LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model
The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5894
- Acceso en línea:
- http://hdl.handle.net/11407/5894
- Palabra clave:
- Band nonparabolicity
Core–Shell
Dielectric mismatch
Polaron effects
Spherical quantum dot
Zincblende III–V nitrides
Conduction bands
Electron-phonon interactions
Electronic properties
Gallium nitride
Ground state
III-V semiconductors
Nanocrystals
Semiconductor quantum dots
Semiconductor quantum wells
Zinc sulfide
Core/shell quantum dots
Dielectric polarization
Effective-mass equation
Electron energy spectrum
Ground-state energies
Impurity binding energy
Longitudinal optical phonons
Spherical quantum dot
Binding energy
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_2daaedf86fe354b4f6cb4781adfb5784 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5894 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
title |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
spellingShingle |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model Band nonparabolicity Core–Shell Dielectric mismatch Polaron effects Spherical quantum dot Zincblende III–V nitrides Conduction bands Electron-phonon interactions Electronic properties Gallium nitride Ground state III-V semiconductors Nanocrystals Semiconductor quantum dots Semiconductor quantum wells Zinc sulfide Core/shell quantum dots Dielectric polarization Effective-mass equation Electron energy spectrum Ground-state energies Impurity binding energy Longitudinal optical phonons Spherical quantum dot Binding energy |
title_short |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
title_full |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
title_fullStr |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
title_full_unstemmed |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
title_sort |
LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model |
dc.subject.spa.fl_str_mv |
Band nonparabolicity Core–Shell Dielectric mismatch Polaron effects Spherical quantum dot Zincblende III–V nitrides |
topic |
Band nonparabolicity Core–Shell Dielectric mismatch Polaron effects Spherical quantum dot Zincblende III–V nitrides Conduction bands Electron-phonon interactions Electronic properties Gallium nitride Ground state III-V semiconductors Nanocrystals Semiconductor quantum dots Semiconductor quantum wells Zinc sulfide Core/shell quantum dots Dielectric polarization Effective-mass equation Electron energy spectrum Ground-state energies Impurity binding energy Longitudinal optical phonons Spherical quantum dot Binding energy |
dc.subject.keyword.eng.fl_str_mv |
Conduction bands Electron-phonon interactions Electronic properties Gallium nitride Ground state III-V semiconductors Nanocrystals Semiconductor quantum dots Semiconductor quantum wells Zinc sulfide Core/shell quantum dots Dielectric polarization Effective-mass equation Electron energy spectrum Ground-state energies Impurity binding energy Longitudinal optical phonons Spherical quantum dot Binding energy |
description |
The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longitudinal optical phonons is included through Frö hlich and Aldrich-Bajaj theories, respectively. The ground state energy is determined by solving the resulting conduction band effective mass equation via the variational Ritz principle. A detailed analysis of the features of electron and hole spectra as functions of the core and shell sizes is presented, highlighting the possibility of transitioning between type-I and type-II structures. A detailed discussion about the effects of conduction band nonparabolicity, dielectric mismatch and electron-phonon interaction onto the impurity binding energy is provided. It was found that, in general, nonparabolicity of the conduction band leads to larger impurity binding energy, and that LO-phonon and dielectric mismatch effects tend to reduce the value of the latter quantity. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:36Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:36Z |
dc.date.none.fl_str_mv |
2021 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9478396 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5894 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00339-020-04137-6 |
identifier_str_mv |
9478396 10.1007/s00339-020-04137-6 |
url |
http://hdl.handle.net/11407/5894 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098636670&doi=10.1007%2fs00339-020-04137-6&partnerID=40&md5=5af24c02ded7a5b961ddc03f1f3eb4d5 |
dc.relation.citationvolume.none.fl_str_mv |
127 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Mélinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., Plain, J., Warot-Fonrose, B., (2014) Phys. Rep., 543, p. 163 Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L., (1990) J. Am. Chem. Soc., 112, p. 1327 Zhou, H.S., Honma, I., Komiyama, H., (1993) J. Phys. Chem., 97, p. 895 Mews, A., Eychmuller, A., Giersig, M., Schooss, D., Weller, H., (1994) J. Phys. Chem., 98, p. 934 Haus, J.W., Zhou, H.S., Honma, I., Komiyana, H., (1993) Phys. Rev. B, 47, p. 1359 Zhao, H., Jin, L., Zhou, Y., Bandar, A., Fan, Z., Govorov, A.O., Mi, Z., Vomiero, A., (2016) Nanotechnology, 27, p. 495405 Ji, W., Jing, P., Xu, W., Yuan, X., Wang, Y., Zhao, J., Jen, A.K.-Y., (2013) Appl. Phys. Lett., 103, p. 053106 Kuo, T.-R., Hung, S.-T., Lin, Y.-T., Chou, T.-L., Kuo, M.-C., Kuo, Y.-P., Chen, C.-C., (2017) Nanoscale Res. Lett., 12, p. 537 Kim, S., Fisher, B., Eisler, H.-J., Bawendi, M., (2003) J. Am. Chem. Soc., 125, p. 11466 Li, J.J., Tsay, J.M., Michalet, X., Weiss, S., (2005) Chem. Phys., 318, p. 82 Xie, R., Kolb, U., Li, J., Basché, T., Mews, A., (2005) J. Am. Chem. Soc., 127, p. 7480 Kamat Prashant, V., (2008) J. Phys. Chem. C, 112 Bar, M., Lehmann, S., Rusu, M., Grimm, A., Kotschau, I., Lauermann, I., Pistor, P., Jung, C., (2005) Appl. Phys. Lett., 86, p. 222107 Lu, Z., Gao, C., Zhang, Q., Chi, M., Howe, J.Y., Yin, Y., (2011) Nano Lett., 11, p. 3404 Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G., (2004) Phys. Rev. B, 69, p. 113301 Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S., (2004) Nat. Biotechnol., 22, p. 969 Igor, L., Medintz, L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M., (2003) Nat. Mater., 2, p. 630 Vasudevan, D., Ranganathan, R., Trinchi, A., Cole, I., (2015) J. Alloy. Compd., 636, p. 395 Grim, J.Q., Manna, L., Moreels, I., (2015) Chem. Soc. Rev., 44, p. 5897 Rogach, A.L., (2008) Semiconductor Nanocrystal Quantum Dots, , (ed), Springer, Wien Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., (1997) J. Phys. Chem. B, 101, p. 9463 Hines, M.A., Guyot-Sionnest, P., (1996) J. Phys. Chem., 100, p. 468 Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L.M., Laroze, D., Feddi, E., (2020) Chin. J. Phys., 66, p. 444 Bekhouche, H., Gueddim, A., Bouarissa, N., Messikine, N., (2020) Chin. J. Phys., 65, p. 146 Khordad, R., Vaseghi, B., (2019) Chin. J. Phys., 59, p. 473 Barseghyan, M.G., Manaselyan, A., Kirakosyan, A.A., Pérez, L.M., David Laroze (2020) Phys. E, 117, p. 113807 Jasieniak, J., Califano, M., Watkins, S.E., (2011) ACS Nano, 5, p. 5888 Chen, O., Yang, Y., Wang, T., Wu, H., Niu, C., Yang, J., Cao, Y.C., (2011) J. Am. Chem. Soc., 133, p. 17504 Baranov, A., Rakovich, Y., Donegan, J., Perova, T., Moore, R., Talapin, D., Rogach, A., Nabiev, I., (2003) Phys. Rev. B, 68, p. 1653061 Gaponik, N., Hickey, S.G., Dorfs, D., Rogach, A.L., Eychmüller, A., (2010) Small, 6, p. 1364 Koenraad, P.M., Flatté, M.E., (2011) Nat. Mater., 10, p. 91 Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191 Cristea, M., Niculescu, E.C., (2013) Phys. Lett. A, 377, p. 1221 Niculescu, E.C., Cristea, M., (2013) J. Lumin., 135, p. 120 Zeng, Z., Garoufalis, C.S., Terzis, A.F., Baskoutas, S., (2013) J. Appl. Phys., 114, p. 023510 Manaselyan, A.K., Kirakosyan, A.A., (2004) Phys. E, 22, p. 825 Manaselyan, A.K., Agasyan, M.M., Kirakosyan, A.A., (2002) Phys. E, 14, p. 366 Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., (2015) Superlatt. Microstruct., 85, p. 581 Talbi, A., Feddi, E., Zouitine, A., El Haouari, M., Zazoui, M., Oukerroum, A., Dujardin, F., Addou, M., (2016) Phys. E, 84, p. 303 Ibral, A., Zouitine, A., Assaid, E., Feddi, E., Dujardin, F., (2014) Phys. B, 449, p. 261 Ibral, A., Zouitine, A., Assaid, E., El Achouby, H., Feddi, E., Dujardin, F., (2015) Phys. B, 458, p. 73 Zouitine, A., Ibral, A., Assaid, E., Dujardin, F., Feddi, E., (2017) Superlatt. Microstruct., 109, p. 123 El-Yadri, M., Aghoutane, N., El Aouami, A., Feddi, E., Dujardin, F., Duque, C.A., (2018) Appl. Surf. Sci., 441, p. 204 M’zerd, S., El Haouari, M., Talbi, A., Feddi, E., Mora-Ramos, M.E., (2018) J. Alloy Compounds, 753, p. 68 Stroscio, M.A., Dutta, M., (2003) Phonons in Nanostructures, , Cambridge University Press, Cambridge Trallero-Giner, C., Pérez-Alvarez, R., García-Moliner, F., (1998) Long Wave Polar Modes in Semiconductor Heterostructures, , Elsevier, Oxford Ridley, B.K., (2009) Electrons and Phonons in Semiconductor Multilayers, , 2, Cambridge University Press, Cambridge El Haouari, M., Mora-Ramos, M.E., Talbi, A., Feddi, E., Dujardin, F., (2018) Phys. E, 103, p. 188 Bolcatto, P.G., Proetto, C.R., (1999) Phys. Rev. B, 59, p. 12487 Boichuk, V.I., Bilynsky, I.V., Shakleina, I.O., Kogoutiouk, I.P., (2011) J. Phys.:Conf. Ser., 289 Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2017) Superlatt. Microstruct., 103, p. 205 Sil, N., Daripa, N., Kapoor, A., Dey, S.K., (2018) Pramana-J. Phys., 90, p. 7 Niculescu, E.C., Cristea, M., Sci, U.P.B., (2013) Bull. Ser. A, 75, p. 195 Cristea, M., Radu, A., Niculescu, E.C., (2013) J. Lumin., 143, p. 592 Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2018) Superlatt. Microstruct., 113, p. 442 Hong, S., Singh, J., (1987) J. Appl. Phys., 61, p. 5346 Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191 Frohlich, H., (1952) Proc. R. Soc. Edinburgh Sect. A: Math., 215, p. 291 Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157 Bajaj, K.K., (1972) Polarons in Ionic Crystals and Polar Semiconductors, pp. 194-225. , J. Devreese, North-Holland, Amsterdam Shokhovets, S., Ambacher, O., Gobsch, G., (2007) Phys. Rev. B, 76, p. 125203 Safarpour, G., Izadi, M.A., Novzari, M., Niknam, E., Golshan, M.M., (2014) Commun. Theor. Phys., 61, p. 765 Radosavijevic, A., Radovanovic, J., Milanović, V., Indjin, D., (2015) Opt. Quant. Electron., 47, p. 865 Moses, P.G., Van de Walle, C.G., (2010) Appl. Phys. Lett., 96, p. 021908 Vurgaftman, I., Meyer, J.R., (2003) J. Appl. Phys., 94, p. 3675 Bose, M.K., Midya, K., Bose, C., (2007) J. Appl. Phys., 101, p. 054315 Brus, L.E., (1984) J. Chem. Phys., 80, p. 4403 Ferreyra, J.M., Proetto, C.R., (1998) Phys. Rev. B, 57, p. 9061 (2004) Nanostructures: Theory and Modeling, , C. Delerue, M. Lanoo, Springer, Berlin Băttcher, C.J.F., (1973) Theory of Electric Polarization, 1. , Elsevier, Amsterdam Feddi, E., El Haouari, M., Assaid, E., Stèbè, B., El Khamkhami, J., Dujardin, F., (2003) Phys. Rev. B, 68, p. 235313 Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297 Pollmann, J., Büttner, H., (1977) Phys. Rev. B, 16, p. 4480 Parvathi, A.A., John Peter, A., (2013) Acta Physica Polonica A, 124, p. 706 Wu, Y.-F., Liang, X.-X., Bajaj, K.K., (2005) Chin. Phys., 14, p. 2314 Rinke, P., Winkelkemper, M., Qteish, A., Bimberg, D., Neugebauer, J., Scheffler, M., (2008) Phys. Rev. B, 77, p. 075202 Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D.J., Goldhahn, R., (2012) Phys. Rev. B, 85, p. 155207 Xie, M.-Y., Schubert, M., Lu, J., Persson, P.O.Å., Stanishev, V., Hsiao, C.L., Chen, L.C., Darakchieva, V., (2014) Phys. Rev. B, 90, p. 195306 Cuscó, R., Doménech-Amador, N., Novikov, S., Foxom, C.T., Artús, L., (2015) Phys. Rev. B, 92, p. 075206 Banyai, L., Galbraith, I., Ell, C., Haug, H., (1987) Phys. Rev. B, 36, p. 6099 Takagahara, T., (1993) Phys. Rev. B, 47, p. 4569 Brus, L.E., (1986) IEEE J. Quant. Electron., 22, p. 1909 Haken, H., (1956) Nuovo Cim., 10, p. 1230 Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157 Haga, E., (1955) Prog. Theor. Phys. Kyoto, 13, p. 555 Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.source.none.fl_str_mv |
Applied Physics A: Materials Science and Processing |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159103090491392 |
spelling |
20212021-02-05T14:57:36Z2021-02-05T14:57:36Z9478396http://hdl.handle.net/11407/589410.1007/s00339-020-04137-6The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longitudinal optical phonons is included through Frö hlich and Aldrich-Bajaj theories, respectively. The ground state energy is determined by solving the resulting conduction band effective mass equation via the variational Ritz principle. A detailed analysis of the features of electron and hole spectra as functions of the core and shell sizes is presented, highlighting the possibility of transitioning between type-I and type-II structures. A detailed discussion about the effects of conduction band nonparabolicity, dielectric mismatch and electron-phonon interaction onto the impurity binding energy is provided. It was found that, in general, nonparabolicity of the conduction band leads to larger impurity binding energy, and that LO-phonon and dielectric mismatch effects tend to reduce the value of the latter quantity. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.engSpringer Science and Business Media Deutschland GmbHFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098636670&doi=10.1007%2fs00339-020-04137-6&partnerID=40&md5=5af24c02ded7a5b961ddc03f1f3eb4d51271Mélinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., Plain, J., Warot-Fonrose, B., (2014) Phys. Rep., 543, p. 163Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L., (1990) J. Am. Chem. Soc., 112, p. 1327Zhou, H.S., Honma, I., Komiyama, H., (1993) J. Phys. Chem., 97, p. 895Mews, A., Eychmuller, A., Giersig, M., Schooss, D., Weller, H., (1994) J. Phys. Chem., 98, p. 934Haus, J.W., Zhou, H.S., Honma, I., Komiyana, H., (1993) Phys. Rev. B, 47, p. 1359Zhao, H., Jin, L., Zhou, Y., Bandar, A., Fan, Z., Govorov, A.O., Mi, Z., Vomiero, A., (2016) Nanotechnology, 27, p. 495405Ji, W., Jing, P., Xu, W., Yuan, X., Wang, Y., Zhao, J., Jen, A.K.-Y., (2013) Appl. Phys. Lett., 103, p. 053106Kuo, T.-R., Hung, S.-T., Lin, Y.-T., Chou, T.-L., Kuo, M.-C., Kuo, Y.-P., Chen, C.-C., (2017) Nanoscale Res. Lett., 12, p. 537Kim, S., Fisher, B., Eisler, H.-J., Bawendi, M., (2003) J. Am. Chem. Soc., 125, p. 11466Li, J.J., Tsay, J.M., Michalet, X., Weiss, S., (2005) Chem. Phys., 318, p. 82Xie, R., Kolb, U., Li, J., Basché, T., Mews, A., (2005) J. Am. Chem. Soc., 127, p. 7480Kamat Prashant, V., (2008) J. Phys. Chem. C, 112Bar, M., Lehmann, S., Rusu, M., Grimm, A., Kotschau, I., Lauermann, I., Pistor, P., Jung, C., (2005) Appl. Phys. Lett., 86, p. 222107Lu, Z., Gao, C., Zhang, Q., Chi, M., Howe, J.Y., Yin, Y., (2011) Nano Lett., 11, p. 3404Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G., (2004) Phys. Rev. B, 69, p. 113301Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S., (2004) Nat. Biotechnol., 22, p. 969Igor, L., Medintz, L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M., (2003) Nat. Mater., 2, p. 630Vasudevan, D., Ranganathan, R., Trinchi, A., Cole, I., (2015) J. Alloy. Compd., 636, p. 395Grim, J.Q., Manna, L., Moreels, I., (2015) Chem. Soc. Rev., 44, p. 5897Rogach, A.L., (2008) Semiconductor Nanocrystal Quantum Dots, , (ed), Springer, WienDabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., (1997) J. Phys. Chem. B, 101, p. 9463Hines, M.A., Guyot-Sionnest, P., (1996) J. Phys. Chem., 100, p. 468Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L.M., Laroze, D., Feddi, E., (2020) Chin. J. Phys., 66, p. 444Bekhouche, H., Gueddim, A., Bouarissa, N., Messikine, N., (2020) Chin. J. Phys., 65, p. 146Khordad, R., Vaseghi, B., (2019) Chin. J. Phys., 59, p. 473Barseghyan, M.G., Manaselyan, A., Kirakosyan, A.A., Pérez, L.M., David Laroze (2020) Phys. E, 117, p. 113807Jasieniak, J., Califano, M., Watkins, S.E., (2011) ACS Nano, 5, p. 5888Chen, O., Yang, Y., Wang, T., Wu, H., Niu, C., Yang, J., Cao, Y.C., (2011) J. Am. Chem. Soc., 133, p. 17504Baranov, A., Rakovich, Y., Donegan, J., Perova, T., Moore, R., Talapin, D., Rogach, A., Nabiev, I., (2003) Phys. Rev. B, 68, p. 1653061Gaponik, N., Hickey, S.G., Dorfs, D., Rogach, A.L., Eychmüller, A., (2010) Small, 6, p. 1364Koenraad, P.M., Flatté, M.E., (2011) Nat. Mater., 10, p. 91Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191Cristea, M., Niculescu, E.C., (2013) Phys. Lett. A, 377, p. 1221Niculescu, E.C., Cristea, M., (2013) J. Lumin., 135, p. 120Zeng, Z., Garoufalis, C.S., Terzis, A.F., Baskoutas, S., (2013) J. Appl. Phys., 114, p. 023510Manaselyan, A.K., Kirakosyan, A.A., (2004) Phys. E, 22, p. 825Manaselyan, A.K., Agasyan, M.M., Kirakosyan, A.A., (2002) Phys. E, 14, p. 366Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., (2015) Superlatt. Microstruct., 85, p. 581Talbi, A., Feddi, E., Zouitine, A., El Haouari, M., Zazoui, M., Oukerroum, A., Dujardin, F., Addou, M., (2016) Phys. E, 84, p. 303Ibral, A., Zouitine, A., Assaid, E., Feddi, E., Dujardin, F., (2014) Phys. B, 449, p. 261Ibral, A., Zouitine, A., Assaid, E., El Achouby, H., Feddi, E., Dujardin, F., (2015) Phys. B, 458, p. 73Zouitine, A., Ibral, A., Assaid, E., Dujardin, F., Feddi, E., (2017) Superlatt. Microstruct., 109, p. 123El-Yadri, M., Aghoutane, N., El Aouami, A., Feddi, E., Dujardin, F., Duque, C.A., (2018) Appl. Surf. Sci., 441, p. 204M’zerd, S., El Haouari, M., Talbi, A., Feddi, E., Mora-Ramos, M.E., (2018) J. Alloy Compounds, 753, p. 68Stroscio, M.A., Dutta, M., (2003) Phonons in Nanostructures, , Cambridge University Press, CambridgeTrallero-Giner, C., Pérez-Alvarez, R., García-Moliner, F., (1998) Long Wave Polar Modes in Semiconductor Heterostructures, , Elsevier, OxfordRidley, B.K., (2009) Electrons and Phonons in Semiconductor Multilayers, , 2, Cambridge University Press, CambridgeEl Haouari, M., Mora-Ramos, M.E., Talbi, A., Feddi, E., Dujardin, F., (2018) Phys. E, 103, p. 188Bolcatto, P.G., Proetto, C.R., (1999) Phys. Rev. B, 59, p. 12487Boichuk, V.I., Bilynsky, I.V., Shakleina, I.O., Kogoutiouk, I.P., (2011) J. Phys.:Conf. Ser., 289Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2017) Superlatt. Microstruct., 103, p. 205Sil, N., Daripa, N., Kapoor, A., Dey, S.K., (2018) Pramana-J. Phys., 90, p. 7Niculescu, E.C., Cristea, M., Sci, U.P.B., (2013) Bull. Ser. A, 75, p. 195Cristea, M., Radu, A., Niculescu, E.C., (2013) J. Lumin., 143, p. 592Vartanian, A.L., Asatryan, A.L., Vardanyan, L.A., (2018) Superlatt. Microstruct., 113, p. 442Hong, S., Singh, J., (1987) J. Appl. Phys., 61, p. 5346Cristea, M., Niculescu, E.C., (2012) Eur. Phys. J. B, 85, p. 191Frohlich, H., (1952) Proc. R. Soc. Edinburgh Sect. A: Math., 215, p. 291Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157Bajaj, K.K., (1972) Polarons in Ionic Crystals and Polar Semiconductors, pp. 194-225. , J. Devreese, North-Holland, AmsterdamShokhovets, S., Ambacher, O., Gobsch, G., (2007) Phys. Rev. B, 76, p. 125203Safarpour, G., Izadi, M.A., Novzari, M., Niknam, E., Golshan, M.M., (2014) Commun. Theor. Phys., 61, p. 765Radosavijevic, A., Radovanovic, J., Milanović, V., Indjin, D., (2015) Opt. Quant. Electron., 47, p. 865Moses, P.G., Van de Walle, C.G., (2010) Appl. Phys. Lett., 96, p. 021908Vurgaftman, I., Meyer, J.R., (2003) J. Appl. Phys., 94, p. 3675Bose, M.K., Midya, K., Bose, C., (2007) J. Appl. Phys., 101, p. 054315Brus, L.E., (1984) J. Chem. Phys., 80, p. 4403Ferreyra, J.M., Proetto, C.R., (1998) Phys. Rev. B, 57, p. 9061(2004) Nanostructures: Theory and Modeling, , C. Delerue, M. Lanoo, Springer, BerlinBăttcher, C.J.F., (1973) Theory of Electric Polarization, 1. , Elsevier, AmsterdamFeddi, E., El Haouari, M., Assaid, E., Stèbè, B., El Khamkhami, J., Dujardin, F., (2003) Phys. Rev. B, 68, p. 235313Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297Pollmann, J., Büttner, H., (1977) Phys. Rev. B, 16, p. 4480Parvathi, A.A., John Peter, A., (2013) Acta Physica Polonica A, 124, p. 706Wu, Y.-F., Liang, X.-X., Bajaj, K.K., (2005) Chin. Phys., 14, p. 2314Rinke, P., Winkelkemper, M., Qteish, A., Bimberg, D., Neugebauer, J., Scheffler, M., (2008) Phys. Rev. B, 77, p. 075202Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D.J., Goldhahn, R., (2012) Phys. Rev. B, 85, p. 155207Xie, M.-Y., Schubert, M., Lu, J., Persson, P.O.Å., Stanishev, V., Hsiao, C.L., Chen, L.C., Darakchieva, V., (2014) Phys. Rev. B, 90, p. 195306Cuscó, R., Doménech-Amador, N., Novikov, S., Foxom, C.T., Artús, L., (2015) Phys. Rev. B, 92, p. 075206Banyai, L., Galbraith, I., Ell, C., Haug, H., (1987) Phys. Rev. B, 36, p. 6099Takagahara, T., (1993) Phys. Rev. B, 47, p. 4569Brus, L.E., (1986) IEEE J. Quant. Electron., 22, p. 1909Haken, H., (1956) Nuovo Cim., 10, p. 1230Aldrich, C., Bajaj, K.K., (1977) Solid State Commun., 22, p. 157Haga, E., (1955) Prog. Theor. Phys. Kyoto, 13, p. 555Lee, T.D., Low, F., Pines, D., (1953) Phys. Rev., 90, p. 297Applied Physics A: Materials Science and ProcessingBand nonparabolicityCore–ShellDielectric mismatchPolaron effectsSpherical quantum dotZincblende III–V nitridesConduction bandsElectron-phonon interactionsElectronic propertiesGallium nitrideGround stateIII-V semiconductorsNanocrystalsSemiconductor quantum dotsSemiconductor quantum wellsZinc sulfideCore/shell quantum dotsDielectric polarizationEffective-mass equationElectron energy spectrumGround-state energiesImpurity binding energyLongitudinal optical phononsSpherical quantum dotBinding energyLO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band modelArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Talbi, A., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM de Rabat, Mohammed V University in Rabat, Rabat, Morocco, Laboratory of Materials Physics and Subatomics, Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra, MoroccoEl Haouari, M., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM de Rabat, Mohammed V University in Rabat, Rabat, Morocco, Centre Régional des Métiers de l’Education et de Formation (CRMEF), Tanger, MoroccoNouneh, K., Laboratory of Materials Physics and Subatomics, Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra, MoroccoPérez, L.M., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica, ChileTiutiunnyk, A., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica, ChileLaroze, D., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica, ChileCourel, M., Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca, Jalisco C.P. 46600, MexicoMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaFeddi, E., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM de Rabat, Mohammed V University in Rabat, Rabat, Moroccohttp://purl.org/coar/access_right/c_16ecTalbi A.El Haouari M.Nouneh K.Pérez L.M.Tiutiunnyk A.Laroze D.Courel M.Mora-Ramos M.E.Feddi E.11407/5894oai:repository.udem.edu.co:11407/58942021-02-05 09:57:36.94Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |