Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne

The development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), h...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5674
Acceso en línea:
http://hdl.handle.net/11407/5674
Palabra clave:
Acetylene
Carbides
Catalyst activity
Engineering research
Ethylene
Hydrogenation
Lighting
Thermodynamics
Titanium carbide
Transition metals
Alternative catalysts
Economic importance
Heterogeneous catalyst
Periodic DFT
Probe molecules
Selective hydrogenation
Transition metal carbide
Unsaturated hydrocarbons
Platinum compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2c18cd99a0ffa976f68a39c2eb380e3d
oai_identifier_str oai:repository.udem.edu.co:11407/5674
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
title Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
spellingShingle Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
Acetylene
Carbides
Catalyst activity
Engineering research
Ethylene
Hydrogenation
Lighting
Thermodynamics
Titanium carbide
Transition metals
Alternative catalysts
Economic importance
Heterogeneous catalyst
Periodic DFT
Probe molecules
Selective hydrogenation
Transition metal carbide
Unsaturated hydrocarbons
Platinum compounds
title_short Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
title_full Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
title_fullStr Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
title_full_unstemmed Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
title_sort Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
dc.subject.none.fl_str_mv Acetylene
Carbides
Catalyst activity
Engineering research
Ethylene
Hydrogenation
Lighting
Thermodynamics
Titanium carbide
Transition metals
Alternative catalysts
Economic importance
Heterogeneous catalyst
Periodic DFT
Probe molecules
Selective hydrogenation
Transition metal carbide
Unsaturated hydrocarbons
Platinum compounds
topic Acetylene
Carbides
Catalyst activity
Engineering research
Ethylene
Hydrogenation
Lighting
Thermodynamics
Titanium carbide
Transition metals
Alternative catalysts
Economic importance
Heterogeneous catalyst
Periodic DFT
Probe molecules
Selective hydrogenation
Transition metal carbide
Unsaturated hydrocarbons
Platinum compounds
description The development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), however, they have a limited activity due to the formation and accumulation of ethylidyne (CCH3) species. Therefore, alternative catalysts should be developed to limit and/or avoid the formation of ethylidyne on the surface. Transition metal carbides has been reported as alternative catalysts, with the additional advantage of lower prices. The thermodynamics of ethylidyne binding and its transformations on ?-MoC(001), TiC(001), and ?-Mo2C(100) surfaces are studied by means of periodic DFT. The results indicate that ethylidyne could be transformed to ethyl and ethane on ?-MoC(001) and TiC(001) surfaces, which are relevant species to the Horiuti-Polanyi mechanism. Therefore, these surfaces could be an alternative to Pt(111) and Pd(111), since ethylidyne could be transformed to other species, avoiding or limiting their deactivation. Conversely, ethylidyne cannot be transformed to vinyl (CHCH2) or ethylene in a Horiuti-Polanyi-like mechanism; then, it is not thermodynamically feasible to use any of the studied surfaces in the selective hydrogenation of acetylene, since ethylidyne accumulation could poison the surfaces. © Published under licence by IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:37Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:37Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5674
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1247/1/012003
identifier_str_mv 17426588
10.1088/1742-6596/1247/1/012003
url http://hdl.handle.net/11407/5674
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071066082&doi=10.1088%2f1742-6596%2f1247%2f1%2f012003&partnerID=40&md5=0d98609b3957d0f668d6fc367a2b2203
dc.relation.citationvolume.none.fl_str_mv 1247
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Dhandapani, B., Clair, T.St., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide (1998) Appl. Catal. A Gen., 168 (2), pp. 219-228
Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181 (4099), pp. 547-549
Hwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chem. Rev., 105 (1), pp. 185-212
Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, , (Blackie academic amp
professional)
Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6 (5), pp. 3277-3286
Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation (1996) J. Am. Chem. Soc., 118 (12), pp. 2942-2949
Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K., Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene (2008) Science (80-.), 320 (5881), pp. 1320-1322
Deng, R., Herceg, E., Trenary, M., Formation and hydrogenation of ethylidene on the Pt(111) surface (2004) Surf. Sci., 560 (1-3), pp. L195-L201
Shin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H., Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene (1998) Catal. Today, 44 (1-4), pp. 137-143
Beebe, T.P., Yates, J.T., An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina (1986) J. Am. Chem. Soc., 108 (4), pp. 663-671
Backman, A.L., Masel, R.I., An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt(111) (1991) J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 9 (3), pp. 1789-1792
Zaera, F., Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: A surface-science perspective (2013) Phys. Chem. Chem. Phys., 15 (29), p. 11988
Zaera, F., Somorjai, G.A., Hydrogenation of ethylene over platinum (111) single-crystal surfaces (1984) J. Am. Chem. Soc., 106 (8), pp. 2288-2293
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on ?-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120 (25), pp. 13531-13540
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene adsorption on ?-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study (2017) Phys. Chem. Chem. Phys., 19 (2), pp. 1571-1579
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and Ethylene Adsorption on a ?-Mo2C(100) Surface: A Periodic DFT Study on the Role of Cand Mo-Terminations for Bonding and Hydrogenation Reactions (2017) J. Phys. Chem. C, 121 (36), pp. 19786-19795
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54 (16), pp. 11169-11186
Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59 (3), pp. 1758-1775
Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192
Zhao, Z., Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Rösch, N., Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations (2010) J. Phys. Chem. C, 114 (28), pp. 12190-12201
Kim, S.K., Shin, J., Moon, S.H., Kim, J., Lee, S.-C., Theoretical Investigation of the Adsorption and C-C Bond Scission of CCH3 on the (111) and (100) Surfaces of Pd: Comparison with Pt (2013) J. Phys. Chem. C, 117 (35), pp. 18131-18138
Aleksandrov, H.A., Moskaleva, L.V., Zhao, Z.-J., Basaran, D., Chen, Z.-X., Mei, D., Rösch, N., Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study (2012) J. Catal., 285 (1), pp. 187-195
Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Zhao, Z.-J., Rösch, N., Ethylidyne Formation from Ethylene over Pd(111): Alternative Routes from a Density Functional Study (2009) J. Phys. Chem. C, 113 (34), pp. 15373-15379
Florez, E., Gomez, T., Rodriguez, J.A., Illas, F., On the dissociation of molecular hydrogen by Au supported on transition metal carbides: Choice of the most active support (2011) Phys. Chem. Chem. Phys., 13 (15), pp. 6865-6871
Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic ?-Mo2C and cubic ?-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Journal of Physics: Conference Series
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159100817178624
spelling 20192020-04-29T14:53:37Z2020-04-29T14:53:37Z17426588http://hdl.handle.net/11407/567410.1088/1742-6596/1247/1/012003The development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), however, they have a limited activity due to the formation and accumulation of ethylidyne (CCH3) species. Therefore, alternative catalysts should be developed to limit and/or avoid the formation of ethylidyne on the surface. Transition metal carbides has been reported as alternative catalysts, with the additional advantage of lower prices. The thermodynamics of ethylidyne binding and its transformations on ?-MoC(001), TiC(001), and ?-Mo2C(100) surfaces are studied by means of periodic DFT. The results indicate that ethylidyne could be transformed to ethyl and ethane on ?-MoC(001) and TiC(001) surfaces, which are relevant species to the Horiuti-Polanyi mechanism. Therefore, these surfaces could be an alternative to Pt(111) and Pd(111), since ethylidyne could be transformed to other species, avoiding or limiting their deactivation. Conversely, ethylidyne cannot be transformed to vinyl (CHCH2) or ethylene in a Horiuti-Polanyi-like mechanism; then, it is not thermodynamically feasible to use any of the studied surfaces in the selective hydrogenation of acetylene, since ethylidyne accumulation could poison the surfaces. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071066082&doi=10.1088%2f1742-6596%2f1247%2f1%2f012003&partnerID=40&md5=0d98609b3957d0f668d6fc367a2b220312471Dhandapani, B., Clair, T.St., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide (1998) Appl. Catal. A Gen., 168 (2), pp. 219-228Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181 (4099), pp. 547-549Hwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chem. Rev., 105 (1), pp. 185-212Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, , (Blackie academic ampprofessional)Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6 (5), pp. 3277-3286Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation (1996) J. Am. Chem. Soc., 118 (12), pp. 2942-2949Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K., Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene (2008) Science (80-.), 320 (5881), pp. 1320-1322Deng, R., Herceg, E., Trenary, M., Formation and hydrogenation of ethylidene on the Pt(111) surface (2004) Surf. Sci., 560 (1-3), pp. L195-L201Shin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H., Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene (1998) Catal. Today, 44 (1-4), pp. 137-143Beebe, T.P., Yates, J.T., An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina (1986) J. Am. Chem. Soc., 108 (4), pp. 663-671Backman, A.L., Masel, R.I., An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt(111) (1991) J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 9 (3), pp. 1789-1792Zaera, F., Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: A surface-science perspective (2013) Phys. Chem. Chem. Phys., 15 (29), p. 11988Zaera, F., Somorjai, G.A., Hydrogenation of ethylene over platinum (111) single-crystal surfaces (1984) J. Am. Chem. Soc., 106 (8), pp. 2288-2293Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on ?-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120 (25), pp. 13531-13540Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene adsorption on ?-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study (2017) Phys. Chem. Chem. Phys., 19 (2), pp. 1571-1579Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and Ethylene Adsorption on a ?-Mo2C(100) Surface: A Periodic DFT Study on the Role of Cand Mo-Terminations for Bonding and Hydrogenation Reactions (2017) J. Phys. Chem. C, 121 (36), pp. 19786-19795Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54 (16), pp. 11169-11186Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59 (3), pp. 1758-1775Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192Zhao, Z., Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Rösch, N., Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations (2010) J. Phys. Chem. C, 114 (28), pp. 12190-12201Kim, S.K., Shin, J., Moon, S.H., Kim, J., Lee, S.-C., Theoretical Investigation of the Adsorption and C-C Bond Scission of CCH3 on the (111) and (100) Surfaces of Pd: Comparison with Pt (2013) J. Phys. Chem. C, 117 (35), pp. 18131-18138Aleksandrov, H.A., Moskaleva, L.V., Zhao, Z.-J., Basaran, D., Chen, Z.-X., Mei, D., Rösch, N., Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study (2012) J. Catal., 285 (1), pp. 187-195Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Zhao, Z.-J., Rösch, N., Ethylidyne Formation from Ethylene over Pd(111): Alternative Routes from a Density Functional Study (2009) J. Phys. Chem. C, 113 (34), pp. 15373-15379Florez, E., Gomez, T., Rodriguez, J.A., Illas, F., On the dissociation of molecular hydrogen by Au supported on transition metal carbides: Choice of the most active support (2011) Phys. Chem. Chem. Phys., 13 (15), pp. 6865-6871Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic ?-Mo2C and cubic ?-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32Journal of Physics: Conference SeriesAcetyleneCarbidesCatalyst activityEngineering researchEthyleneHydrogenationLightingThermodynamicsTitanium carbideTransition metalsAlternative catalystsEconomic importanceHeterogeneous catalystPeriodic DFTProbe moleculesSelective hydrogenationTransition metal carbideUnsaturated hydrocarbonsPlatinum compoundsPlatinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyneConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Quimica de Recursos Energéticos y Medio Ambiente, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, No. 52-21, Colombia, Facultad de Ciencias Básicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin, Colombia; Florez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin, Colombia; Moreno, A., Quimica de Recursos Energéticos y Medio Ambiente, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, No. 52-21, Colombia; Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United Stateshttp://purl.org/coar/access_right/c_16ecJimenez-Orozco C.Florez E.Moreno A.Rodriguez J.A.11407/5674oai:repository.udem.edu.co:11407/56742020-05-27 15:40:21.578Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co