. 679-689Luo, M., Hu, G., Lee, M., (2007) Surf. Sci., 601 (6), pp. 1461-1466Padama, A.A.B., Ocon, J.D., Nakanishi, H., Kasai, H., (2019) J. Phys.: Condens. Matter, 31, p. 415201Ou, L., Chen, Y., Jin, J., (2016) Rsc Adv., 6, pp. 67866-67874Yuan, D., Liao, H., Hu, W., (2019) Phys. Chem. Chem. Phys., 21, pp. 21049-21056Klaja, O., Szczygieł, J., Trawczyński, J., Szyja, B.M., (2017) Theor. Chem. Acc., 136, p. 98Muttaqien, F., Hamamoto, Y., Inagaki, K., Morikawa, Y., (2014) J. Chem. Phys., 141, p. 034702Physical Chemistry Chemical PhysicsPromoting effect of tungsten carbide on the catalytic activity of Cu for CO2reductionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1AdsorptionBinding energyCarbonCarbon dioxideCatalyst activityCatalyst deactivationCatalyst poisoningCopperDensity functional theoryDissociationMonolayersTungsten carbideVan der Waals forcesCatalytic propertiesDissociation barrierDissociation productsPerdew-Burke-Ernzerhof exchange-correlation functionalPromoting effectReaction pathsSurface poisoningVan der Waals correctionCopper compoundsKoverga, A.A., Universidad Nacional de Colombia Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Medellín, Colombia, Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Medellín, ColombiaFlórez, E., Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Medellín, ColombiaDorkis, L., Universidad Nacional de Colombia Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Medellín, ColombiaRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United Stateshttp://purl.org/coar/access_right/c_16ecKoverga A.A.Flórez E.Dorkis L.Rodriguez J.A.11407/5996oai:repository.udem.edu.co:11407/59962021-02-05 09:58:30.743Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |