Opto-electronic properties of twisted bilayer graphene quantum dots

The electronic and interband optical properties of vertically coupled stacked graphene quantum dots are investigated using the tight-binding method. Both zigzag and armchair edge configurations are taken into account. In particular, the effect of the geometrical shape (triangular or circle-like) and...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6099
Acceso en línea:
http://hdl.handle.net/11407/6099
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2cfaae3b0ec778d4f527d139e0fd64c7
oai_identifier_str oai:repository.udem.edu.co:11407/6099
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Opto-electronic properties of twisted bilayer graphene quantum dots
title Opto-electronic properties of twisted bilayer graphene quantum dots
spellingShingle Opto-electronic properties of twisted bilayer graphene quantum dots
title_short Opto-electronic properties of twisted bilayer graphene quantum dots
title_full Opto-electronic properties of twisted bilayer graphene quantum dots
title_fullStr Opto-electronic properties of twisted bilayer graphene quantum dots
title_full_unstemmed Opto-electronic properties of twisted bilayer graphene quantum dots
title_sort Opto-electronic properties of twisted bilayer graphene quantum dots
description The electronic and interband optical properties of vertically coupled stacked graphene quantum dots are investigated using the tight-binding method. Both zigzag and armchair edge configurations are taken into account. In particular, the effect of the geometrical shape (triangular or circle-like) and, most prominently, of the angle of twisting between layers is mainly addressed. The optical response is analyzed from the calculated imaginary part of the dielectric function. It is found that the interband absorption threshold is highly dependent on the dot size and geometry: For armchair triangular bilayer graphene dots the optical gap exhibits a moderate increase for smaller angles of twisting, and the structure behaves as an intermediate to a wide gap semiconductor; whereas zigzag triangular bilayer graphene dots are small gap systems in which the twisting causes the appearance of zero-gap states associated with the variation of HOMO and LUMO states resulting from the breaking of zero-energy degeneracy. In the latter case, it is shown that the low-energy transitions between those states are responsible for the main optical response of the structures which indicates possible applications in the THz optoelectronics. Circular dots are chosen in commensurable configurations and also show stronger low-energy absorption thresholds. A particular feature appearing in this case is the presence of Bravais-Moiré patterns in the two-dimensional probability density distributions for large enough dot radii. © 2019 Elsevier B.V.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:37Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:37Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 13869477
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6099
dc.identifier.doi.none.fl_str_mv 10.1016/j.physe.2019.03.028
identifier_str_mv 13869477
10.1016/j.physe.2019.03.028
url http://hdl.handle.net/11407/6099
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063985896&doi=10.1016%2fj.physe.2019.03.028&partnerID=40&md5=a01eeaa51625332c7bddfbbda946703e
dc.relation.citationvolume.none.fl_str_mv 112
dc.relation.citationstartpage.none.fl_str_mv 36
dc.relation.citationendpage.none.fl_str_mv 48
dc.relation.references.none.fl_str_mv Geim, A.K., Graphene: status and prospects (2009) Science, 324, pp. 1530-1534
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., The electronic properties of graphene (2009) Rev. Mod. Phys., 81, pp. 109-162
Wu, Y.H., Yu, T., Shen, Z.X., Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications (2010) J. Appl. Phys., 108, p. 071301
Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A., Graphene: the new two-dimensional nanomaterial (2009) Angew. Chem. Int. Ed., 48, pp. 7752-7777
Shen, J., Zhu, Y., Yang, X., Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices (2012) Chem. Commun., 48, p. 3686
Bak, S., Kim, D., Lee, H., Graphene quantum dots and their possible energy applications: a review (2016) Curr. Appl. Phys., 16, pp. 1192-1201
Chen, W., Lv, G., Hu, W., Li, D., Chen, S., Dai, Z., Synthesis and applications of graphene quantum dots: a review (2018) Nanotechnol. Rev., 7, pp. 157-185
Bacon, M., Bradley, S.J., Nann, T., Graphene quantum dots (2013) Part. Part. Syst. Char., 31, pp. 415-428
Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J.-J., Focusing on luminescent graphene quantum dots: current status and future perspectives (2013) Nanoscale, 5, p. 4015
Qi, B.-P., Hu, H., Bao, L., Zhang, Z.-L., Tang, B., Peng, Y., Wang, B.-S., Pang, D.-W., An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots (2015) Nanoscale, 7, pp. 5969-5973
Chiu, K.L., Connolly, M.R., Cresti, A., Griffiths, J.P., Jones, G.A.C., Smith, C.G., Magnetic-field-induced charge redistribution in disordered graphene double quantum dots (2015) Phys. Rev. B, 92, p. 155408
Yamijala, S.S., Bandyopadhyay, A., Pati, S.K., Nitrogen-doped graphene quantum dots as possible substrates to stabilize planar conformer of au20 over its tetrahedral conformer: a systematic DFT study (2014) J. Phys. Chem. C, 118, pp. 17890-17894
Zhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y., Effects of edge oxidation on the stability and half-metallicity of graphene quantum dots (2013) ChemPhysChem, 15, pp. 157-164
Kittiratanawasin, L., Hannongbua, S., The effect of edges and shapes on band gap energy in graphene quantum dots (2016) Integr. Ferroelectr., 175, pp. 211-219
Das, R., Dhar, N., Bandyopadhyay, A., Jana, D., Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: a DFT study (2016) J. Phys. Chem. Solids, 99, pp. 34-42
Liang, F.X., Jiang, Z.T., Lv, Z.T., Zhang, H.Y., Li, S., Energy levels of double triangular graphene quantum dots (2014) J. Appl. Phys., 116, p. 123706
Basak, T., Chakraborty, H., Shukla, A., Theory of linear optical absorption in diamond-shaped graphene quantum dots (2015) Phys. Rev. B, 92, p. 205404
Dong, Q.-R., Liu, C.-X., The optical selection rules of a graphene quantum dot in external electric fields (2017) RSC Adv., 7, pp. 22771-22776
Bugajny, P., Szulakowska, L., Jaworowski, B., Potasz, P., Optical properties of geometrically optimized graphene quantum dots (2017) Phys. E Low-dimens. Syst. Nanostruct., 85, pp. 294-301
Feng, J., Dong, H., Yu, L., Dong, L., The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study (2017) J. Mater. Chem. C, 5, pp. 5984-5993
Gao, F., Yang, C.-L., Wang, M.-S., Ma, X.-G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2017) J. Mater. Sci., 53 (7), pp. 5140-5150
Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach (2011) Phys. Rev. B, 84, p. 245403
da Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of bilayer graphene quantum dots (2015) Phys. Rev. B, 92, p. 115437
Eich, M., Pisoni, R., Pally, A., Overweg, H., Kurzmann, A., Lee, Y., Rickhaus, P., Ihn, T., Coupled quantum dots in bilayer graphene (2018) Nano Lett., 18, pp. 5042-5048
Carr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E., Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle (2017) Phys. Rev. B, 95, p. 075420
Sboychakov, A.O., Rakhmanov, A.L., Rozhkov, A.V., Nori, F., Electronic spectrum of twisted bilayer graphene (2015) Phys. Rev. B, 92, p. 075402
Dai, S., Xiang, Y., Srolovitz, D., Twisted bilayer graphene: moiré with a twist (2016) Nano Lett., 16, pp. 5923-5927
Patel, H., Havener, R.W., Brown, L., Liang, Y., Yang, L., Park, J., Graham, M.W., Tunable optical excitations in twisted bilayer graphene form strongly bound excitons (2015) Nano Lett., 15, pp. 5932-5937
Liao, L., Wang, H., Peng, H., Yin, J., Koh, A.L., Chen, Y., Xie, Q., Liu, Z., Van hove singularity enhanced photochemical reactivity of twisted bilayer graphene (2015) Nano Lett., 15, pp. 5585-5589
Orlof, A., Shylau, A.A., Zozoulenko, I.V., Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field (2015) Phys. Rev. B, 92, p. 075431
Mirzakhani, M., Zarenia, M., Vasilopoulos, P., Peeters, F.M., Electrostatically confined trilayer graphene quantum dots (2017) Phys. Rev. B, 95, p. 155434
da Costa, D., Zarenia, M., Chaves, A., Farias, G., Peeters, F., Analytical study of the energy levels in bilayer graphene quantum dots (2014) Carbon, 78, pp. 392-400
da Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Magnetic field dependence of energy levels in biased bilayer graphene quantum dots (2016) Phys. Rev. B, 93, p. 085401
Mirzakhani, M., Zarenia, M., Ketabi, S.A., da Costa, D.R., Peeters, F.M., Energy levels of hybrid monolayer-bilayer graphene quantum dots (2016) Phys. Rev. B, 93, p. 165410
Caro-Lopera, F.J., Correa-Abad, J.D., Bravais-Moiré Theory and Applications (2017), Tech. rep. University of Medellín
Xhie, J., Sattler, K., Ge, M., Venkateswaran, N., Giant and supergiant lattices on graphite (1993) Phys. Rev. B, 47, pp. 15835-15841
Reich, S., Thomsen, C., Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties (2004), Wiley-VCH
Güçlü, A.D., Potasz, P., Korkusinski, M., Hawrylak, P., Graphene Quantum Dots (NanoScience and Technology) (2014), Springer
Jelinek, R., Carbon Quantum Dots: Synthesis, Properties and Applications (Carbon Nanostructures) (2016), Springer
Shafraniuk, S., Graphene: Fundamentals, Devices, and Applications (2015), Pan Stanford
Munárriz Arrieta, J., Modelling of Plasmonic and Graphene Nanodevices (Springer Theses) (2014), Springer
Correa, J.D., Pacheco, M., Suarez Morell, E., Optical absorption spectrum of rotated trilayer graphene (2014) J. Mater. Sci., 49, pp. 642-647
Güçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88, p. 155429
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Physica E: Low-Dimensional Systems and Nanostructures
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159121757241344
spelling 20192021-02-05T14:59:37Z2021-02-05T14:59:37Z13869477http://hdl.handle.net/11407/609910.1016/j.physe.2019.03.028The electronic and interband optical properties of vertically coupled stacked graphene quantum dots are investigated using the tight-binding method. Both zigzag and armchair edge configurations are taken into account. In particular, the effect of the geometrical shape (triangular or circle-like) and, most prominently, of the angle of twisting between layers is mainly addressed. The optical response is analyzed from the calculated imaginary part of the dielectric function. It is found that the interband absorption threshold is highly dependent on the dot size and geometry: For armchair triangular bilayer graphene dots the optical gap exhibits a moderate increase for smaller angles of twisting, and the structure behaves as an intermediate to a wide gap semiconductor; whereas zigzag triangular bilayer graphene dots are small gap systems in which the twisting causes the appearance of zero-gap states associated with the variation of HOMO and LUMO states resulting from the breaking of zero-energy degeneracy. In the latter case, it is shown that the low-energy transitions between those states are responsible for the main optical response of the structures which indicates possible applications in the THz optoelectronics. Circular dots are chosen in commensurable configurations and also show stronger low-energy absorption thresholds. A particular feature appearing in this case is the presence of Bravais-Moiré patterns in the two-dimensional probability density distributions for large enough dot radii. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063985896&doi=10.1016%2fj.physe.2019.03.028&partnerID=40&md5=a01eeaa51625332c7bddfbbda946703e1123648Geim, A.K., Graphene: status and prospects (2009) Science, 324, pp. 1530-1534Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., The electronic properties of graphene (2009) Rev. Mod. Phys., 81, pp. 109-162Wu, Y.H., Yu, T., Shen, Z.X., Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications (2010) J. Appl. Phys., 108, p. 071301Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A., Graphene: the new two-dimensional nanomaterial (2009) Angew. Chem. Int. Ed., 48, pp. 7752-7777Shen, J., Zhu, Y., Yang, X., Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices (2012) Chem. Commun., 48, p. 3686Bak, S., Kim, D., Lee, H., Graphene quantum dots and their possible energy applications: a review (2016) Curr. Appl. Phys., 16, pp. 1192-1201Chen, W., Lv, G., Hu, W., Li, D., Chen, S., Dai, Z., Synthesis and applications of graphene quantum dots: a review (2018) Nanotechnol. Rev., 7, pp. 157-185Bacon, M., Bradley, S.J., Nann, T., Graphene quantum dots (2013) Part. Part. Syst. Char., 31, pp. 415-428Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J.-J., Focusing on luminescent graphene quantum dots: current status and future perspectives (2013) Nanoscale, 5, p. 4015Qi, B.-P., Hu, H., Bao, L., Zhang, Z.-L., Tang, B., Peng, Y., Wang, B.-S., Pang, D.-W., An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots (2015) Nanoscale, 7, pp. 5969-5973Chiu, K.L., Connolly, M.R., Cresti, A., Griffiths, J.P., Jones, G.A.C., Smith, C.G., Magnetic-field-induced charge redistribution in disordered graphene double quantum dots (2015) Phys. Rev. B, 92, p. 155408Yamijala, S.S., Bandyopadhyay, A., Pati, S.K., Nitrogen-doped graphene quantum dots as possible substrates to stabilize planar conformer of au20 over its tetrahedral conformer: a systematic DFT study (2014) J. Phys. Chem. C, 118, pp. 17890-17894Zhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y., Effects of edge oxidation on the stability and half-metallicity of graphene quantum dots (2013) ChemPhysChem, 15, pp. 157-164Kittiratanawasin, L., Hannongbua, S., The effect of edges and shapes on band gap energy in graphene quantum dots (2016) Integr. Ferroelectr., 175, pp. 211-219Das, R., Dhar, N., Bandyopadhyay, A., Jana, D., Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: a DFT study (2016) J. Phys. Chem. Solids, 99, pp. 34-42Liang, F.X., Jiang, Z.T., Lv, Z.T., Zhang, H.Y., Li, S., Energy levels of double triangular graphene quantum dots (2014) J. Appl. Phys., 116, p. 123706Basak, T., Chakraborty, H., Shukla, A., Theory of linear optical absorption in diamond-shaped graphene quantum dots (2015) Phys. Rev. B, 92, p. 205404Dong, Q.-R., Liu, C.-X., The optical selection rules of a graphene quantum dot in external electric fields (2017) RSC Adv., 7, pp. 22771-22776Bugajny, P., Szulakowska, L., Jaworowski, B., Potasz, P., Optical properties of geometrically optimized graphene quantum dots (2017) Phys. E Low-dimens. Syst. Nanostruct., 85, pp. 294-301Feng, J., Dong, H., Yu, L., Dong, L., The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study (2017) J. Mater. Chem. C, 5, pp. 5984-5993Gao, F., Yang, C.-L., Wang, M.-S., Ma, X.-G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2017) J. Mater. Sci., 53 (7), pp. 5140-5150Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach (2011) Phys. Rev. B, 84, p. 245403da Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of bilayer graphene quantum dots (2015) Phys. Rev. B, 92, p. 115437Eich, M., Pisoni, R., Pally, A., Overweg, H., Kurzmann, A., Lee, Y., Rickhaus, P., Ihn, T., Coupled quantum dots in bilayer graphene (2018) Nano Lett., 18, pp. 5042-5048Carr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E., Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle (2017) Phys. Rev. B, 95, p. 075420Sboychakov, A.O., Rakhmanov, A.L., Rozhkov, A.V., Nori, F., Electronic spectrum of twisted bilayer graphene (2015) Phys. Rev. B, 92, p. 075402Dai, S., Xiang, Y., Srolovitz, D., Twisted bilayer graphene: moiré with a twist (2016) Nano Lett., 16, pp. 5923-5927Patel, H., Havener, R.W., Brown, L., Liang, Y., Yang, L., Park, J., Graham, M.W., Tunable optical excitations in twisted bilayer graphene form strongly bound excitons (2015) Nano Lett., 15, pp. 5932-5937Liao, L., Wang, H., Peng, H., Yin, J., Koh, A.L., Chen, Y., Xie, Q., Liu, Z., Van hove singularity enhanced photochemical reactivity of twisted bilayer graphene (2015) Nano Lett., 15, pp. 5585-5589Orlof, A., Shylau, A.A., Zozoulenko, I.V., Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field (2015) Phys. Rev. B, 92, p. 075431Mirzakhani, M., Zarenia, M., Vasilopoulos, P., Peeters, F.M., Electrostatically confined trilayer graphene quantum dots (2017) Phys. Rev. B, 95, p. 155434da Costa, D., Zarenia, M., Chaves, A., Farias, G., Peeters, F., Analytical study of the energy levels in bilayer graphene quantum dots (2014) Carbon, 78, pp. 392-400da Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Magnetic field dependence of energy levels in biased bilayer graphene quantum dots (2016) Phys. Rev. B, 93, p. 085401Mirzakhani, M., Zarenia, M., Ketabi, S.A., da Costa, D.R., Peeters, F.M., Energy levels of hybrid monolayer-bilayer graphene quantum dots (2016) Phys. Rev. B, 93, p. 165410Caro-Lopera, F.J., Correa-Abad, J.D., Bravais-Moiré Theory and Applications (2017), Tech. rep. University of MedellínXhie, J., Sattler, K., Ge, M., Venkateswaran, N., Giant and supergiant lattices on graphite (1993) Phys. Rev. B, 47, pp. 15835-15841Reich, S., Thomsen, C., Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties (2004), Wiley-VCHGüçlü, A.D., Potasz, P., Korkusinski, M., Hawrylak, P., Graphene Quantum Dots (NanoScience and Technology) (2014), SpringerJelinek, R., Carbon Quantum Dots: Synthesis, Properties and Applications (Carbon Nanostructures) (2016), SpringerShafraniuk, S., Graphene: Fundamentals, Devices, and Applications (2015), Pan StanfordMunárriz Arrieta, J., Modelling of Plasmonic and Graphene Nanodevices (Springer Theses) (2014), SpringerCorrea, J.D., Pacheco, M., Suarez Morell, E., Optical absorption spectrum of rotated trilayer graphene (2014) J. Mater. Sci., 49, pp. 642-647Güçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88, p. 155429Physica E: Low-Dimensional Systems and NanostructuresOpto-electronic properties of twisted bilayer graphene quantum dotsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Tiutiunnyk, A., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, ChileDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, MexicoCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecTiutiunnyk A.Duque C.A.Caro-Lopera F.J.Mora-Ramos M.E.Correa J.D.11407/6099oai:repository.udem.edu.co:11407/60992021-02-05 09:59:37.239Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co