Distributed thermal response tests using a heating cable and fiber optic temperature sensing
Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable wa...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6132
- Acceso en línea:
- http://hdl.handle.net/11407/6132
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_2ba5398116bf667a856628769b9dc8be |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6132 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
title |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
spellingShingle |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
title_short |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
title_full |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
title_fullStr |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
title_full_unstemmed |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
title_sort |
Distributed thermal response tests using a heating cable and fiber optic temperature sensing |
description |
Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:54Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:54Z |
dc.date.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
19961073 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6132 |
dc.identifier.doi.none.fl_str_mv |
10.3390/en11113059 |
identifier_str_mv |
19961073 10.3390/en11113059 |
url |
http://hdl.handle.net/11407/6132 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057875875&doi=10.3390%2fen11113059&partnerID=40&md5=6494682cc53a53305c7fafe48441ce4d |
dc.relation.citationvolume.none.fl_str_mv |
11 |
dc.relation.citationissue.none.fl_str_mv |
11 |
dc.relation.references.none.fl_str_mv |
Marcotte, D., Pasquier, P., On the estimation of thermal resistance in borehole thermal conductivity test (2008) Renew. Energy, 33, pp. 2407-2415 Zhang, C., Guo, Z., Liu, Y., Cong, X., Peng, D., A review on thermal response test of ground-coupled heat pump systems (2014) Renew. Sustain. Energy Rev., 40, pp. 851-867 Mogensen, P., Fluid to duct wall heat transfer in duct system heat storages (1983) Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6-8 June Eklöf, C., Gehlin, S., (1996) TED-A Mobile Equipment for Thermal Response Test: Testing and Evaluation, , Master's Thesis, Lulea University of Technology, Lulea, Sweden Austin, W.A., III, (1998) Development of An in Situ System for Measuring Ground Thermal Properties, , Master's Thesis, Oklahoma State University, Stillwater, OK, USA Gehlin, S., (2002) Thermal Response Test Method Development and Evaluation, , Ph.D. Thesis, Lulea University of Techonology, Lulea, Sweden Sanner, B., Hellström, G., Spitler, J., Gehlin, S., (2017) More Than 15 Years of Mobile Thermal Response Test-A Summary of Experiences and Prospects, , https://hvac.okstate.edu/sites/default/files/pubs/papers/2013/03-Sanner_et_al_2013_EGC_TRT-overview.pdf, (accessed on 3 May) Spitler, J.D., Gehlin, S., Thermal response testing for ground source heat pump systems-an historical review (2015) Renew. Sustain. Energy Rev., 50, pp. 1125-1137 Gehlin, S., (1998) Thermal Response Test: In Situ Measurements of Thermal Properties in Hard Rock, , Licentiate Dissertation, Lulea University of Technology, Lulea, Sweden Raymond, J., Therrien, R., Gosselin, L., Borehole temperature evolution during thermal response tests (2011) Geothermics, 40, pp. 69-78 Carslaw, H.S., (1921) Introduction to the Mathematical Theory of the Conduction of Heat in Solids, , Macmillan: London, UK Ingersoll, L.R., Plass, H.J., Theory of the ground heat pipe heat source for the heat pump (1948) Trans. Am. Soc. Heat. Vent. Eng., 20, pp. 119-122 Kavanaugh, S.P., (2001) Investigation of Methods for Determining Soil Formation Thermal Characteristics from Short Term Field Tests, , ASHRAE: Atlanta, GA, USA Sanner, B., Hellström, G., Spitler, J., Gehlin, S., Thermal response test-current status and world-wide application (2005) Proceedings of the World Geothermal Congress, Antalya, Turkey, 24-29 April Fujii, H., Okubo, H., Itoi, R., Thermal response tests using optical fiber thermometers (2006) GRC Trans., 30, pp. 545-551 Gehlin, S., Hellström, G., Influence on thermal response test by groundwater flow in vertical fractures in hard rock (2003) Renew. Energy, 28, pp. 2221-2238 Gustafsson, A.M., Westerlund, L., Heat extraction thermal response test in groundwater-filled borehole heat exchanger-investigation of the borehole thermal resistance (2011) Renew. Energy, 36, pp. 2388-2394 Bense, V.F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Selker, J.S., Distributed temperature sensing as a downhole tool in hydrogeology (2016) Water Resour. Res., 52, pp. 9259-9273 Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., Shibata, K., An improved thermal response test for u-tube ground heat exchanger based on optical fiber thermometers (2009) Geothermics, 38, pp. 399-406 Beier, R.A., Acuña, J., Mogensen, P., Palm, B., Vertical temperature profiles and borehole resistance in a u-tube borehole heat exchanger (2012) Geothermics, 44, pp. 23-32 Acuña, J., Palm, B., Distributed thermal response tests on pipe-in-pipe borehole heat exchangers (2013) Appl. Energy, 109, pp. 312-320 Freifeld, B.M., Finsterle, S., Onstott, T.C., Toole, P., Pratt, L.M., Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor (2008) Geophys. Res. Lett., 35 Raymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444 Raymond, J., Lamarche, L., Malo, M., Field demonstration of a first thermal response test with a low power source (2015) Appl. Energy, 147, pp. 30-39 Raymond, J., Robert, G., Therrien, R., Gosselin, L., A novel thermal response test using heating cables (2010) Proceedings of the World Geothermal Congress, Bali, Indonesia, 25-29 April Raymond, J., Colloquium 2016: Assessment of the subsurface thermal conductivity for geothermal applications (2018) Can. Geotech. J., 55, pp. 1209-1229 Simon, F., (2016) Développement d'Une Approche Nouvelle pour les Tests de Réponse Thermique en Géothermie, , Master's Thesis, Ecole de technologie supérieure, Montréal, QC, Canada Love, A.J., Simmons, C.T., Nield, D.A., Double-diffusive convection in groundwater wells (2007) Water Resour. Res., 43 Raymond, J., Ballard, J.-M., Koubikana Pambou, C.H., Field assessment of a ground heat exchanger performance with a reduced borehole diameter (2017) Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1-4 October Philippe, M., (2010) Development and Experimental Validation of Vertical and Horizontal Ground Heat Exchangers for Residential Buildings Heating, , Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, France Van De Giesen, N., Steele-Dunne, S.C., Jansen, J., Hoes, O., Hausner, M.B., Tyler, S., Selker, J., Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data (2012) Sensors, 12, pp. 5471-5485 Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and testing of a generalized reduced gradient code for nonlinear programming (1978) ACM Trans. Math. Softw., 4, pp. 34-50 Beck, A.E., Anglin, F.M., Sass, J.H., Analysis of heat flow data-in situ thermal conductivity measurements (1971) Can. J. Earth Sci., 8, pp. 1-19 Pehme, P.E., Greenhouse, J.P., Parker, B.L., The active line source temperature logging technique and its application in fractured rock hydrogeology (2007) J. Environ. Eng. Geophys., 12, pp. 307-322 Witte, H.J.L., Error analysis of thermal response tests (2013) Appl. Energy, 109, pp. 302-311 (2018) Evaluation of Measurement Data-Supplement 1 to the Guide to the Expression of Uncertainty in Measurement, , https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, (accessed on 9 September) Ellison, S., Williams, A., (2017) Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, , https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf, (accessed on 12 July) Ballard, J.M., Koubikana, C., Raymond, J., (2016) Développement des Tests de Réponse Thermique Automatisés et Vérification de la Performance des Forages Géothermiques d'Un Diamètre de 4,5 Po, , Internal Report R1601 Institut National de la Recherche Scientifique: Qubec City, QC, Canada Maragna, C., (2014) Analyse d'Un Test de Réponse Thermique, , Internal Report Division Géothermie, Bureau de Recherche Géologique et Minières de France: Orléans, France Asselin, S., (2014) Manuel d'Utilisation: Appareil de Lecture de Conductivité Thermique, , Internal Report Institut National de la Recherche Scientifique: Quebec City, QC, Canada Klepikova, M., Roques, C., Loew, S., Selker, J., Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (pam) gel as temporary grout (2018) Water Resour. Res., 54, pp. 1410-1419 Berthold, S., Resagk, C., Investigation of thermal convection in water columns using particle image velocimetry (2012) Exp. Fluids, 52, pp. 1465-1474 Witte, H.J.L., Van Gelder, G., Spitler, J.D., In-situ thermal conductivity testing: A Dutch perspective (2002) ASHRAE Trans., 108, pp. 263-272 Raymond, J., Therrien, R., Gosselin, L., Lefebvre, R., A review of thermal response test analysis using pumping test concepts (2011) Ground Water, 49, pp. 932-945 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
MDPI AG |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental Ingeniería en Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
Energies |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159167028461568 |
spelling |
20182021-02-05T14:59:54Z2021-02-05T14:59:54Z19961073http://hdl.handle.net/11407/613210.3390/en11113059Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.engMDPI AGIngeniería AmbientalIngeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057875875&doi=10.3390%2fen11113059&partnerID=40&md5=6494682cc53a53305c7fafe48441ce4d1111Marcotte, D., Pasquier, P., On the estimation of thermal resistance in borehole thermal conductivity test (2008) Renew. Energy, 33, pp. 2407-2415Zhang, C., Guo, Z., Liu, Y., Cong, X., Peng, D., A review on thermal response test of ground-coupled heat pump systems (2014) Renew. Sustain. Energy Rev., 40, pp. 851-867Mogensen, P., Fluid to duct wall heat transfer in duct system heat storages (1983) Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6-8 JuneEklöf, C., Gehlin, S., (1996) TED-A Mobile Equipment for Thermal Response Test: Testing and Evaluation, , Master's Thesis, Lulea University of Technology, Lulea, SwedenAustin, W.A., III, (1998) Development of An in Situ System for Measuring Ground Thermal Properties, , Master's Thesis, Oklahoma State University, Stillwater, OK, USAGehlin, S., (2002) Thermal Response Test Method Development and Evaluation, , Ph.D. Thesis, Lulea University of Techonology, Lulea, SwedenSanner, B., Hellström, G., Spitler, J., Gehlin, S., (2017) More Than 15 Years of Mobile Thermal Response Test-A Summary of Experiences and Prospects, , https://hvac.okstate.edu/sites/default/files/pubs/papers/2013/03-Sanner_et_al_2013_EGC_TRT-overview.pdf, (accessed on 3 May)Spitler, J.D., Gehlin, S., Thermal response testing for ground source heat pump systems-an historical review (2015) Renew. Sustain. Energy Rev., 50, pp. 1125-1137Gehlin, S., (1998) Thermal Response Test: In Situ Measurements of Thermal Properties in Hard Rock, , Licentiate Dissertation, Lulea University of Technology, Lulea, SwedenRaymond, J., Therrien, R., Gosselin, L., Borehole temperature evolution during thermal response tests (2011) Geothermics, 40, pp. 69-78Carslaw, H.S., (1921) Introduction to the Mathematical Theory of the Conduction of Heat in Solids, , Macmillan: London, UKIngersoll, L.R., Plass, H.J., Theory of the ground heat pipe heat source for the heat pump (1948) Trans. Am. Soc. Heat. Vent. Eng., 20, pp. 119-122Kavanaugh, S.P., (2001) Investigation of Methods for Determining Soil Formation Thermal Characteristics from Short Term Field Tests, , ASHRAE: Atlanta, GA, USASanner, B., Hellström, G., Spitler, J., Gehlin, S., Thermal response test-current status and world-wide application (2005) Proceedings of the World Geothermal Congress, Antalya, Turkey, 24-29 AprilFujii, H., Okubo, H., Itoi, R., Thermal response tests using optical fiber thermometers (2006) GRC Trans., 30, pp. 545-551Gehlin, S., Hellström, G., Influence on thermal response test by groundwater flow in vertical fractures in hard rock (2003) Renew. Energy, 28, pp. 2221-2238Gustafsson, A.M., Westerlund, L., Heat extraction thermal response test in groundwater-filled borehole heat exchanger-investigation of the borehole thermal resistance (2011) Renew. Energy, 36, pp. 2388-2394Bense, V.F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Selker, J.S., Distributed temperature sensing as a downhole tool in hydrogeology (2016) Water Resour. Res., 52, pp. 9259-9273Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., Shibata, K., An improved thermal response test for u-tube ground heat exchanger based on optical fiber thermometers (2009) Geothermics, 38, pp. 399-406Beier, R.A., Acuña, J., Mogensen, P., Palm, B., Vertical temperature profiles and borehole resistance in a u-tube borehole heat exchanger (2012) Geothermics, 44, pp. 23-32Acuña, J., Palm, B., Distributed thermal response tests on pipe-in-pipe borehole heat exchangers (2013) Appl. Energy, 109, pp. 312-320Freifeld, B.M., Finsterle, S., Onstott, T.C., Toole, P., Pratt, L.M., Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor (2008) Geophys. Res. Lett., 35Raymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444Raymond, J., Lamarche, L., Malo, M., Field demonstration of a first thermal response test with a low power source (2015) Appl. Energy, 147, pp. 30-39Raymond, J., Robert, G., Therrien, R., Gosselin, L., A novel thermal response test using heating cables (2010) Proceedings of the World Geothermal Congress, Bali, Indonesia, 25-29 AprilRaymond, J., Colloquium 2016: Assessment of the subsurface thermal conductivity for geothermal applications (2018) Can. Geotech. J., 55, pp. 1209-1229Simon, F., (2016) Développement d'Une Approche Nouvelle pour les Tests de Réponse Thermique en Géothermie, , Master's Thesis, Ecole de technologie supérieure, Montréal, QC, CanadaLove, A.J., Simmons, C.T., Nield, D.A., Double-diffusive convection in groundwater wells (2007) Water Resour. Res., 43Raymond, J., Ballard, J.-M., Koubikana Pambou, C.H., Field assessment of a ground heat exchanger performance with a reduced borehole diameter (2017) Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1-4 OctoberPhilippe, M., (2010) Development and Experimental Validation of Vertical and Horizontal Ground Heat Exchangers for Residential Buildings Heating, , Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, FranceVan De Giesen, N., Steele-Dunne, S.C., Jansen, J., Hoes, O., Hausner, M.B., Tyler, S., Selker, J., Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data (2012) Sensors, 12, pp. 5471-5485Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and testing of a generalized reduced gradient code for nonlinear programming (1978) ACM Trans. Math. Softw., 4, pp. 34-50Beck, A.E., Anglin, F.M., Sass, J.H., Analysis of heat flow data-in situ thermal conductivity measurements (1971) Can. J. Earth Sci., 8, pp. 1-19Pehme, P.E., Greenhouse, J.P., Parker, B.L., The active line source temperature logging technique and its application in fractured rock hydrogeology (2007) J. Environ. Eng. Geophys., 12, pp. 307-322Witte, H.J.L., Error analysis of thermal response tests (2013) Appl. Energy, 109, pp. 302-311(2018) Evaluation of Measurement Data-Supplement 1 to the Guide to the Expression of Uncertainty in Measurement, , https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, (accessed on 9 September)Ellison, S., Williams, A., (2017) Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, , https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf, (accessed on 12 July)Ballard, J.M., Koubikana, C., Raymond, J., (2016) Développement des Tests de Réponse Thermique Automatisés et Vérification de la Performance des Forages Géothermiques d'Un Diamètre de 4,5 Po, , Internal Report R1601Institut National de la Recherche Scientifique: Qubec City, QC, CanadaMaragna, C., (2014) Analyse d'Un Test de Réponse Thermique, , Internal ReportDivision Géothermie, Bureau de Recherche Géologique et Minières de France: Orléans, FranceAsselin, S., (2014) Manuel d'Utilisation: Appareil de Lecture de Conductivité Thermique, , Internal ReportInstitut National de la Recherche Scientifique: Quebec City, QC, CanadaKlepikova, M., Roques, C., Loew, S., Selker, J., Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (pam) gel as temporary grout (2018) Water Resour. Res., 54, pp. 1410-1419Berthold, S., Resagk, C., Investigation of thermal convection in water columns using particle image velocimetry (2012) Exp. Fluids, 52, pp. 1465-1474Witte, H.J.L., Van Gelder, G., Spitler, J.D., In-situ thermal conductivity testing: A Dutch perspective (2002) ASHRAE Trans., 108, pp. 263-272Raymond, J., Therrien, R., Gosselin, L., Lefebvre, R., A review of thermal response test analysis using pumping test concepts (2011) Ground Water, 49, pp. 932-945EnergiesDistributed thermal response tests using a heating cable and fiber optic temperature sensingArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1VélezMárquez, M.I., Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, CanadaRaymond, J., Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, CanadaBlessent, D., Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, 050026, ColombiaPhilippe, M., BRGM, Georesources Division, Orléans Cedex 2, 45060, FranceSimon, N., Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, F-35000, FranceBour, O., Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, F-35000, FranceLamarche, L., École de Technologie Supérieure, Département de Génie Mécanique, Montréal, QC H3C 1K3, Canadahttp://purl.org/coar/access_right/c_16ecVélezMárquez M.I.Raymond J.Blessent D.Philippe M.Simon N.Bour O.Lamarche L.11407/6132oai:repository.udem.edu.co:11407/61322021-02-05 09:59:54.144Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |