Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction

The adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals correc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5996
Acceso en línea:
http://hdl.handle.net/11407/5996
Palabra clave:
Adsorption
Binding energy
Carbon
Carbon dioxide
Catalyst activity
Catalyst deactivation
Catalyst poisoning
Copper
Density functional theory
Dissociation
Monolayers
Tungsten carbide
Van der Waals forces
Catalytic properties
Dissociation barrier
Dissociation products
Perdew-Burke-Ernzerhof exchange-correlation functional
Promoting effect
Reaction paths
Surface poisoning
Van der Waals correction
Copper compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2e3771258f3d51e99afc2f910b5ba2d9
oai_identifier_str oai:repository.udem.edu.co:11407/5996
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
title Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
spellingShingle Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
Adsorption
Binding energy
Carbon
Carbon dioxide
Catalyst activity
Catalyst deactivation
Catalyst poisoning
Copper
Density functional theory
Dissociation
Monolayers
Tungsten carbide
Van der Waals forces
Catalytic properties
Dissociation barrier
Dissociation products
Perdew-Burke-Ernzerhof exchange-correlation functional
Promoting effect
Reaction paths
Surface poisoning
Van der Waals correction
Copper compounds
title_short Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
title_full Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
title_fullStr Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
title_full_unstemmed Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
title_sort Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
dc.subject.keyword.eng.fl_str_mv Adsorption
Binding energy
Carbon
Carbon dioxide
Catalyst activity
Catalyst deactivation
Catalyst poisoning
Copper
Density functional theory
Dissociation
Monolayers
Tungsten carbide
Van der Waals forces
Catalytic properties
Dissociation barrier
Dissociation products
Perdew-Burke-Ernzerhof exchange-correlation functional
Promoting effect
Reaction paths
Surface poisoning
Van der Waals correction
Copper compounds
topic Adsorption
Binding energy
Carbon
Carbon dioxide
Catalyst activity
Catalyst deactivation
Catalyst poisoning
Copper
Density functional theory
Dissociation
Monolayers
Tungsten carbide
Van der Waals forces
Catalytic properties
Dissociation barrier
Dissociation products
Perdew-Burke-Ernzerhof exchange-correlation functional
Promoting effect
Reaction paths
Surface poisoning
Van der Waals correction
Copper compounds
description The adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals corrections. In addition, dipole corrections were also included. The catalytic properties of supported Cu on both carbon- and metal-terminated WC(0001) surfaces were explored. On carbon-terminated WC(0001) surfaces, Cu tends to be oxidized, while on the metallic terminated surface, it gains charge. The results indicate that all studied Cu/WC(0001) surfaces bind all adsorbates stronger than the extended Cu(111). For CO, the binding energy is so large in some cases (1.6-2.2 eV) that it could potentially lead to catalyst deactivation. Nevertheless, surfaces with an adsorbed Cu monolayer, CuML, are less prone to this deactivation, since there are not WC surface atoms; and thus, the contribution of strong CO adsorption from the support does not play a role. Energy barriers for HCOO formation, relative to direct dissociation barriers of CO2, indicate that a hydrogen-assisted reduction path is more likely to occur on Cu/WC(0001) materials, with CuML/metallic termination being the most active system for this reaction path. On the other hand, CO2 adsorption on CuML surfaces is slightly weaker on a C-terminated surface than on a metal-terminated surface, although both surfaces have similar dissociation barriers. This fact together with the weaker CO adsorption on CuML/C-terminated WC(0001) than on metal-terminated WC(0001) suggests that the former system may be a better catalyst for CO2 reduction, due to the lower surface poisoning by the CO2 dissociation products. Possible deactivation of Cu/WC(0001) materials may be prevented by the introduction of hydrogen into the system, thus promoting the formation of HCOO and avoiding CO and O formation. © 2020 the Owner Societies.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:30Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:30Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14639076
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5996
dc.identifier.doi.none.fl_str_mv 10.1039/d0cp00358a
identifier_str_mv 14639076
10.1039/d0cp00358a
url http://hdl.handle.net/11407/5996
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087097413&doi=10.1039%2fd0cp00358a&partnerID=40&md5=f9ef8e6b8bf2ab62de90977273bf3151
dc.relation.citationvolume.none.fl_str_mv 22
dc.relation.citationissue.none.fl_str_mv 24
dc.relation.citationstartpage.none.fl_str_mv 13666
dc.relation.citationendpage.none.fl_str_mv 13679
dc.relation.references.none.fl_str_mv Pera-Titus, M., (2014) Chem. Rev., 114, pp. 1413-1492
Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., (2008) J. Environ. Sci., 20, pp. 14-27
MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Fennell, P., (2010) Energy Environ. Sci., 3, pp. 1645-1669
Darensbourg, D.J., (2010) Inorg. Chem., 49, pp. 10765-10780
Dibenedetto, A., Angelini, A., Stufano, P., (2014) J. Chem. Technol. Biotechnol., 89, pp. 334-353
Corsten, M., Ramírez, A., Shen, L., Koornneef, J., Faaij, A., (2013) Int. J. Greenhouse Gas Control, 13, pp. 59-71
Boix, A.V., Ulla, M.A., Petunchi, J.O., (1996) J. Catal., 162, pp. 239-249
Alayoglu, S., Beaumont, S.K., Zheng, F., Pushkarev, V.V., Zheng, H., Iablokov, V., Liu, Z., Somorjai, G.A., (2011) Top. Catal., 54, pp. 778-785
Hori, Y., Kikuchi, K., Suzuki, S., (1985) Chem. Lett., pp. 1695-1698
Hori, Y., Takahashi, R., Yoshinami, Y., Murata, A., (1997) J. Phys. Chem. B, 101, pp. 7075-7081
Sagar, G.V., Rao, P.V.R., Srikanth, C.S., Chary, K.V.R., (2006) J. Phys. Chem. B, 110, pp. 13881-13888
Van Den Berg, R., Zečević, J., Sehested, J., Helveg, S., De Jongh, P.E., De Jong, K.P., (2016) Catal. Today, 272, pp. 87-93
Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., (2013) J. Catal., 307, pp. 162-169
Vidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280
Levy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549
Patterson, P.M., Das, T.K., Davis, B.H., (2003) Appl. Catal., A, 251, pp. 449-455
Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425
Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., (2011) J. Am. Chem. Soc., 133, pp. 2378-2381
Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709
Ono, L.K., Sudfeld, D., Roldan Cuenya, B., (2006) Surf. Sci., 600, pp. 5041-5050
Qi, K.Z., Wang, G.C., Zheng, W.J., (2013) Surf. Sci., 614, pp. 53-63
Kunkel, C., Viñes, F., Illas, F., (2016) Energy Environ. Sci., 9, pp. 141-144
Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
Li, N., Chen, X., Ong, W.J., MacFarlane, D.R., Zhao, X., Cheetham, A.K., Sun, C., (2017) Acs Nano, 11, pp. 10825-10833
Leitner, W., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 2207-2221
Grabow, L.C., Mavrikakis, M., (2011) Acs Catal., 1, pp. 365-384
Choudhury, J., (2012) ChemCatChem, 4, pp. 609-611
Li, Y.N., Ma, R., He, L.N., Diao, Z.F., (2014) Catal. Sci. Technol., 4, pp. 1498-1512
Posada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., (2015) Top. Catal., 58, pp. 159-173
Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777
Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883
Dubois, J.-L., Sayama, K., Arakawa, H., (1992) Chem. Lett., pp. 5-8
Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2015) ChemSusChem, 8, pp. 2745-2751
Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2017) J. Phys. Chem. C, 121, pp. 20306-20314
Yang, Y., Evans, J., Rodriguez, J.A., White, M.G., Liu, P., (2010) Phys. Chem. Chem. Phys., 12, pp. 9909-9917
Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Norskov, N.K., Chorkendorff, I., (1994) Catal. Lett., 26, p. 373
Taylor, P.A., Rasmussen, P.B., Ovesen, C.V., Chorkendorff, I., (1992) Surf. Sci., 261, p. 191
Wang, G.C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.S., Pan, Y.M., Zhao, X.Z., (2004) Surf. Sci., 570, pp. 205-217
Liu, X., Sun, L., Deng, W.-Q., (2018) J. Phys. Chem. C, 122, pp. 8306-8314
Freund, H.J., Roberts, M.W., (1996) Surf. Sci. Rep., 25, pp. 225-273
Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079
Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704
Kresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561
Kresse, G., Hafner, J., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 14251-14269
Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
Kresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50
Blöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
Grimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473
Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192
Methfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621
Bader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, Oxford, UK
Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360
Koverga, A.A., Frank, S., Koper, M.T.M., (2013) Electrochim. Acta, 101, pp. 244-253
Momma, K., Izumi, F., (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38
Henkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904
Henkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985
Hammer, B., Nørskov, J.K., Electronic Factors Determining the Reactivity of Metal Surfaces (1995) Surf. Sci., 343, pp. 211-220
Hammer, B., Nørskov, J.K., Why Gold is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240
Ou, L., (2015) Rsc Adv., 5, pp. 57361-57371
Torres, D., Neyman, K.M., Illas, F., (2006) Chem. Phys. Lett., 429, pp. 86-90
Xu, L., Lin, J., Bai, Y., Mavrikakis, M., (2018) Top. Catal., 61, pp. 736-750
Hao, X., Zhang, R., He, L., Huang, Z., Wang, B., (2018) Mol. Catal., 445, pp. 152-162
Tong, Y.J., Wu, S.Y., Chen, H.T., (2018) Appl. Surf. Sci., 428, pp. 579-585
Gajdoš, M., Eichler, A., Hafner, J., (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164
Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.J., Rösch, N., (2012) Nano Lett., 12, pp. 2134-2139
Neef, M., Doll, K., (2006) Surf. Sci., 600, pp. 1085-1092
Ferrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606 (78), pp. 679-689
Luo, M., Hu, G., Lee, M., (2007) Surf. Sci., 601 (6), pp. 1461-1466
Padama, A.A.B., Ocon, J.D., Nakanishi, H., Kasai, H., (2019) J. Phys.: Condens. Matter, 31, p. 415201
Ou, L., Chen, Y., Jin, J., (2016) Rsc Adv., 6, pp. 67866-67874
Yuan, D., Liao, H., Hu, W., (2019) Phys. Chem. Chem. Phys., 21, pp. 21049-21056
Klaja, O., Szczygieł, J., Trawczyński, J., Szyja, B.M., (2017) Theor. Chem. Acc., 136, p. 98
Muttaqien, F., Hamamoto, Y., Inagaki, K., Morikawa, Y., (2014) J. Chem. Phys., 141, p. 034702
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Royal Society of Chemistry
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv Physical Chemistry Chemical Physics
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159148351225856
spelling 20202021-02-05T14:58:30Z2021-02-05T14:58:30Z14639076http://hdl.handle.net/11407/599610.1039/d0cp00358aThe adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals corrections. In addition, dipole corrections were also included. The catalytic properties of supported Cu on both carbon- and metal-terminated WC(0001) surfaces were explored. On carbon-terminated WC(0001) surfaces, Cu tends to be oxidized, while on the metallic terminated surface, it gains charge. The results indicate that all studied Cu/WC(0001) surfaces bind all adsorbates stronger than the extended Cu(111). For CO, the binding energy is so large in some cases (1.6-2.2 eV) that it could potentially lead to catalyst deactivation. Nevertheless, surfaces with an adsorbed Cu monolayer, CuML, are less prone to this deactivation, since there are not WC surface atoms; and thus, the contribution of strong CO adsorption from the support does not play a role. Energy barriers for HCOO formation, relative to direct dissociation barriers of CO2, indicate that a hydrogen-assisted reduction path is more likely to occur on Cu/WC(0001) materials, with CuML/metallic termination being the most active system for this reaction path. On the other hand, CO2 adsorption on CuML surfaces is slightly weaker on a C-terminated surface than on a metal-terminated surface, although both surfaces have similar dissociation barriers. This fact together with the weaker CO adsorption on CuML/C-terminated WC(0001) than on metal-terminated WC(0001) suggests that the former system may be a better catalyst for CO2 reduction, due to the lower surface poisoning by the CO2 dissociation products. Possible deactivation of Cu/WC(0001) materials may be prevented by the introduction of hydrogen into the system, thus promoting the formation of HCOO and avoiding CO and O formation. © 2020 the Owner Societies.engRoyal Society of ChemistryFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087097413&doi=10.1039%2fd0cp00358a&partnerID=40&md5=f9ef8e6b8bf2ab62de90977273bf315122241366613679Pera-Titus, M., (2014) Chem. Rev., 114, pp. 1413-1492Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., (2008) J. Environ. Sci., 20, pp. 14-27MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Fennell, P., (2010) Energy Environ. Sci., 3, pp. 1645-1669Darensbourg, D.J., (2010) Inorg. Chem., 49, pp. 10765-10780Dibenedetto, A., Angelini, A., Stufano, P., (2014) J. Chem. Technol. Biotechnol., 89, pp. 334-353Corsten, M., Ramírez, A., Shen, L., Koornneef, J., Faaij, A., (2013) Int. J. Greenhouse Gas Control, 13, pp. 59-71Boix, A.V., Ulla, M.A., Petunchi, J.O., (1996) J. Catal., 162, pp. 239-249Alayoglu, S., Beaumont, S.K., Zheng, F., Pushkarev, V.V., Zheng, H., Iablokov, V., Liu, Z., Somorjai, G.A., (2011) Top. Catal., 54, pp. 778-785Hori, Y., Kikuchi, K., Suzuki, S., (1985) Chem. Lett., pp. 1695-1698Hori, Y., Takahashi, R., Yoshinami, Y., Murata, A., (1997) J. Phys. Chem. B, 101, pp. 7075-7081Sagar, G.V., Rao, P.V.R., Srikanth, C.S., Chary, K.V.R., (2006) J. Phys. Chem. B, 110, pp. 13881-13888Van Den Berg, R., Zečević, J., Sehested, J., Helveg, S., De Jongh, P.E., De Jong, K.P., (2016) Catal. Today, 272, pp. 87-93Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., (2013) J. Catal., 307, pp. 162-169Vidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280Levy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549Patterson, P.M., Das, T.K., Davis, B.H., (2003) Appl. Catal., A, 251, pp. 449-455Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., (2011) J. Am. Chem. Soc., 133, pp. 2378-2381Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709Ono, L.K., Sudfeld, D., Roldan Cuenya, B., (2006) Surf. Sci., 600, pp. 5041-5050Qi, K.Z., Wang, G.C., Zheng, W.J., (2013) Surf. Sci., 614, pp. 53-63Kunkel, C., Viñes, F., Illas, F., (2016) Energy Environ. Sci., 9, pp. 141-144Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921Li, N., Chen, X., Ong, W.J., MacFarlane, D.R., Zhao, X., Cheetham, A.K., Sun, C., (2017) Acs Nano, 11, pp. 10825-10833Leitner, W., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 2207-2221Grabow, L.C., Mavrikakis, M., (2011) Acs Catal., 1, pp. 365-384Choudhury, J., (2012) ChemCatChem, 4, pp. 609-611Li, Y.N., Ma, R., He, L.N., Diao, Z.F., (2014) Catal. Sci. Technol., 4, pp. 1498-1512Posada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., (2015) Top. Catal., 58, pp. 159-173Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883Dubois, J.-L., Sayama, K., Arakawa, H., (1992) Chem. Lett., pp. 5-8Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2015) ChemSusChem, 8, pp. 2745-2751Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2017) J. Phys. Chem. C, 121, pp. 20306-20314Yang, Y., Evans, J., Rodriguez, J.A., White, M.G., Liu, P., (2010) Phys. Chem. Chem. Phys., 12, pp. 9909-9917Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Norskov, N.K., Chorkendorff, I., (1994) Catal. Lett., 26, p. 373Taylor, P.A., Rasmussen, P.B., Ovesen, C.V., Chorkendorff, I., (1992) Surf. Sci., 261, p. 191Wang, G.C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.S., Pan, Y.M., Zhao, X.Z., (2004) Surf. Sci., 570, pp. 205-217Liu, X., Sun, L., Deng, W.-Q., (2018) J. Phys. Chem. C, 122, pp. 8306-8314Freund, H.J., Roberts, M.W., (1996) Surf. Sci. Rep., 25, pp. 225-273Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704Kresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561Kresse, G., Hafner, J., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 14251-14269Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Kresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50Blöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868Grimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192Methfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621Bader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, Oxford, UKHenkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360Koverga, A.A., Frank, S., Koper, M.T.M., (2013) Electrochim. Acta, 101, pp. 244-253Momma, K., Izumi, F., (2011) J. Appl. Crystallogr., 44, pp. 1272-1276Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38Henkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904Henkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985Hammer, B., Nørskov, J.K., Electronic Factors Determining the Reactivity of Metal Surfaces (1995) Surf. Sci., 343, pp. 211-220Hammer, B., Nørskov, J.K., Why Gold is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240Ou, L., (2015) Rsc Adv., 5, pp. 57361-57371Torres, D., Neyman, K.M., Illas, F., (2006) Chem. Phys. Lett., 429, pp. 86-90Xu, L., Lin, J., Bai, Y., Mavrikakis, M., (2018) Top. Catal., 61, pp. 736-750Hao, X., Zhang, R., He, L., Huang, Z., Wang, B., (2018) Mol. Catal., 445, pp. 152-162Tong, Y.J., Wu, S.Y., Chen, H.T., (2018) Appl. Surf. Sci., 428, pp. 579-585Gajdoš, M., Eichler, A., Hafner, J., (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.J., Rösch, N., (2012) Nano Lett., 12, pp. 2134-2139Neef, M., Doll, K., (2006) Surf. Sci., 600, pp. 1085-1092Ferrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606 (78), pp. 679-689Luo, M., Hu, G., Lee, M., (2007) Surf. Sci., 601 (6), pp. 1461-1466Padama, A.A.B., Ocon, J.D., Nakanishi, H., Kasai, H., (2019) J. Phys.: Condens. Matter, 31, p. 415201Ou, L., Chen, Y., Jin, J., (2016) Rsc Adv., 6, pp. 67866-67874Yuan, D., Liao, H., Hu, W., (2019) Phys. Chem. Chem. Phys., 21, pp. 21049-21056Klaja, O., Szczygieł, J., Trawczyński, J., Szyja, B.M., (2017) Theor. Chem. Acc., 136, p. 98Muttaqien, F., Hamamoto, Y., Inagaki, K., Morikawa, Y., (2014) J. Chem. Phys., 141, p. 034702Physical Chemistry Chemical PhysicsPromoting effect of tungsten carbide on the catalytic activity of Cu for CO2reductionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1AdsorptionBinding energyCarbonCarbon dioxideCatalyst activityCatalyst deactivationCatalyst poisoningCopperDensity functional theoryDissociationMonolayersTungsten carbideVan der Waals forcesCatalytic propertiesDissociation barrierDissociation productsPerdew-Burke-Ernzerhof exchange-correlation functionalPromoting effectReaction pathsSurface poisoningVan der Waals correctionCopper compoundsKoverga, A.A., Universidad Nacional de Colombia Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Medellín, Colombia, Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Medellín, ColombiaFlórez, E., Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Medellín, ColombiaDorkis, L., Universidad Nacional de Colombia Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Medellín, ColombiaRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United Stateshttp://purl.org/coar/access_right/c_16ecKoverga A.A.Flórez E.Dorkis L.Rodriguez J.A.11407/5996oai:repository.udem.edu.co:11407/59962021-02-05 09:58:30.743Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co