Robust channel estimation for ultra-wide band communications
UWB (ultra-wide band) systems transmit low power signals through communication channels that operate in closed environments and in short distances resulting in multiple propagation trajectories. Moreover, the noise affecting these channels can be characterized by the use of statistical models with h...
- Autores:
-
Yánez Sánchez, Nicey Alberto
Ramirez, Juan Marcos
Paredes, Jose Luis
Pinto, Angel Dario
Torres, Jose Manuel
Perez, Marvin Luis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5526
- Acceso en línea:
- http://hdl.handle.net/11407/5526
https://doi.org/10.22395/rium.v18n34a11
- Palabra clave:
- Ultra wide-band
Weighted median
Channel model
Low density representation
Robust channel estimation
Ultra wide-band
Média ponderada
Modelo do canal
Representação pouco poco densa
Estimativa robusta do canal
Ultra wide-band
Mediana ponderada
Modelo del canal
Representación poco densa
Estimación robusta del canal
- Rights
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
REPOUDEM2_2cebf2207af3f4f4a5bc9f2f903852f5 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5526 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Robust channel estimation for ultra-wide band communications |
dc.title.por.fl_str_mv |
Estimativa robusta de canais de comunicação de ultrabanda larga |
dc.title.spa.fl_str_mv |
Estimación robusta de canales de comunicaciones de ultra banda ancha |
title |
Robust channel estimation for ultra-wide band communications |
spellingShingle |
Robust channel estimation for ultra-wide band communications Ultra wide-band Weighted median Channel model Low density representation Robust channel estimation Ultra wide-band Média ponderada Modelo do canal Representação pouco poco densa Estimativa robusta do canal Ultra wide-band Mediana ponderada Modelo del canal Representación poco densa Estimación robusta del canal |
title_short |
Robust channel estimation for ultra-wide band communications |
title_full |
Robust channel estimation for ultra-wide band communications |
title_fullStr |
Robust channel estimation for ultra-wide band communications |
title_full_unstemmed |
Robust channel estimation for ultra-wide band communications |
title_sort |
Robust channel estimation for ultra-wide band communications |
dc.creator.fl_str_mv |
Yánez Sánchez, Nicey Alberto Ramirez, Juan Marcos Paredes, Jose Luis Pinto, Angel Dario Torres, Jose Manuel Perez, Marvin Luis |
dc.contributor.author.none.fl_str_mv |
Yánez Sánchez, Nicey Alberto Ramirez, Juan Marcos Paredes, Jose Luis Pinto, Angel Dario Torres, Jose Manuel Perez, Marvin Luis |
dc.subject.eng.fl_str_mv |
Ultra wide-band Weighted median Channel model Low density representation Robust channel estimation |
topic |
Ultra wide-band Weighted median Channel model Low density representation Robust channel estimation Ultra wide-band Média ponderada Modelo do canal Representação pouco poco densa Estimativa robusta do canal Ultra wide-band Mediana ponderada Modelo del canal Representación poco densa Estimación robusta del canal |
dc.subject.por.fl_str_mv |
Ultra wide-band Média ponderada Modelo do canal Representação pouco poco densa Estimativa robusta do canal |
dc.subject.spa.fl_str_mv |
Ultra wide-band Mediana ponderada Modelo del canal Representación poco densa Estimación robusta del canal |
description |
UWB (ultra-wide band) systems transmit low power signals through communication channels that operate in closed environments and in short distances resulting in multiple propagation trajectories. Moreover, the noise affecting these channels can be characterized by the use of statistical models with heavier tails that the ones exhibited by gaussian distribution. This article proposes a robust approach for the estimation of the parameters of UWB channels based on the weighted median. More specifically, it develops an algorithm of greedy search that exploits the low density characteristic of the channel’s impulsive response, in which the gains and delays of the relevant channels are determined by applying the weighted median on an scaled and displaced version of the signal received. This newly introduced algorithm is evaluated using extensive simulations in which the performance of the proposed algorithm surpasses the performance of the traditional greedy search algorithm for different levels of impulsive noise. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-07T15:34:27Z |
dc.date.available.none.fl_str_mv |
2019-11-07T15:34:27Z |
dc.date.created.none.fl_str_mv |
2019-06-28 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
Artículo científico |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1692-3324 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5526 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.22395/rium.v18n34a11 |
dc.identifier.eissn.none.fl_str_mv |
2248-4094 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.udem.edu.co/ |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
1692-3324 2248-4094 reponame:Repositorio Institucional Universidad de Medellín repourl:https://repository.udem.edu.co/ instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/5526 https://doi.org/10.22395/rium.v18n34a11 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.uri.none.fl_str_mv |
https://revistas.udem.edu.co/index.php/ingenierias/article/view/2228 |
dc.relation.citationvolume.none.fl_str_mv |
18 |
dc.relation.citationissue.none.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
181 |
dc.relation.citationendpage.none.fl_str_mv |
197 |
dc.relation.references.spa.fl_str_mv |
[1] K. Siwiak, Ultra‐Wideband Radio, Nueva York: John Wiley and Sons, 2004. [2] A. Ritcher, et al., “Maximum likelihood channel parameter estimation from multidimensional channel sounding measurements,” presentado en 2003 IEEE Vehicular Technology Conference, Orlando, 2003. [3] S.F. Cotter y B.D. Rao, “Sparse channel estimation via matching pursuit with application to equalization,” IEEE Transactions on Communications, vol. 50, n.° 3, pp. 374-377, 2002. [4] M. Sharp y A. Scaglione, A., “Estimation of sparse multipath channels,” presentado en Military Communications Conference, San Diego, 2008. [5] J. Paredes et al., “Ultra-wideband compressed sensing: Channel estimation,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, n.° 3, pp. 383-395, 2007. [6] H. El Ghannudi et al., “α-stable interference modeling and Cauchy receiver for an IR-UWB ad hoc network,” IEEE Transactions on Communications, vol. 58, n.° 6, pp. 1748-1757, 2010. [7] RC Qiu et al., (2005). “Ultra-wideband for multiple access communications,” IEEE Communications Magazine, vol. 43, n.° 2, pp. 80-87, 2005. [8] H. Arslan et al., Ultra wideband wireless communication, Nueva York: John Wiley and Sons, 2006. [9] TK Liu et al., “Compressed sensing maximum likelihood channel estimation for ultrawideband impulse radio,” presentado en IEEE International Conference on Communications, Dresden, 2009. [10] FM Naini et al., “Compressive sampling of pulse trains: Spread the Spectrum,” presentado en IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, 2009. [11] V. Lottici et al., “Channel estimation for ultra-wideband communications,” IEEE Journal on selected areas in communications, vol. 20, n.° 9, pp. 1638-1645, 2002. [12] G. Gui et al., “Sparse multipath channel estimation using compressive sampling matching pursuit algorithm,” presentado en IEEE Vehicular Technology Socety Asia Pacific Wireless Communications Simposium, Taiwan, 2010. 13] B. S. Kim et al., “A comparative analysis of optimum and suboptimum rake receivers in impulsive UWB environment” IEEE Transactions on Vehicular Technology, vol. 55, n.° 6, pp. 1797-1804, 2006. [14] H. Hashemi, “The indoor radio propagation channel” IEEE Journal on Selected Areas in Communications, vol. 11, n.° 7, pp. 943-968, 1993. [15] J. Paredes y G. Arce, “Compressive sensing signal reconstruction by weighted median regression estimates” IEEE Transactions on Signal Processing, vol. 59, n.° 6, pp. 2585-2601, 2011. [16] J. Foerster, Ed., “Channel modeling sub-committee report final,” IEEE P802. 15 Working Group for Wireless Personal Area Networks (WPANs), IEEE P802. 15-02/490r1-SG3a, 2003. [17] J. Gonzalez et al., “Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals,” IEEE Transactions on Signal Processing, vol. 54, n.° 10, pp. 3839-3851, 2006. |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
p. 181-197 |
dc.format.medium.spa.fl_str_mv |
Electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad de Medellín |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.source.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 181-197 |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159243543052288 |
spelling |
Yánez Sánchez, Nicey AlbertoRamirez, Juan MarcosParedes, Jose LuisPinto, Angel DarioTorres, Jose ManuelPerez, Marvin LuisYánez Sánchez, Nicey Alberto; Paperless LatinoaméricaRamirez, Juan Marcos; Universidad de Los Andes, Merida, VenezuelaParedes, Jose Luis; Universidad de Los Andes, Merida, VenezuelaPinto, Angel Dario; Universidad del Sinú, ColombiaTorres, Jose Manuel; Universidad del Sinú, ColombiaPerez, Marvin Luis; Universidad Cooperativa de Colombia2019-11-07T15:34:27Z2019-11-07T15:34:27Z2019-06-281692-3324http://hdl.handle.net/11407/5526https://doi.org/10.22395/rium.v18n34a112248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínUWB (ultra-wide band) systems transmit low power signals through communication channels that operate in closed environments and in short distances resulting in multiple propagation trajectories. Moreover, the noise affecting these channels can be characterized by the use of statistical models with heavier tails that the ones exhibited by gaussian distribution. This article proposes a robust approach for the estimation of the parameters of UWB channels based on the weighted median. More specifically, it develops an algorithm of greedy search that exploits the low density characteristic of the channel’s impulsive response, in which the gains and delays of the relevant channels are determined by applying the weighted median on an scaled and displaced version of the signal received. This newly introduced algorithm is evaluated using extensive simulations in which the performance of the proposed algorithm surpasses the performance of the traditional greedy search algorithm for different levels of impulsive noise.Os sistemas UWB (ultra-wide band) transmitem sinais a baixa potência por meio de canais de comunicação que operam em ambientes fechados e em distâncias curtas, o que origina múltiplas trajetórias de propagação. Além disso, o ruído que afeta esses canais pode ser caracterizado mediante o uso de modelos estatísticos de caudas mais pesadas que as exibidas pela distribuição gaussiana. Neste artigo, propõe-se uma abordagem robusta para estimar os parâmetros dos canais UWB baseado na média ponderada. Em específico, desenvolve-se um algoritmo de busca voraz que aproveita a característica pouco densa da resposta impulsiva do canal, em que os ganhos e os atrasos dos canais relevantes são determinados aplicando a média ponderada sobre uma versão escalada e deslocada do sinal recebido. O algoritmo proposto é avaliado usando extensas simulações nas quais o rendimento do algoritmo proposto supera o desempenho do algoritmo de busca voraz tradicional para diferentes níveis de ruído impulsivo.Los sistemas UWB (ultra-wide band) transmiten señales a baja potencia a través de canales de comunicaciones que operan en entornos cerrados y en distancias cortas, lo que origina múltiples trayectorias de propagación. Además, el ruido que afecta a estos canales se puede caracterizar mediante el uso de modelos estadísticos de colas más pesadas que las exhibidas por la distribución gaussiana. En este artículo, se propone un enfoque robusto para la estimación de los parámetros de los canales UWB basado en la mediana ponderada. Específicamente, se desarrolla un algoritmo de búsqueda voraz que aprovecha la característica poco densa de la respuesta impulsiva del canal, donde las ganancias y los retardos de los canales relevantes se determinan aplicando la mediana ponderada sobre una versión escalada y desplazada de la señal recibida. El algoritmo propuesto se evalúa usando extensas simulaciones en las que el rendimiento del algoritmo propuesto supera el desempeño del algoritmo de búsqueda voraz tradicional para diferentes niveles de ruido impulsivo.p. 181-197Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/22281834181197[1] K. Siwiak, Ultra‐Wideband Radio, Nueva York: John Wiley and Sons, 2004.[2] A. Ritcher, et al., “Maximum likelihood channel parameter estimation from multidimensional channel sounding measurements,” presentado en 2003 IEEE Vehicular Technology Conference, Orlando, 2003.[3] S.F. Cotter y B.D. Rao, “Sparse channel estimation via matching pursuit with application to equalization,” IEEE Transactions on Communications, vol. 50, n.° 3, pp. 374-377, 2002.[4] M. Sharp y A. Scaglione, A., “Estimation of sparse multipath channels,” presentado en Military Communications Conference, San Diego, 2008.[5] J. Paredes et al., “Ultra-wideband compressed sensing: Channel estimation,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, n.° 3, pp. 383-395, 2007.[6] H. El Ghannudi et al., “α-stable interference modeling and Cauchy receiver for an IR-UWB ad hoc network,” IEEE Transactions on Communications, vol. 58, n.° 6, pp. 1748-1757, 2010.[7] RC Qiu et al., (2005). “Ultra-wideband for multiple access communications,” IEEE Communications Magazine, vol. 43, n.° 2, pp. 80-87, 2005.[8] H. Arslan et al., Ultra wideband wireless communication, Nueva York: John Wiley and Sons, 2006.[9] TK Liu et al., “Compressed sensing maximum likelihood channel estimation for ultrawideband impulse radio,” presentado en IEEE International Conference on Communications, Dresden, 2009.[10] FM Naini et al., “Compressive sampling of pulse trains: Spread the Spectrum,” presentado en IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, 2009.[11] V. Lottici et al., “Channel estimation for ultra-wideband communications,” IEEE Journal on selected areas in communications, vol. 20, n.° 9, pp. 1638-1645, 2002.[12] G. Gui et al., “Sparse multipath channel estimation using compressive sampling matching pursuit algorithm,” presentado en IEEE Vehicular Technology Socety Asia Pacific Wireless Communications Simposium, Taiwan, 2010.13] B. S. Kim et al., “A comparative analysis of optimum and suboptimum rake receivers in impulsive UWB environment” IEEE Transactions on Vehicular Technology, vol. 55, n.° 6, pp. 1797-1804, 2006.[14] H. Hashemi, “The indoor radio propagation channel” IEEE Journal on Selected Areas in Communications, vol. 11, n.° 7, pp. 943-968, 1993.[15] J. Paredes y G. Arce, “Compressive sensing signal reconstruction by weighted median regression estimates” IEEE Transactions on Signal Processing, vol. 59, n.° 6, pp. 2585-2601, 2011.[16] J. Foerster, Ed., “Channel modeling sub-committee report final,” IEEE P802. 15 Working Group for Wireless Personal Area Networks (WPANs), IEEE P802. 15-02/490r1-SG3a, 2003.[17] J. Gonzalez et al., “Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals,” IEEE Transactions on Signal Processing, vol. 54, n.° 10, pp. 3839-3851, 2006.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 181-197Ultra wide-bandWeighted medianChannel modelLow density representationRobust channel estimationUltra wide-bandMédia ponderadaModelo do canalRepresentação pouco poco densaEstimativa robusta do canalUltra wide-bandMediana ponderadaModelo del canalRepresentación poco densaEstimación robusta del canalRobust channel estimation for ultra-wide band communicationsEstimativa robusta de canais de comunicação de ultrabanda largaEstimación robusta de canales de comunicaciones de ultra banda anchaArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees11407/5526oai:repository.udem.edu.co:11407/55262021-05-14 14:29:54.815Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |