Distributed thermal response tests using a heating cable and fiber optic temperature sensing

Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable wa...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6132
Acceso en línea:
http://hdl.handle.net/11407/6132
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2ba5398116bf667a856628769b9dc8be
oai_identifier_str oai:repository.udem.edu.co:11407/6132
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Distributed thermal response tests using a heating cable and fiber optic temperature sensing
title Distributed thermal response tests using a heating cable and fiber optic temperature sensing
spellingShingle Distributed thermal response tests using a heating cable and fiber optic temperature sensing
title_short Distributed thermal response tests using a heating cable and fiber optic temperature sensing
title_full Distributed thermal response tests using a heating cable and fiber optic temperature sensing
title_fullStr Distributed thermal response tests using a heating cable and fiber optic temperature sensing
title_full_unstemmed Distributed thermal response tests using a heating cable and fiber optic temperature sensing
title_sort Distributed thermal response tests using a heating cable and fiber optic temperature sensing
description Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:54Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:54Z
dc.date.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19961073
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6132
dc.identifier.doi.none.fl_str_mv 10.3390/en11113059
identifier_str_mv 19961073
10.3390/en11113059
url http://hdl.handle.net/11407/6132
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057875875&doi=10.3390%2fen11113059&partnerID=40&md5=6494682cc53a53305c7fafe48441ce4d
dc.relation.citationvolume.none.fl_str_mv 11
dc.relation.citationissue.none.fl_str_mv 11
dc.relation.references.none.fl_str_mv Marcotte, D., Pasquier, P., On the estimation of thermal resistance in borehole thermal conductivity test (2008) Renew. Energy, 33, pp. 2407-2415
Zhang, C., Guo, Z., Liu, Y., Cong, X., Peng, D., A review on thermal response test of ground-coupled heat pump systems (2014) Renew. Sustain. Energy Rev., 40, pp. 851-867
Mogensen, P., Fluid to duct wall heat transfer in duct system heat storages (1983) Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6-8 June
Eklöf, C., Gehlin, S., (1996) TED-A Mobile Equipment for Thermal Response Test: Testing and Evaluation, , Master's Thesis, Lulea University of Technology, Lulea, Sweden
Austin, W.A., III, (1998) Development of An in Situ System for Measuring Ground Thermal Properties, , Master's Thesis, Oklahoma State University, Stillwater, OK, USA
Gehlin, S., (2002) Thermal Response Test Method Development and Evaluation, , Ph.D. Thesis, Lulea University of Techonology, Lulea, Sweden
Sanner, B., Hellström, G., Spitler, J., Gehlin, S., (2017) More Than 15 Years of Mobile Thermal Response Test-A Summary of Experiences and Prospects, , https://hvac.okstate.edu/sites/default/files/pubs/papers/2013/03-Sanner_et_al_2013_EGC_TRT-overview.pdf, (accessed on 3 May)
Spitler, J.D., Gehlin, S., Thermal response testing for ground source heat pump systems-an historical review (2015) Renew. Sustain. Energy Rev., 50, pp. 1125-1137
Gehlin, S., (1998) Thermal Response Test: In Situ Measurements of Thermal Properties in Hard Rock, , Licentiate Dissertation, Lulea University of Technology, Lulea, Sweden
Raymond, J., Therrien, R., Gosselin, L., Borehole temperature evolution during thermal response tests (2011) Geothermics, 40, pp. 69-78
Carslaw, H.S., (1921) Introduction to the Mathematical Theory of the Conduction of Heat in Solids, , Macmillan: London, UK
Ingersoll, L.R., Plass, H.J., Theory of the ground heat pipe heat source for the heat pump (1948) Trans. Am. Soc. Heat. Vent. Eng., 20, pp. 119-122
Kavanaugh, S.P., (2001) Investigation of Methods for Determining Soil Formation Thermal Characteristics from Short Term Field Tests, , ASHRAE: Atlanta, GA, USA
Sanner, B., Hellström, G., Spitler, J., Gehlin, S., Thermal response test-current status and world-wide application (2005) Proceedings of the World Geothermal Congress, Antalya, Turkey, 24-29 April
Fujii, H., Okubo, H., Itoi, R., Thermal response tests using optical fiber thermometers (2006) GRC Trans., 30, pp. 545-551
Gehlin, S., Hellström, G., Influence on thermal response test by groundwater flow in vertical fractures in hard rock (2003) Renew. Energy, 28, pp. 2221-2238
Gustafsson, A.M., Westerlund, L., Heat extraction thermal response test in groundwater-filled borehole heat exchanger-investigation of the borehole thermal resistance (2011) Renew. Energy, 36, pp. 2388-2394
Bense, V.F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Selker, J.S., Distributed temperature sensing as a downhole tool in hydrogeology (2016) Water Resour. Res., 52, pp. 9259-9273
Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., Shibata, K., An improved thermal response test for u-tube ground heat exchanger based on optical fiber thermometers (2009) Geothermics, 38, pp. 399-406
Beier, R.A., Acuña, J., Mogensen, P., Palm, B., Vertical temperature profiles and borehole resistance in a u-tube borehole heat exchanger (2012) Geothermics, 44, pp. 23-32
Acuña, J., Palm, B., Distributed thermal response tests on pipe-in-pipe borehole heat exchangers (2013) Appl. Energy, 109, pp. 312-320
Freifeld, B.M., Finsterle, S., Onstott, T.C., Toole, P., Pratt, L.M., Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor (2008) Geophys. Res. Lett., 35
Raymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444
Raymond, J., Lamarche, L., Malo, M., Field demonstration of a first thermal response test with a low power source (2015) Appl. Energy, 147, pp. 30-39
Raymond, J., Robert, G., Therrien, R., Gosselin, L., A novel thermal response test using heating cables (2010) Proceedings of the World Geothermal Congress, Bali, Indonesia, 25-29 April
Raymond, J., Colloquium 2016: Assessment of the subsurface thermal conductivity for geothermal applications (2018) Can. Geotech. J., 55, pp. 1209-1229
Simon, F., (2016) Développement d'Une Approche Nouvelle pour les Tests de Réponse Thermique en Géothermie, , Master's Thesis, Ecole de technologie supérieure, Montréal, QC, Canada
Love, A.J., Simmons, C.T., Nield, D.A., Double-diffusive convection in groundwater wells (2007) Water Resour. Res., 43
Raymond, J., Ballard, J.-M., Koubikana Pambou, C.H., Field assessment of a ground heat exchanger performance with a reduced borehole diameter (2017) Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1-4 October
Philippe, M., (2010) Development and Experimental Validation of Vertical and Horizontal Ground Heat Exchangers for Residential Buildings Heating, , Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, France
Van De Giesen, N., Steele-Dunne, S.C., Jansen, J., Hoes, O., Hausner, M.B., Tyler, S., Selker, J., Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data (2012) Sensors, 12, pp. 5471-5485
Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and testing of a generalized reduced gradient code for nonlinear programming (1978) ACM Trans. Math. Softw., 4, pp. 34-50
Beck, A.E., Anglin, F.M., Sass, J.H., Analysis of heat flow data-in situ thermal conductivity measurements (1971) Can. J. Earth Sci., 8, pp. 1-19
Pehme, P.E., Greenhouse, J.P., Parker, B.L., The active line source temperature logging technique and its application in fractured rock hydrogeology (2007) J. Environ. Eng. Geophys., 12, pp. 307-322
Witte, H.J.L., Error analysis of thermal response tests (2013) Appl. Energy, 109, pp. 302-311
(2018) Evaluation of Measurement Data-Supplement 1 to the Guide to the Expression of Uncertainty in Measurement, , https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, (accessed on 9 September)
Ellison, S., Williams, A., (2017) Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, , https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf, (accessed on 12 July)
Ballard, J.M., Koubikana, C., Raymond, J., (2016) Développement des Tests de Réponse Thermique Automatisés et Vérification de la Performance des Forages Géothermiques d'Un Diamètre de 4,5 Po, , Internal Report R1601
Institut National de la Recherche Scientifique: Qubec City, QC, Canada
Maragna, C., (2014) Analyse d'Un Test de Réponse Thermique, , Internal Report
Division Géothermie, Bureau de Recherche Géologique et Minières de France: Orléans, France
Asselin, S., (2014) Manuel d'Utilisation: Appareil de Lecture de Conductivité Thermique, , Internal Report
Institut National de la Recherche Scientifique: Quebec City, QC, Canada
Klepikova, M., Roques, C., Loew, S., Selker, J., Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (pam) gel as temporary grout (2018) Water Resour. Res., 54, pp. 1410-1419
Berthold, S., Resagk, C., Investigation of thermal convection in water columns using particle image velocimetry (2012) Exp. Fluids, 52, pp. 1465-1474
Witte, H.J.L., Van Gelder, G., Spitler, J.D., In-situ thermal conductivity testing: A Dutch perspective (2002) ASHRAE Trans., 108, pp. 263-272
Raymond, J., Therrien, R., Gosselin, L., Lefebvre, R., A review of thermal response test analysis using pumping test concepts (2011) Ground Water, 49, pp. 932-945
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
Ingeniería en Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Energies
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159167028461568
spelling 20182021-02-05T14:59:54Z2021-02-05T14:59:54Z19961073http://hdl.handle.net/11407/613210.3390/en11113059Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.engMDPI AGIngeniería AmbientalIngeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057875875&doi=10.3390%2fen11113059&partnerID=40&md5=6494682cc53a53305c7fafe48441ce4d1111Marcotte, D., Pasquier, P., On the estimation of thermal resistance in borehole thermal conductivity test (2008) Renew. Energy, 33, pp. 2407-2415Zhang, C., Guo, Z., Liu, Y., Cong, X., Peng, D., A review on thermal response test of ground-coupled heat pump systems (2014) Renew. Sustain. Energy Rev., 40, pp. 851-867Mogensen, P., Fluid to duct wall heat transfer in duct system heat storages (1983) Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6-8 JuneEklöf, C., Gehlin, S., (1996) TED-A Mobile Equipment for Thermal Response Test: Testing and Evaluation, , Master's Thesis, Lulea University of Technology, Lulea, SwedenAustin, W.A., III, (1998) Development of An in Situ System for Measuring Ground Thermal Properties, , Master's Thesis, Oklahoma State University, Stillwater, OK, USAGehlin, S., (2002) Thermal Response Test Method Development and Evaluation, , Ph.D. Thesis, Lulea University of Techonology, Lulea, SwedenSanner, B., Hellström, G., Spitler, J., Gehlin, S., (2017) More Than 15 Years of Mobile Thermal Response Test-A Summary of Experiences and Prospects, , https://hvac.okstate.edu/sites/default/files/pubs/papers/2013/03-Sanner_et_al_2013_EGC_TRT-overview.pdf, (accessed on 3 May)Spitler, J.D., Gehlin, S., Thermal response testing for ground source heat pump systems-an historical review (2015) Renew. Sustain. Energy Rev., 50, pp. 1125-1137Gehlin, S., (1998) Thermal Response Test: In Situ Measurements of Thermal Properties in Hard Rock, , Licentiate Dissertation, Lulea University of Technology, Lulea, SwedenRaymond, J., Therrien, R., Gosselin, L., Borehole temperature evolution during thermal response tests (2011) Geothermics, 40, pp. 69-78Carslaw, H.S., (1921) Introduction to the Mathematical Theory of the Conduction of Heat in Solids, , Macmillan: London, UKIngersoll, L.R., Plass, H.J., Theory of the ground heat pipe heat source for the heat pump (1948) Trans. Am. Soc. Heat. Vent. Eng., 20, pp. 119-122Kavanaugh, S.P., (2001) Investigation of Methods for Determining Soil Formation Thermal Characteristics from Short Term Field Tests, , ASHRAE: Atlanta, GA, USASanner, B., Hellström, G., Spitler, J., Gehlin, S., Thermal response test-current status and world-wide application (2005) Proceedings of the World Geothermal Congress, Antalya, Turkey, 24-29 AprilFujii, H., Okubo, H., Itoi, R., Thermal response tests using optical fiber thermometers (2006) GRC Trans., 30, pp. 545-551Gehlin, S., Hellström, G., Influence on thermal response test by groundwater flow in vertical fractures in hard rock (2003) Renew. Energy, 28, pp. 2221-2238Gustafsson, A.M., Westerlund, L., Heat extraction thermal response test in groundwater-filled borehole heat exchanger-investigation of the borehole thermal resistance (2011) Renew. Energy, 36, pp. 2388-2394Bense, V.F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Selker, J.S., Distributed temperature sensing as a downhole tool in hydrogeology (2016) Water Resour. Res., 52, pp. 9259-9273Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., Shibata, K., An improved thermal response test for u-tube ground heat exchanger based on optical fiber thermometers (2009) Geothermics, 38, pp. 399-406Beier, R.A., Acuña, J., Mogensen, P., Palm, B., Vertical temperature profiles and borehole resistance in a u-tube borehole heat exchanger (2012) Geothermics, 44, pp. 23-32Acuña, J., Palm, B., Distributed thermal response tests on pipe-in-pipe borehole heat exchangers (2013) Appl. Energy, 109, pp. 312-320Freifeld, B.M., Finsterle, S., Onstott, T.C., Toole, P., Pratt, L.M., Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor (2008) Geophys. Res. Lett., 35Raymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444Raymond, J., Lamarche, L., Malo, M., Field demonstration of a first thermal response test with a low power source (2015) Appl. Energy, 147, pp. 30-39Raymond, J., Robert, G., Therrien, R., Gosselin, L., A novel thermal response test using heating cables (2010) Proceedings of the World Geothermal Congress, Bali, Indonesia, 25-29 AprilRaymond, J., Colloquium 2016: Assessment of the subsurface thermal conductivity for geothermal applications (2018) Can. Geotech. J., 55, pp. 1209-1229Simon, F., (2016) Développement d'Une Approche Nouvelle pour les Tests de Réponse Thermique en Géothermie, , Master's Thesis, Ecole de technologie supérieure, Montréal, QC, CanadaLove, A.J., Simmons, C.T., Nield, D.A., Double-diffusive convection in groundwater wells (2007) Water Resour. Res., 43Raymond, J., Ballard, J.-M., Koubikana Pambou, C.H., Field assessment of a ground heat exchanger performance with a reduced borehole diameter (2017) Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1-4 OctoberPhilippe, M., (2010) Development and Experimental Validation of Vertical and Horizontal Ground Heat Exchangers for Residential Buildings Heating, , Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, FranceVan De Giesen, N., Steele-Dunne, S.C., Jansen, J., Hoes, O., Hausner, M.B., Tyler, S., Selker, J., Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data (2012) Sensors, 12, pp. 5471-5485Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and testing of a generalized reduced gradient code for nonlinear programming (1978) ACM Trans. Math. Softw., 4, pp. 34-50Beck, A.E., Anglin, F.M., Sass, J.H., Analysis of heat flow data-in situ thermal conductivity measurements (1971) Can. J. Earth Sci., 8, pp. 1-19Pehme, P.E., Greenhouse, J.P., Parker, B.L., The active line source temperature logging technique and its application in fractured rock hydrogeology (2007) J. Environ. Eng. Geophys., 12, pp. 307-322Witte, H.J.L., Error analysis of thermal response tests (2013) Appl. Energy, 109, pp. 302-311(2018) Evaluation of Measurement Data-Supplement 1 to the Guide to the Expression of Uncertainty in Measurement, , https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, (accessed on 9 September)Ellison, S., Williams, A., (2017) Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, , https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf, (accessed on 12 July)Ballard, J.M., Koubikana, C., Raymond, J., (2016) Développement des Tests de Réponse Thermique Automatisés et Vérification de la Performance des Forages Géothermiques d'Un Diamètre de 4,5 Po, , Internal Report R1601Institut National de la Recherche Scientifique: Qubec City, QC, CanadaMaragna, C., (2014) Analyse d'Un Test de Réponse Thermique, , Internal ReportDivision Géothermie, Bureau de Recherche Géologique et Minières de France: Orléans, FranceAsselin, S., (2014) Manuel d'Utilisation: Appareil de Lecture de Conductivité Thermique, , Internal ReportInstitut National de la Recherche Scientifique: Quebec City, QC, CanadaKlepikova, M., Roques, C., Loew, S., Selker, J., Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (pam) gel as temporary grout (2018) Water Resour. Res., 54, pp. 1410-1419Berthold, S., Resagk, C., Investigation of thermal convection in water columns using particle image velocimetry (2012) Exp. Fluids, 52, pp. 1465-1474Witte, H.J.L., Van Gelder, G., Spitler, J.D., In-situ thermal conductivity testing: A Dutch perspective (2002) ASHRAE Trans., 108, pp. 263-272Raymond, J., Therrien, R., Gosselin, L., Lefebvre, R., A review of thermal response test analysis using pumping test concepts (2011) Ground Water, 49, pp. 932-945EnergiesDistributed thermal response tests using a heating cable and fiber optic temperature sensingArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1VélezMárquez, M.I., Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, CanadaRaymond, J., Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, CanadaBlessent, D., Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, 050026, ColombiaPhilippe, M., BRGM, Georesources Division, Orléans Cedex 2, 45060, FranceSimon, N., Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, F-35000, FranceBour, O., Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, F-35000, FranceLamarche, L., École de Technologie Supérieure, Département de Génie Mécanique, Montréal, QC H3C 1K3, Canadahttp://purl.org/coar/access_right/c_16ecVélezMárquez M.I.Raymond J.Blessent D.Philippe M.Simon N.Bour O.Lamarche L.11407/6132oai:repository.udem.edu.co:11407/61322021-02-05 09:59:54.144Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co