LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model

The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5894
Acceso en línea:
http://hdl.handle.net/11407/5894
Palabra clave:
Band nonparabolicity
Core–Shell
Dielectric mismatch
Polaron effects
Spherical quantum dot
Zincblende III–V nitrides
Conduction bands
Electron-phonon interactions
Electronic properties
Gallium nitride
Ground state
III-V semiconductors
Nanocrystals
Semiconductor quantum dots
Semiconductor quantum wells
Zinc sulfide
Core/shell quantum dots
Dielectric polarization
Effective-mass equation
Electron energy spectrum
Ground-state energies
Impurity binding energy
Longitudinal optical phonons
Spherical quantum dot
Binding energy
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2daaedf86fe354b4f6cb4781adfb5784
oai_identifier_str oai:repository.udem.edu.co:11407/5894
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
title LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
spellingShingle LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
Band nonparabolicity
Core–Shell
Dielectric mismatch
Polaron effects
Spherical quantum dot
Zincblende III–V nitrides
Conduction bands
Electron-phonon interactions
Electronic properties
Gallium nitride
Ground state
III-V semiconductors
Nanocrystals
Semiconductor quantum dots
Semiconductor quantum wells
Zinc sulfide
Core/shell quantum dots
Dielectric polarization
Effective-mass equation
Electron energy spectrum
Ground-state energies
Impurity binding energy
Longitudinal optical phonons
Spherical quantum dot
Binding energy
title_short LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
title_full LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
title_fullStr LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
title_full_unstemmed LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
title_sort LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
dc.subject.spa.fl_str_mv Band nonparabolicity
Core–Shell
Dielectric mismatch
Polaron effects
Spherical quantum dot
Zincblende III–V nitrides
topic Band nonparabolicity
Core–Shell
Dielectric mismatch
Polaron effects
Spherical quantum dot
Zincblende III–V nitrides
Conduction bands
Electron-phonon interactions
Electronic properties
Gallium nitride
Ground state
III-V semiconductors
Nanocrystals
Semiconductor quantum dots
Semiconductor quantum wells
Zinc sulfide
Core/shell quantum dots
Dielectric polarization
Effective-mass equation
Electron energy spectrum
Ground-state energies
Impurity binding energy
Longitudinal optical phonons
Spherical quantum dot
Binding energy
dc.subject.keyword.eng.fl_str_mv Conduction bands
Electron-phonon interactions
Electronic properties
Gallium nitride
Ground state
III-V semiconductors
Nanocrystals
Semiconductor quantum dots
Semiconductor quantum wells
Zinc sulfide
Core/shell quantum dots
Dielectric polarization
Effective-mass equation
Electron energy spectrum
Ground-state energies
Impurity binding energy
Longitudinal optical phonons
Spherical quantum dot
Binding energy
description The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longitudinal optical phonons is included through Frö hlich and Aldrich-Bajaj theories, respectively. The ground state energy is determined by solving the resulting conduction band effective mass equation via the variational Ritz principle. A detailed analysis of the features of electron and hole spectra as functions of the core and shell sizes is presented, highlighting the possibility of transitioning between type-I and type-II structures. A detailed discussion about the effects of conduction band nonparabolicity, dielectric mismatch and electron-phonon interaction onto the impurity binding energy is provided. It was found that, in general, nonparabolicity of the conduction band leads to larger impurity binding energy, and that LO-phonon and dielectric mismatch effects tend to reduce the value of the latter quantity. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:36Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:36Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 9478396
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5894
dc.identifier.doi.none.fl_str_mv 10.1007/s00339-020-04137-6
identifier_str_mv 9478396
10.1007/s00339-020-04137-6
url http://hdl.handle.net/11407/5894
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098636670&doi=10.1007%2fs00339-020-04137-6&partnerID=40&md5=5af24c02ded7a5b961ddc03f1f3eb4d5
dc.relation.citationvolume.none.fl_str_mv 127
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Mélinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., Plain, J., Warot-Fonrose, B., (2014) Phys. Rep., 543, p. 163
Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L., (1990) J. Am. Chem. Soc., 112, p. 1327
Zhou, H.S., Honma, I., Komiyama, H., (1993) J. Phys. Chem., 97, p. 895
Mews, A., Eychmuller, A., Giersig, M., Schooss, D., Weller, H., (1994) J. Phys. Chem., 98, p. 934
Haus, J.W., Zhou, H.S., Honma, I., Komiyana, H., (1993) Phys. Rev. B, 47, p. 1359
Zhao, H., Jin, L., Zhou, Y., Bandar, A., Fan, Z., Govorov, A.O., Mi, Z., Vomiero, A., (2016) Nanotechnology, 27, p. 495405
Ji, W., Jing, P., Xu, W., Yuan, X., Wang, Y., Zhao, J., Jen, A.K.-Y., (2013) Appl. Phys. Lett., 103, p. 053106
Kuo, T.-R., Hung, S.-T., Lin, Y.-T., Chou, T.-L., Kuo, M.-C., Kuo, Y.-P., Chen, C.-C., (2017) Nanoscale Res. Lett., 12, p. 537
Kim, S., Fisher, B., Eisler, H.-J., Bawendi, M., (2003) J. Am. Chem. Soc., 125, p. 11466
Li, J.J., Tsay, J.M., Michalet, X., Weiss, S., (2005) Chem. Phys., 318, p. 82
Xie, R., Kolb, U., Li, J., Basché, T., Mews, A., (2005) J. Am. Chem. Soc., 127, p. 7480
Kamat Prashant, V., (2008) J. Phys. Chem. C, 112
Bar, M., Lehmann, S., Rusu, M., Grimm, A., Kotschau, I., Lauermann, I., Pistor, P., Jung, C., (2005) Appl. Phys. Lett., 86, p. 222107
Lu, Z., Gao, C., Zhang, Q., Chi, M., Howe, J.Y., Yin, Y., (2011) Nano Lett., 11, p. 3404
Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G., (2004) Phys. Rev. B, 69, p. 113301
Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S., (2004) Nat. Biotechnol., 22, p. 969
Igor, L., Medintz, L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M., (2003) Nat. Mater., 2, p. 630
Vasudevan, D., Ranganathan, R., Trinchi, A., Cole, I., (2015) J. Alloy. Compd., 636, p. 395
Grim, J.Q., Manna, L., Moreels, I., (2015) Chem. Soc. Rev., 44, p. 5897
Rogach, A.L., (2008) Semiconductor Nanocrystal Quantum Dots, , (ed), Springer, Wien
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., (1997) J. Phys. Chem. B, 101, p. 9463
Hines, M.A., Guyot-Sionnest, P., (1996) J. Phys. Chem., 100, p. 468
Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L.M., Laroze, D., Feddi, E., (2020) Chin. J. Phys., 66, p. 444
Bekhouche, H., Gueddim, A., Bouarissa, N., Messikine, N., (2020) Chin. J. Phys., 65, p. 146
Khordad, R., Vaseghi, B., (2019) Chin. J. Phys., 59, p. 473
Barseghyan, M.G., Manaselyan, A., Kirakosyan, A.A., Pérez, L.M., David Laroze (2020) Phys. E, 117, p. 113807
Jasieniak, J., Califano, M., Watkins, S.E., (2011) ACS Nano, 5, p. 5888
Chen, O., Yang, Y., Wang, T., Wu, H., Niu, C., Yang, J., Cao, Y.C., (2011) J. Am. Chem. Soc., 133, p. 17504
Baranov, A., Rakovich, Y., Donegan, J., Perova, T., Moore, R., Talapin, D., Rogach, A., Nabiev, I., (2003) Phys. Rev. B, 68, p. 1653061
Gaponik, N., Hickey, S.G., Dorfs, D., Rogach, A.L., Eychmüller, A., (2010) Small, 6, p. 1364
Koenraad, P.M., Flatté, M.E., (2011) Nat. Mater., 10, p. 91
Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191
Cristea, M., Niculescu, E.C., (2013) Phys. Lett. A, 377, p. 1221
Niculescu, E.C., Cristea, M., (2013) J. Lumin., 135, p. 120
Zeng, Z., Garoufalis, C.S., Terzis, A.F., Baskoutas, S., (2013) J. Appl. Phys., 114, p. 023510
Manaselyan, A.K., Kirakosyan, A.A., (2004) Phys. E, 22, p. 825
Manaselyan, A.K., Agasyan, M.M., Kirakosyan, A.A., (2002) Phys. E, 14, p. 366
Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., (2015) Superlatt. Microstruct., 85, p. 581
Talbi, A., Feddi, E., Zouitine, A., El Haouari, M., Zazoui, M., Oukerroum, A., Dujardin, F., Addou, M., (2016) Phys. E, 84, p. 303
Ibral, A., Zouitine, A., Assaid, E., Feddi, E., Dujardin, F., (2014) Phys. B, 449, p. 261
Ibral, A., Zouitine, A., Assaid, E., El Achouby, H., Feddi, E., Dujardin, F., (2015) Phys. B, 458, p. 73
Zouitine, A., Ibral, A., Assaid, E., Dujardin, F., Feddi, E., (2017) Superlatt. Microstruct., 109, p. 123
El-Yadri, M., Aghoutane, N., El Aouami, A., Feddi, E., Dujardin, F., Duque, C.A., (2018) Appl. Surf. Sci., 441, p. 204
M’zerd, S., El Haouari, M., Talbi, A., Feddi, E., Mora-Ramos, M.E., (2018) J. Alloy Compounds, 753, p. 68
Stroscio, M.A., Dutta, M., (2003) Phonons in Nanostructures, , Cambridge University Press, Cambridge
Trallero-Giner, C., Pérez-Alvarez, R., García-Moliner, F., (1998) Long Wave Polar Modes in Semiconductor Heterostructures, , Elsevier, Oxford
Ridley, B.K., (2009) Electrons and Phonons in Semiconductor Multilayers, , 2, Cambridge University Press, Cambridge
El Haouari, M., Mora-Ramos, M.E., Talbi, A., Feddi, E., Dujardin, F., (2018) Phys. E, 103, p. 188
Bolcatto, P.G., Proetto, C.R., (1999) Phys. Rev. B, 59, p. 12487
Boichuk, V.I., Bilynsky, I.V., Shakleina, I.O., Kogoutiouk, I.P., (2011) J. Phys.:Conf. Ser., 289
Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2017) Superlatt. Microstruct., 103, p. 205
Sil, N., Daripa, N., Kapoor, A., Dey, S.K., (2018) Pramana-J. Phys., 90, p. 7
Niculescu, E.C., Cristea, M., Sci, U.P.B., (2013) Bull. Ser. A, 75, p. 195
Cristea, M., Radu, A., Niculescu, E.C., (2013) J. Lumin., 143, p. 592
Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2018) Superlatt. Microstruct., 113, p. 442
Hong, S., Singh, J., (1987) J. Appl. Phys., 61, p. 5346
Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191
Frohlich, H., (1952) Proc. R. Soc. Edinburgh Sect. A: Math., 215, p. 291
Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157
Bajaj, K.K., (1972) Polarons in Ionic Crystals and Polar Semiconductors, pp. 194-225. , J. Devreese, North-Holland, Amsterdam
Shokhovets, S., Ambacher, O., Gobsch, G., (2007) Phys. Rev. B, 76, p. 125203
Safarpour, G., Izadi, M.A., Novzari, M., Niknam, E., Golshan, M.M., (2014) Commun. Theor. Phys., 61, p. 765
Radosavijevic, A., Radovanovic, J., Milanović, V., Indjin, D., (2015) Opt. Quant. Electron., 47, p. 865
Moses, P.G., Van de Walle, C.G., (2010) Appl. Phys. Lett., 96, p. 021908
Vurgaftman, I., Meyer, J.R., (2003) J. Appl. Phys., 94, p. 3675
Bose, M.K., Midya, K., Bose, C., (2007) J. Appl. Phys., 101, p. 054315
Brus, L.E., (1984) J. Chem. Phys., 80, p. 4403
Ferreyra, J.M., Proetto, C.R., (1998) Phys. Rev. B, 57, p. 9061
(2004) Nanostructures: Theory and Modeling, , C. Delerue, M. Lanoo, Springer, Berlin
Băttcher, C.J.F., (1973) Theory of Electric Polarization, 1. , Elsevier, Amsterdam
Feddi, E., El Haouari, M., Assaid, E., Stèbè, B., El Khamkhami, J., Dujardin, F., (2003) Phys. Rev. B, 68, p. 235313
Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297
Pollmann, J., Büttner, H., (1977) Phys. Rev. B, 16, p. 4480
Parvathi, A.A., John Peter, A., (2013) Acta Physica Polonica A, 124, p. 706
Wu, Y.-F., Liang, X.-X., Bajaj, K.K., (2005) Chin. Phys., 14, p. 2314
Rinke, P., Winkelkemper, M., Qteish, A., Bimberg, D., Neugebauer, J., Scheffler, M., (2008) Phys. Rev. B, 77, p. 075202
Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D.J., Goldhahn, R., (2012) Phys. Rev. B, 85, p. 155207
Xie, M.-Y., Schubert, M., Lu, J., Persson, P.O.Å., Stanishev, V., Hsiao, C.L., Chen, L.C., Darakchieva, V., (2014) Phys. Rev. B, 90, p. 195306
Cuscó, R., Doménech-Amador, N., Novikov, S., Foxom, C.T., Artús, L., (2015) Phys. Rev. B, 92, p. 075206
Banyai, L., Galbraith, I., Ell, C., Haug, H., (1987) Phys. Rev. B, 36, p. 6099
Takagahara, T., (1993) Phys. Rev. B, 47, p. 4569
Brus, L.E., (1986) IEEE J. Quant. Electron., 22, p. 1909
Haken, H., (1956) Nuovo Cim., 10, p. 1230
Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157
Haga, E., (1955) Prog. Theor. Phys. Kyoto, 13, p. 555
Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv Applied Physics A: Materials Science and Processing
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159103090491392
spelling 20212021-02-05T14:57:36Z2021-02-05T14:57:36Z9478396http://hdl.handle.net/11407/589410.1007/s00339-020-04137-6The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longitudinal optical phonons is included through Frö hlich and Aldrich-Bajaj theories, respectively. The ground state energy is determined by solving the resulting conduction band effective mass equation via the variational Ritz principle. A detailed analysis of the features of electron and hole spectra as functions of the core and shell sizes is presented, highlighting the possibility of transitioning between type-I and type-II structures. A detailed discussion about the effects of conduction band nonparabolicity, dielectric mismatch and electron-phonon interaction onto the impurity binding energy is provided. It was found that, in general, nonparabolicity of the conduction band leads to larger impurity binding energy, and that LO-phonon and dielectric mismatch effects tend to reduce the value of the latter quantity. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.engSpringer Science and Business Media Deutschland GmbHFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098636670&doi=10.1007%2fs00339-020-04137-6&partnerID=40&md5=5af24c02ded7a5b961ddc03f1f3eb4d51271Mélinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., Plain, J., Warot-Fonrose, B., (2014) Phys. Rep., 543, p. 163Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L., (1990) J. Am. Chem. Soc., 112, p. 1327Zhou, H.S., Honma, I., Komiyama, H., (1993) J. Phys. Chem., 97, p. 895Mews, A., Eychmuller, A., Giersig, M., Schooss, D., Weller, H., (1994) J. Phys. Chem., 98, p. 934Haus, J.W., Zhou, H.S., Honma, I., Komiyana, H., (1993) Phys. Rev. B, 47, p. 1359Zhao, H., Jin, L., Zhou, Y., Bandar, A., Fan, Z., Govorov, A.O., Mi, Z., Vomiero, A., (2016) Nanotechnology, 27, p. 495405Ji, W., Jing, P., Xu, W., Yuan, X., Wang, Y., Zhao, J., Jen, A.K.-Y., (2013) Appl. Phys. Lett., 103, p. 053106Kuo, T.-R., Hung, S.-T., Lin, Y.-T., Chou, T.-L., Kuo, M.-C., Kuo, Y.-P., Chen, C.-C., (2017) Nanoscale Res. Lett., 12, p. 537Kim, S., Fisher, B., Eisler, H.-J., Bawendi, M., (2003) J. Am. Chem. Soc., 125, p. 11466Li, J.J., Tsay, J.M., Michalet, X., Weiss, S., (2005) Chem. Phys., 318, p. 82Xie, R., Kolb, U., Li, J., Basché, T., Mews, A., (2005) J. Am. Chem. Soc., 127, p. 7480Kamat Prashant, V., (2008) J. Phys. Chem. C, 112Bar, M., Lehmann, S., Rusu, M., Grimm, A., Kotschau, I., Lauermann, I., Pistor, P., Jung, C., (2005) Appl. Phys. Lett., 86, p. 222107Lu, Z., Gao, C., Zhang, Q., Chi, M., Howe, J.Y., Yin, Y., (2011) Nano Lett., 11, p. 3404Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G., (2004) Phys. Rev. B, 69, p. 113301Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S., (2004) Nat. Biotechnol., 22, p. 969Igor, L., Medintz, L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M., (2003) Nat. Mater., 2, p. 630Vasudevan, D., Ranganathan, R., Trinchi, A., Cole, I., (2015) J. Alloy. Compd., 636, p. 395Grim, J.Q., Manna, L., Moreels, I., (2015) Chem. Soc. Rev., 44, p. 5897Rogach, A.L., (2008) Semiconductor Nanocrystal Quantum Dots, , (ed), Springer, WienDabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., (1997) J. Phys. Chem. B, 101, p. 9463Hines, M.A., Guyot-Sionnest, P., (1996) J. Phys. Chem., 100, p. 468Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L.M., Laroze, D., Feddi, E., (2020) Chin. J. Phys., 66, p. 444Bekhouche, H., Gueddim, A., Bouarissa, N., Messikine, N., (2020) Chin. J. Phys., 65, p. 146Khordad, R., Vaseghi, B., (2019) Chin. J. Phys., 59, p. 473Barseghyan, M.G., Manaselyan, A., Kirakosyan, A.A., Pérez, L.M., David Laroze (2020) Phys. E, 117, p. 113807Jasieniak, J., Califano, M., Watkins, S.E., (2011) ACS Nano, 5, p. 5888Chen, O., Yang, Y., Wang, T., Wu, H., Niu, C., Yang, J., Cao, Y.C., (2011) J. Am. Chem. Soc., 133, p. 17504Baranov, A., Rakovich, Y., Donegan, J., Perova, T., Moore, R., Talapin, D., Rogach, A., Nabiev, I., (2003) Phys. Rev. B, 68, p. 1653061Gaponik, N., Hickey, S.G., Dorfs, D., Rogach, A.L., Eychmüller, A., (2010) Small, 6, p. 1364Koenraad, P.M., Flatté, M.E., (2011) Nat. Mater., 10, p. 91Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191Cristea, M., Niculescu, E.C., (2013) Phys. Lett. A, 377, p. 1221Niculescu, E.C., Cristea, M., (2013) J. Lumin., 135, p. 120Zeng, Z., Garoufalis, C.S., Terzis, A.F., Baskoutas, S., (2013) J. Appl. Phys., 114, p. 023510Manaselyan, A.K., Kirakosyan, A.A., (2004) Phys. E, 22, p. 825Manaselyan, A.K., Agasyan, M.M., Kirakosyan, A.A., (2002) Phys. E, 14, p. 366Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., (2015) Superlatt. Microstruct., 85, p. 581Talbi, A., Feddi, E., Zouitine, A., El Haouari, M., Zazoui, M., Oukerroum, A., Dujardin, F., Addou, M., (2016) Phys. E, 84, p. 303Ibral, A., Zouitine, A., Assaid, E., Feddi, E., Dujardin, F., (2014) Phys. B, 449, p. 261Ibral, A., Zouitine, A., Assaid, E., El Achouby, H., Feddi, E., Dujardin, F., (2015) Phys. B, 458, p. 73Zouitine, A., Ibral, A., Assaid, E., Dujardin, F., Feddi, E., (2017) Superlatt. Microstruct., 109, p. 123El-Yadri, M., Aghoutane, N., El Aouami, A., Feddi, E., Dujardin, F., Duque, C.A., (2018) Appl. Surf. Sci., 441, p. 204M’zerd, S., El Haouari, M., Talbi, A., Feddi, E., Mora-Ramos, M.E., (2018) J. Alloy Compounds, 753, p. 68Stroscio, M.A., Dutta, M., (2003) Phonons in Nanostructures, , Cambridge University Press, CambridgeTrallero-Giner, C., Pérez-Alvarez, R., García-Moliner, F., (1998) Long Wave Polar Modes in Semiconductor Heterostructures, , Elsevier, OxfordRidley, B.K., (2009) Electrons and Phonons in Semiconductor Multilayers, , 2, Cambridge University Press, CambridgeEl Haouari, M., Mora-Ramos, M.E., Talbi, A., Feddi, E., Dujardin, F., (2018) Phys. E, 103, p. 188Bolcatto, P.G., Proetto, C.R., (1999) Phys. Rev. B, 59, p. 12487Boichuk, V.I., Bilynsky, I.V., Shakleina, I.O., Kogoutiouk, I.P., (2011) J. Phys.:Conf. Ser., 289Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2017) Superlatt. Microstruct., 103, p. 205Sil, N., Daripa, N., Kapoor, A., Dey, S.K., (2018) Pramana-J. Phys., 90, p. 7Niculescu, E.C., Cristea, M., Sci, U.P.B., (2013) Bull. Ser. A, 75, p. 195Cristea, M., Radu, A., Niculescu, E.C., (2013) J. Lumin., 143, p. 592Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2018) Superlatt. Microstruct., 113, p. 442Hong, S., Singh, J., (1987) J. Appl. Phys., 61, p. 5346Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191Frohlich, H., (1952) Proc. R. Soc. Edinburgh Sect. A: Math., 215, p. 291Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157Bajaj, K.K., (1972) Polarons in Ionic Crystals and Polar Semiconductors, pp. 194-225. , J. Devreese, North-Holland, AmsterdamShokhovets, S., Ambacher, O., Gobsch, G., (2007) Phys. Rev. B, 76, p. 125203Safarpour, G., Izadi, M.A., Novzari, M., Niknam, E., Golshan, M.M., (2014) Commun. Theor. Phys., 61, p. 765Radosavijevic, A., Radovanovic, J., Milanović, V., Indjin, D., (2015) Opt. Quant. Electron., 47, p. 865Moses, P.G., Van de Walle, C.G., (2010) Appl. Phys. Lett., 96, p. 021908Vurgaftman, I., Meyer, J.R., (2003) J. Appl. Phys., 94, p. 3675Bose, M.K., Midya, K., Bose, C., (2007) J. Appl. Phys., 101, p. 054315Brus, L.E., (1984) J. Chem. Phys., 80, p. 4403Ferreyra, J.M., Proetto, C.R., (1998) Phys. Rev. B, 57, p. 9061(2004) Nanostructures: Theory and Modeling, , C. Delerue, M. Lanoo, Springer, BerlinBăttcher, C.J.F., (1973) Theory of Electric Polarization, 1. , Elsevier, AmsterdamFeddi, E., El Haouari, M., Assaid, E., Stèbè, B., El Khamkhami, J., Dujardin, F., (2003) Phys. Rev. B, 68, p. 235313Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297Pollmann, J., Büttner, H., (1977) Phys. Rev. B, 16, p. 4480Parvathi, A.A., John Peter, A., (2013) Acta Physica Polonica A, 124, p. 706Wu, Y.-F., Liang, X.-X., Bajaj, K.K., (2005) Chin. Phys., 14, p. 2314Rinke, P., Winkelkemper, M., Qteish, A., Bimberg, D., Neugebauer, J., Scheffler, M., (2008) Phys. Rev. B, 77, p. 075202Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D.J., Goldhahn, R., (2012) Phys. Rev. B, 85, p. 155207Xie, M.-Y., Schubert, M., Lu, J., Persson, P.O.Å., Stanishev, V., Hsiao, C.L., Chen, L.C., Darakchieva, V., (2014) Phys. Rev. B, 90, p. 195306Cuscó, R., Doménech-Amador, N., Novikov, S., Foxom, C.T., Artús, L., (2015) Phys. Rev. B, 92, p. 075206Banyai, L., Galbraith, I., Ell, C., Haug, H., (1987) Phys. Rev. B, 36, p. 6099Takagahara, T., (1993) Phys. Rev. B, 47, p. 4569Brus, L.E., (1986) IEEE J. Quant. Electron., 22, p. 1909Haken, H., (1956) Nuovo Cim., 10, p. 1230Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157Haga, E., (1955) Prog. Theor. Phys. Kyoto, 13, p. 555Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297Applied Physics A: Materials Science and ProcessingBand nonparabolicityCore–ShellDielectric mismatchPolaron effectsSpherical quantum dotZincblende III–V nitridesConduction bandsElectron-phonon interactionsElectronic propertiesGallium nitrideGround stateIII-V semiconductorsNanocrystalsSemiconductor quantum dotsSemiconductor quantum wellsZinc sulfideCore/shell quantum dotsDielectric polarizationEffective-mass equationElectron energy spectrumGround-state energiesImpurity binding energyLongitudinal optical phononsSpherical quantum dotBinding energyLO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band modelArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Talbi, A., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM de Rabat, Mohammed V University in Rabat, Rabat, Morocco, Laboratory of Materials Physics and Subatomics, Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra, MoroccoEl Haouari, M., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM de Rabat, Mohammed V University in Rabat, Rabat, Morocco, Centre Régional des Métiers de l’Education et de Formation (CRMEF), Tanger, MoroccoNouneh, K., Laboratory of Materials Physics and Subatomics, Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra, MoroccoPérez, L.M., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica, ChileTiutiunnyk, A., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica, ChileLaroze, D., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica, ChileCourel, M., Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca, Jalisco C.P. 46600, MexicoMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaFeddi, E., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM de Rabat, Mohammed V University in Rabat, Rabat, Moroccohttp://purl.org/coar/access_right/c_16ecTalbi A.El Haouari M.Nouneh K.Pérez L.M.Tiutiunnyk A.Laroze D.Courel M.Mora-Ramos M.E.Feddi E.11407/5894oai:repository.udem.edu.co:11407/58942021-02-05 09:57:36.94Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co