Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
The development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), h...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5674
- Acceso en línea:
- http://hdl.handle.net/11407/5674
- Palabra clave:
- Acetylene
Carbides
Catalyst activity
Engineering research
Ethylene
Hydrogenation
Lighting
Thermodynamics
Titanium carbide
Transition metals
Alternative catalysts
Economic importance
Heterogeneous catalyst
Periodic DFT
Probe molecules
Selective hydrogenation
Transition metal carbide
Unsaturated hydrocarbons
Platinum compounds
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_2c18cd99a0ffa976f68a39c2eb380e3d |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5674 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
title |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
spellingShingle |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne Acetylene Carbides Catalyst activity Engineering research Ethylene Hydrogenation Lighting Thermodynamics Titanium carbide Transition metals Alternative catalysts Economic importance Heterogeneous catalyst Periodic DFT Probe molecules Selective hydrogenation Transition metal carbide Unsaturated hydrocarbons Platinum compounds |
title_short |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
title_full |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
title_fullStr |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
title_full_unstemmed |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
title_sort |
Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne |
dc.subject.none.fl_str_mv |
Acetylene Carbides Catalyst activity Engineering research Ethylene Hydrogenation Lighting Thermodynamics Titanium carbide Transition metals Alternative catalysts Economic importance Heterogeneous catalyst Periodic DFT Probe molecules Selective hydrogenation Transition metal carbide Unsaturated hydrocarbons Platinum compounds |
topic |
Acetylene Carbides Catalyst activity Engineering research Ethylene Hydrogenation Lighting Thermodynamics Titanium carbide Transition metals Alternative catalysts Economic importance Heterogeneous catalyst Periodic DFT Probe molecules Selective hydrogenation Transition metal carbide Unsaturated hydrocarbons Platinum compounds |
description |
The development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), however, they have a limited activity due to the formation and accumulation of ethylidyne (CCH3) species. Therefore, alternative catalysts should be developed to limit and/or avoid the formation of ethylidyne on the surface. Transition metal carbides has been reported as alternative catalysts, with the additional advantage of lower prices. The thermodynamics of ethylidyne binding and its transformations on ?-MoC(001), TiC(001), and ?-Mo2C(100) surfaces are studied by means of periodic DFT. The results indicate that ethylidyne could be transformed to ethyl and ethane on ?-MoC(001) and TiC(001) surfaces, which are relevant species to the Horiuti-Polanyi mechanism. Therefore, these surfaces could be an alternative to Pt(111) and Pd(111), since ethylidyne could be transformed to other species, avoiding or limiting their deactivation. Conversely, ethylidyne cannot be transformed to vinyl (CHCH2) or ethylene in a Horiuti-Polanyi-like mechanism; then, it is not thermodynamically feasible to use any of the studied surfaces in the selective hydrogenation of acetylene, since ethylidyne accumulation could poison the surfaces. © Published under licence by IOP Publishing Ltd. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:37Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:37Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5674 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1247/1/012003 |
identifier_str_mv |
17426588 10.1088/1742-6596/1247/1/012003 |
url |
http://hdl.handle.net/11407/5674 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071066082&doi=10.1088%2f1742-6596%2f1247%2f1%2f012003&partnerID=40&md5=0d98609b3957d0f668d6fc367a2b2203 |
dc.relation.citationvolume.none.fl_str_mv |
1247 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Dhandapani, B., Clair, T.St., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide (1998) Appl. Catal. A Gen., 168 (2), pp. 219-228 Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181 (4099), pp. 547-549 Hwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chem. Rev., 105 (1), pp. 185-212 Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, , (Blackie academic amp professional) Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6 (5), pp. 3277-3286 Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation (1996) J. Am. Chem. Soc., 118 (12), pp. 2942-2949 Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K., Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene (2008) Science (80-.), 320 (5881), pp. 1320-1322 Deng, R., Herceg, E., Trenary, M., Formation and hydrogenation of ethylidene on the Pt(111) surface (2004) Surf. Sci., 560 (1-3), pp. L195-L201 Shin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H., Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene (1998) Catal. Today, 44 (1-4), pp. 137-143 Beebe, T.P., Yates, J.T., An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina (1986) J. Am. Chem. Soc., 108 (4), pp. 663-671 Backman, A.L., Masel, R.I., An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt(111) (1991) J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 9 (3), pp. 1789-1792 Zaera, F., Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: A surface-science perspective (2013) Phys. Chem. Chem. Phys., 15 (29), p. 11988 Zaera, F., Somorjai, G.A., Hydrogenation of ethylene over platinum (111) single-crystal surfaces (1984) J. Am. Chem. Soc., 106 (8), pp. 2288-2293 Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on ?-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120 (25), pp. 13531-13540 Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene adsorption on ?-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study (2017) Phys. Chem. Chem. Phys., 19 (2), pp. 1571-1579 Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and Ethylene Adsorption on a ?-Mo2C(100) Surface: A Periodic DFT Study on the Role of Cand Mo-Terminations for Bonding and Hydrogenation Reactions (2017) J. Phys. Chem. C, 121 (36), pp. 19786-19795 Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54 (16), pp. 11169-11186 Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59 (3), pp. 1758-1775 Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192 Zhao, Z., Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Rösch, N., Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations (2010) J. Phys. Chem. C, 114 (28), pp. 12190-12201 Kim, S.K., Shin, J., Moon, S.H., Kim, J., Lee, S.-C., Theoretical Investigation of the Adsorption and C-C Bond Scission of CCH3 on the (111) and (100) Surfaces of Pd: Comparison with Pt (2013) J. Phys. Chem. C, 117 (35), pp. 18131-18138 Aleksandrov, H.A., Moskaleva, L.V., Zhao, Z.-J., Basaran, D., Chen, Z.-X., Mei, D., Rösch, N., Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study (2012) J. Catal., 285 (1), pp. 187-195 Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Zhao, Z.-J., Rösch, N., Ethylidyne Formation from Ethylene over Pd(111): Alternative Routes from a Density Functional Study (2009) J. Phys. Chem. C, 113 (34), pp. 15373-15379 Florez, E., Gomez, T., Rodriguez, J.A., Illas, F., On the dissociation of molecular hydrogen by Au supported on transition metal carbides: Choice of the most active support (2011) Phys. Chem. Chem. Phys., 13 (15), pp. 6865-6871 Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic ?-Mo2C and cubic ?-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159100817178624 |
spelling |
20192020-04-29T14:53:37Z2020-04-29T14:53:37Z17426588http://hdl.handle.net/11407/567410.1088/1742-6596/1247/1/012003The development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), however, they have a limited activity due to the formation and accumulation of ethylidyne (CCH3) species. Therefore, alternative catalysts should be developed to limit and/or avoid the formation of ethylidyne on the surface. Transition metal carbides has been reported as alternative catalysts, with the additional advantage of lower prices. The thermodynamics of ethylidyne binding and its transformations on ?-MoC(001), TiC(001), and ?-Mo2C(100) surfaces are studied by means of periodic DFT. The results indicate that ethylidyne could be transformed to ethyl and ethane on ?-MoC(001) and TiC(001) surfaces, which are relevant species to the Horiuti-Polanyi mechanism. Therefore, these surfaces could be an alternative to Pt(111) and Pd(111), since ethylidyne could be transformed to other species, avoiding or limiting their deactivation. Conversely, ethylidyne cannot be transformed to vinyl (CHCH2) or ethylene in a Horiuti-Polanyi-like mechanism; then, it is not thermodynamically feasible to use any of the studied surfaces in the selective hydrogenation of acetylene, since ethylidyne accumulation could poison the surfaces. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071066082&doi=10.1088%2f1742-6596%2f1247%2f1%2f012003&partnerID=40&md5=0d98609b3957d0f668d6fc367a2b220312471Dhandapani, B., Clair, T.St., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide (1998) Appl. Catal. A Gen., 168 (2), pp. 219-228Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181 (4099), pp. 547-549Hwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chem. Rev., 105 (1), pp. 185-212Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, , (Blackie academic ampprofessional)Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6 (5), pp. 3277-3286Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation (1996) J. Am. Chem. Soc., 118 (12), pp. 2942-2949Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K., Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene (2008) Science (80-.), 320 (5881), pp. 1320-1322Deng, R., Herceg, E., Trenary, M., Formation and hydrogenation of ethylidene on the Pt(111) surface (2004) Surf. Sci., 560 (1-3), pp. L195-L201Shin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H., Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene (1998) Catal. Today, 44 (1-4), pp. 137-143Beebe, T.P., Yates, J.T., An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina (1986) J. Am. Chem. Soc., 108 (4), pp. 663-671Backman, A.L., Masel, R.I., An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt(111) (1991) J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 9 (3), pp. 1789-1792Zaera, F., Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: A surface-science perspective (2013) Phys. Chem. Chem. Phys., 15 (29), p. 11988Zaera, F., Somorjai, G.A., Hydrogenation of ethylene over platinum (111) single-crystal surfaces (1984) J. Am. Chem. Soc., 106 (8), pp. 2288-2293Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on ?-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120 (25), pp. 13531-13540Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene adsorption on ?-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study (2017) Phys. Chem. Chem. Phys., 19 (2), pp. 1571-1579Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and Ethylene Adsorption on a ?-Mo2C(100) Surface: A Periodic DFT Study on the Role of Cand Mo-Terminations for Bonding and Hydrogenation Reactions (2017) J. Phys. Chem. C, 121 (36), pp. 19786-19795Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54 (16), pp. 11169-11186Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59 (3), pp. 1758-1775Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192Zhao, Z., Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Rösch, N., Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations (2010) J. Phys. Chem. C, 114 (28), pp. 12190-12201Kim, S.K., Shin, J., Moon, S.H., Kim, J., Lee, S.-C., Theoretical Investigation of the Adsorption and C-C Bond Scission of CCH3 on the (111) and (100) Surfaces of Pd: Comparison with Pt (2013) J. Phys. Chem. C, 117 (35), pp. 18131-18138Aleksandrov, H.A., Moskaleva, L.V., Zhao, Z.-J., Basaran, D., Chen, Z.-X., Mei, D., Rösch, N., Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study (2012) J. Catal., 285 (1), pp. 187-195Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Zhao, Z.-J., Rösch, N., Ethylidyne Formation from Ethylene over Pd(111): Alternative Routes from a Density Functional Study (2009) J. Phys. Chem. C, 113 (34), pp. 15373-15379Florez, E., Gomez, T., Rodriguez, J.A., Illas, F., On the dissociation of molecular hydrogen by Au supported on transition metal carbides: Choice of the most active support (2011) Phys. Chem. Chem. Phys., 13 (15), pp. 6865-6871Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic ?-Mo2C and cubic ?-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32Journal of Physics: Conference SeriesAcetyleneCarbidesCatalyst activityEngineering researchEthyleneHydrogenationLightingThermodynamicsTitanium carbideTransition metalsAlternative catalystsEconomic importanceHeterogeneous catalystPeriodic DFTProbe moleculesSelective hydrogenationTransition metal carbideUnsaturated hydrocarbonsPlatinum compoundsPlatinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyneConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Quimica de Recursos Energéticos y Medio Ambiente, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, No. 52-21, Colombia, Facultad de Ciencias Básicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin, Colombia; Florez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin, Colombia; Moreno, A., Quimica de Recursos Energéticos y Medio Ambiente, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, No. 52-21, Colombia; Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United Stateshttp://purl.org/coar/access_right/c_16ecJimenez-Orozco C.Florez E.Moreno A.Rodriguez J.A.11407/5674oai:repository.udem.edu.co:11407/56742020-05-27 15:40:21.578Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |