A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6
Two stochastic methods in conjunction with ab initio computations were used to explore the potential energy surfaces for the microsolvation of SO4 2- with up to six explicit water molecules. At least three water molecules are needed to stabilize the Coulomb repulsion that prevents the existence of i...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5756
- Acceso en línea:
- http://hdl.handle.net/11407/5756
- Palabra clave:
- Hydrogen bonds
Potential energy
Quantum chemistry
Stochastic systems
Ab initio computations
Coulomb repulsions
Explicit water molecules
Intermolecular interactions
Proton abstraction
Stochastic methods
Water dissociation
Water molecule
Molecules
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_297ffe4a4c86fd3935d3b38ed9746d10 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5756 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
title |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
spellingShingle |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 Hydrogen bonds Potential energy Quantum chemistry Stochastic systems Ab initio computations Coulomb repulsions Explicit water molecules Intermolecular interactions Proton abstraction Stochastic methods Water dissociation Water molecule Molecules |
title_short |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
title_full |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
title_fullStr |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
title_full_unstemmed |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
title_sort |
A Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6 |
dc.subject.none.fl_str_mv |
Hydrogen bonds Potential energy Quantum chemistry Stochastic systems Ab initio computations Coulomb repulsions Explicit water molecules Intermolecular interactions Proton abstraction Stochastic methods Water dissociation Water molecule Molecules |
topic |
Hydrogen bonds Potential energy Quantum chemistry Stochastic systems Ab initio computations Coulomb repulsions Explicit water molecules Intermolecular interactions Proton abstraction Stochastic methods Water dissociation Water molecule Molecules |
description |
Two stochastic methods in conjunction with ab initio computations were used to explore the potential energy surfaces for the microsolvation of SO4 2- with up to six explicit water molecules. At least three water molecules are needed to stabilize the Coulomb repulsion that prevents the existence of isolated SO4 2-. The formal charge in SO4 2- is strong enough to induce water dissociation and subsequent microsolvation of the resulting HSO4 -, OH- ionic pair. Hydrogen bonds characterized as having complex contributions from covalency and from ionicity are at play stabilizing [SO4(H2O)n]2- clusters. Ionicity and covalency act concomitantly rather than opposedly to strengthen both intermolecular interactions and the resulting O-H bond in HSO4 - after proton abstraction. Copyright © 2019 American Chemical Society. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:54Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:54Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
10895639 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5756 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpca.9b07033 |
identifier_str_mv |
10895639 10.1021/acs.jpca.9b07033 |
url |
http://hdl.handle.net/11407/5756 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073095320&doi=10.1021%2facs.jpca.9b07033&partnerID=40&md5=c2033e43ea187133b7da8c520602ac92 |
dc.relation.citationvolume.none.fl_str_mv |
123 |
dc.relation.citationissue.none.fl_str_mv |
40 |
dc.relation.citationstartpage.none.fl_str_mv |
8650 |
dc.relation.citationendpage.none.fl_str_mv |
8656 |
dc.relation.references.none.fl_str_mv |
Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D., Aerosols, Climate, and the Hydrological Cycle (2001) Science, 294, pp. 2119-2124 Abbatt, J.P.D., Benz, S., Cziczo, D.J., Kanji, Z., Lohmann, U., Möhler, O., Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation (2006) Science, 313, pp. 1770-1773 Laaksonen, A., Kulmala, M., Berndt, T., Stratmann, F., Mikkonen, S., Ruuskanen, A., Lehtinen, K.E.J., Petäjä, T., SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications (2008) Atmos. Chem. Phys., 8, pp. 7255-7264 Harrison, R.G., Carslaw, K.S., Ion-aerosol-cloud processes in the lower atmosphere (2003) Rev. Geophys., 41, pp. 1-26 Yu, F., Turco, R.P., From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation (2001) J. Geophys. Res. Atmospheres, 106, pp. 4797-4814 Yu, F., Turco, R.P., Kärcher, B., Schröder, F.P., On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes (1998) Geophys. Res. Lett., 25, pp. 3839-3842 Kulmala, M., Pirjola, L., Mäkelä, J.M., Stable sulphate clusters as a source of new atmospheric particles (2000) Nature, 404, pp. 66-69 Finlayson-Pitts, B.J., Pitts, J.N., Finlayson-Pitts, B.J., Pitts, J.N., Overview of the Chemistry of Polluted and Remote Atmospheres (2000) Chemistry of the Upper and Lower Atmosphere, pp. 1-14. , Academic Press: San Diego, CA Twomey, S., (1977) Atmospheric Aerosols, 7. , Developments in Atmospheric Science Elsevier: Amsterdam, The Netherlands Carslaw, K.S., Peter, T., Clegg, S.L., Modeling the composition of liquid stratospheric aerosols (1997) Rev. Geophys., 35, pp. 125-154 Molina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., Beyer, K.D., Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds (1993) Science, 261, pp. 1418-1423 Koop, T., Carslaw, K.S., Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds (1996) Science, 272, pp. 1638-1641 Markovich, D., Physiological Roles and Regulation of Mammalian Sulfate Transporters (2001) Physiol. Rev., 81, pp. 1499-1533 Zhang, Y., Cremer, P.S., Interactions between macromolecules and ions: The Hofmeister series (2006) Curr. Opin. Chem. Biol., 10, pp. 658-663 Boldyrev, A.I., Simons, J., Isolated SO4 2- and PO4 3- Anions Do Not Exist (1994) J. Phys. Chem., 98, pp. 2298-2300 Wang, X.-B., Nicholas, J.B., Wang, L.-S., Electronic instability of isolated SO4 2- and its solvation stabilization (2000) J. Chem. Phys., 113, pp. 10837-10840 Blades, A.T., Kebarle, P., Study of the Stability and Hydration of Doubly Charged Ions in the Gas Phase: SO4 2-, S2O6 2-, S2O8 2-, and Some Related Species (1994) J. Am. Chem. Soc., 116, pp. 10761-10766 Hadad, C.Z., Florez, E., Acelas, N., Merino, G., Restrepo, A., Microsolvation of small cations and anions (2019) Int. J. Quantum Chem., 119, p. e25766 Flórez, E., Acelas, N., Ramírez, F., Hadad, C., Restrepo, A., Microsolvation of F- (2018) Phys. Chem. Chem. Phys., 20, pp. 8909-8916 Romero, J., Reyes, A., David, J., Restrepo, A., Understanding microsolvation of Li+: Structural and energetical analyses (2011) Phys. Chem. Chem. Phys., 13, pp. 15264-15271 Gonzalez, J.D., Flórez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks (2013) J. Mol. Model., 19, pp. 1763-1777 Wong, R.L., Williams, E.R., Dissociation of SO4 2- (H2O)n Clusters, n = 3 - 17 (2003) J. Phys. Chem. A, 107, pp. 10976-10983 Cabellos, J., Ortiz-Chi, A., Ramírez, A., Merino, G., (2013) Bilatu 1.0, , Cinvestav: Mérida, Yucatán, México Grande-Aztatzi, R., Martínez-Alanis, P.R., Cabellos, J.L., Osorio, E., Martínez, A., Merino, G., Structural evolution of small gold clusters doped by one and two boron atoms (2014) J. Comput. Chem., 35, pp. 2288-2296 Ramírez-Manzanares, A., Peña, J., Azpiroz, J.M., Merino, G., A hierarchical algorithm for molecular similarity (H-FORMS) (2015) J. Comput. Chem., 36, pp. 1456-1466 Pérez, J., Restrepo, A., (2008) ASCEC V-02: Annealing Simulado Con Energía Cuántica. Property, Development, and Implementation: Grupo de Química-Física Teórica, , Universidad de Antioquia: Medellín, Colombia Pérez, J.F., Hadad, C.Z., Restrepo, A., Structural studies of the water tetramer (2008) Int. J. Quantum Chem., 108, pp. 1653-1659 Lambrecht, D.S., McCaslin, L., Xantheas, S.S., Epifanovsky, E., Head-Gordon, M., Refined energetic ordering for sulphate-water (n = 3 - 6) clusters using high-level electronic structure calculations (2012) Mol. Phys., 110, pp. 2513-2521 Lambrecht, D.S., Clark, G.N.I., Head-Gordon, T., Head-Gordon, M., Exploring the Rich Energy Landscape of Sulfate-Water Clusters SO4 2- (H2O)n=3-7: An Electronic Structure Approach (2011) J. Phys. Chem. A, 115, pp. 11438-11454 Korchagina, K.A., Simon, A., Rapacioli, M., Spiegelman, F., Cuny, J., Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach (2016) J. Phys. Chem. A, 120, pp. 9089-9100 Mardirossian, N., Lambrecht, D.S., McCaslin, L., Xantheas, S.S., Head-Gordon, M., The Performance of Density Functionals for Sulfate-Water Clusters (2013) J. Chem. Theory Comput., 9, pp. 1368-1380 Frisch, M.J., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Scalmani, G., Barone, V., Mennucci, B., Li, X., (2009) Gaussian 09, , Revision A.01 Gaussian, Inc: Wallingford, CT Glendening, E.D., Weinhold, F., NBO 6.0, , http://nbo6.chem.wisc.edu/, Theoretical Chemistry Institute, University of Wisconsin: Madison, WI Weinhold, C.L.A.F., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley: New York Bader, R., (1990) Atoms in Molecules. A Quantum Theory, , Oxford University Press: Oxford, U.K Hincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., Structural Studies of the Water Hexamer (2010) J. Phys. Chem. A, 114, pp. 7809-7814 Ramírez, F., Hadad, C.Z., Guerra, D., David, J., Restrepo, A., Structural studies of the water pentamer (2011) Chem. Phys. Lett., 507, pp. 229-233 Acelas, N., Hincapié, G., Guerra, D., David, J., Restrepo, A., Structures, energies, and bonding in the water heptamer (2013) J. Chem. Phys., 139, p. 044310 Mata, I., Alkorta, I., Molins, E., Espinosa, E., Electrostatics at the Origin of the Stability of Phosphate-Phosphate Complexes Locked by Hydrogen Bonds (2012) ChemPhysChem, 13, pp. 1421-1424 Mata, I., Alkorta, I., Molins, E., Espinosa, E., Tracing environment effects that influence the stability of anion-anion complexes: The case of phosphate-phosphate interactions (2013) Chem. Phys. Lett., 555, pp. 106-109 Weinhold, F., Klein, R., Anti-Electrostatic Hydrogen Bonds (2014) Angew. Chem., Int. Ed., 53, pp. 11214-11217 Karton, A., Martin, J., Explicitly correlated Wn theory: W1-F12 and W2-F12 (2012) J. Chem. Phys., 136, p. 124114 Flórez, E., Acelas, N., Ibarguen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., Microsolvation of NO3 -: Structural exploration and bonding analysis (2016) RSC Adv., 6, pp. 71913-71923 Vargas-Caamal, A., Cabellos, J., Ortiz-Chi, F., Rzepa, H., Restrepo, A., Merino, G., How Many Water Molecules Does it Take to Dissociate HCl? (2016) Chem. - Eur. J., 22, pp. 2812-2818 Limbach, H., Pietrzak, M., Sharif, S., Tolstoy, P., Shenderovich, I., Smirnov, S., Golubev, N., Denisov, G., NMR Parameters and Geometries of OHN and ODN Hydrogen Bonds of Pyridine-Acid Complexes (2004) Chem. - Eur. J., 10, pp. 5195-5204 Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542 Mata, I., Alkorta, I., Molins, E., Espinosa, E., Universal Features of the Electron Density Distribution in Hydrogen-Bonding Regions: A Comprehensive Study Involving H···X (X = H, C, N, O, F, S, Cl, ?) Interactions (2010) Chem. - Eur. J., 16, pp. 2442-2452 Linus, P., (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, , Cornell University Press: Ithaca, NY Coulson, C.A., (1961) Valence, , Oxford University Press Collins, K.D., Washabaugh, M.W., The Hoffmeister effect and the behaviour of water at interfaces (1985) Q. Rev. Biophys., 18, pp. 323-422 O'Brien, J.T., Williams, E.R., Effects of Ions on Hydrogen-Bonding Water Networks in Large Aqueous Nanodrops (2012) J. Am. Chem. Soc., 134, pp. 10228-10236 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Chemical Society |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
Journal of Physical Chemistry A |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159217799462912 |
spelling |
20192020-04-29T14:53:54Z2020-04-29T14:53:54Z10895639http://hdl.handle.net/11407/575610.1021/acs.jpca.9b07033Two stochastic methods in conjunction with ab initio computations were used to explore the potential energy surfaces for the microsolvation of SO4 2- with up to six explicit water molecules. At least three water molecules are needed to stabilize the Coulomb repulsion that prevents the existence of isolated SO4 2-. The formal charge in SO4 2- is strong enough to induce water dissociation and subsequent microsolvation of the resulting HSO4 -, OH- ionic pair. Hydrogen bonds characterized as having complex contributions from covalency and from ionicity are at play stabilizing [SO4(H2O)n]2- clusters. Ionicity and covalency act concomitantly rather than opposedly to strengthen both intermolecular interactions and the resulting O-H bond in HSO4 - after proton abstraction. Copyright © 2019 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073095320&doi=10.1021%2facs.jpca.9b07033&partnerID=40&md5=c2033e43ea187133b7da8c520602ac921234086508656Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D., Aerosols, Climate, and the Hydrological Cycle (2001) Science, 294, pp. 2119-2124Abbatt, J.P.D., Benz, S., Cziczo, D.J., Kanji, Z., Lohmann, U., Möhler, O., Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation (2006) Science, 313, pp. 1770-1773Laaksonen, A., Kulmala, M., Berndt, T., Stratmann, F., Mikkonen, S., Ruuskanen, A., Lehtinen, K.E.J., Petäjä, T., SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications (2008) Atmos. Chem. Phys., 8, pp. 7255-7264Harrison, R.G., Carslaw, K.S., Ion-aerosol-cloud processes in the lower atmosphere (2003) Rev. Geophys., 41, pp. 1-26Yu, F., Turco, R.P., From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation (2001) J. Geophys. Res. Atmospheres, 106, pp. 4797-4814Yu, F., Turco, R.P., Kärcher, B., Schröder, F.P., On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes (1998) Geophys. Res. Lett., 25, pp. 3839-3842Kulmala, M., Pirjola, L., Mäkelä, J.M., Stable sulphate clusters as a source of new atmospheric particles (2000) Nature, 404, pp. 66-69Finlayson-Pitts, B.J., Pitts, J.N., Finlayson-Pitts, B.J., Pitts, J.N., Overview of the Chemistry of Polluted and Remote Atmospheres (2000) Chemistry of the Upper and Lower Atmosphere, pp. 1-14. , Academic Press: San Diego, CATwomey, S., (1977) Atmospheric Aerosols, 7. , Developments in Atmospheric ScienceElsevier: Amsterdam, The NetherlandsCarslaw, K.S., Peter, T., Clegg, S.L., Modeling the composition of liquid stratospheric aerosols (1997) Rev. Geophys., 35, pp. 125-154Molina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., Beyer, K.D., Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds (1993) Science, 261, pp. 1418-1423Koop, T., Carslaw, K.S., Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds (1996) Science, 272, pp. 1638-1641Markovich, D., Physiological Roles and Regulation of Mammalian Sulfate Transporters (2001) Physiol. Rev., 81, pp. 1499-1533Zhang, Y., Cremer, P.S., Interactions between macromolecules and ions: The Hofmeister series (2006) Curr. Opin. Chem. Biol., 10, pp. 658-663Boldyrev, A.I., Simons, J., Isolated SO4 2- and PO4 3- Anions Do Not Exist (1994) J. Phys. Chem., 98, pp. 2298-2300Wang, X.-B., Nicholas, J.B., Wang, L.-S., Electronic instability of isolated SO4 2- and its solvation stabilization (2000) J. Chem. Phys., 113, pp. 10837-10840Blades, A.T., Kebarle, P., Study of the Stability and Hydration of Doubly Charged Ions in the Gas Phase: SO4 2-, S2O6 2-, S2O8 2-, and Some Related Species (1994) J. Am. Chem. Soc., 116, pp. 10761-10766Hadad, C.Z., Florez, E., Acelas, N., Merino, G., Restrepo, A., Microsolvation of small cations and anions (2019) Int. J. Quantum Chem., 119, p. e25766Flórez, E., Acelas, N., Ramírez, F., Hadad, C., Restrepo, A., Microsolvation of F- (2018) Phys. Chem. Chem. Phys., 20, pp. 8909-8916Romero, J., Reyes, A., David, J., Restrepo, A., Understanding microsolvation of Li+: Structural and energetical analyses (2011) Phys. Chem. Chem. Phys., 13, pp. 15264-15271Gonzalez, J.D., Flórez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks (2013) J. Mol. Model., 19, pp. 1763-1777Wong, R.L., Williams, E.R., Dissociation of SO4 2- (H2O)n Clusters, n = 3 - 17 (2003) J. Phys. Chem. A, 107, pp. 10976-10983Cabellos, J., Ortiz-Chi, A., Ramírez, A., Merino, G., (2013) Bilatu 1.0, , Cinvestav: Mérida, Yucatán, MéxicoGrande-Aztatzi, R., Martínez-Alanis, P.R., Cabellos, J.L., Osorio, E., Martínez, A., Merino, G., Structural evolution of small gold clusters doped by one and two boron atoms (2014) J. Comput. Chem., 35, pp. 2288-2296Ramírez-Manzanares, A., Peña, J., Azpiroz, J.M., Merino, G., A hierarchical algorithm for molecular similarity (H-FORMS) (2015) J. Comput. Chem., 36, pp. 1456-1466Pérez, J., Restrepo, A., (2008) ASCEC V-02: Annealing Simulado Con Energía Cuántica. Property, Development, and Implementation: Grupo de Química-Física Teórica, , Universidad de Antioquia: Medellín, ColombiaPérez, J.F., Hadad, C.Z., Restrepo, A., Structural studies of the water tetramer (2008) Int. J. Quantum Chem., 108, pp. 1653-1659Lambrecht, D.S., McCaslin, L., Xantheas, S.S., Epifanovsky, E., Head-Gordon, M., Refined energetic ordering for sulphate-water (n = 3 - 6) clusters using high-level electronic structure calculations (2012) Mol. Phys., 110, pp. 2513-2521Lambrecht, D.S., Clark, G.N.I., Head-Gordon, T., Head-Gordon, M., Exploring the Rich Energy Landscape of Sulfate-Water Clusters SO4 2- (H2O)n=3-7: An Electronic Structure Approach (2011) J. Phys. Chem. A, 115, pp. 11438-11454Korchagina, K.A., Simon, A., Rapacioli, M., Spiegelman, F., Cuny, J., Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach (2016) J. Phys. Chem. A, 120, pp. 9089-9100Mardirossian, N., Lambrecht, D.S., McCaslin, L., Xantheas, S.S., Head-Gordon, M., The Performance of Density Functionals for Sulfate-Water Clusters (2013) J. Chem. Theory Comput., 9, pp. 1368-1380Frisch, M.J., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Scalmani, G., Barone, V., Mennucci, B., Li, X., (2009) Gaussian 09, , Revision A.01Gaussian, Inc: Wallingford, CTGlendening, E.D., Weinhold, F., NBO 6.0, , http://nbo6.chem.wisc.edu/, Theoretical Chemistry Institute, University of Wisconsin: Madison, WIWeinhold, C.L.A.F., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley: New YorkBader, R., (1990) Atoms in Molecules. A Quantum Theory, , Oxford University Press: Oxford, U.KHincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., Structural Studies of the Water Hexamer (2010) J. Phys. Chem. A, 114, pp. 7809-7814Ramírez, F., Hadad, C.Z., Guerra, D., David, J., Restrepo, A., Structural studies of the water pentamer (2011) Chem. Phys. Lett., 507, pp. 229-233Acelas, N., Hincapié, G., Guerra, D., David, J., Restrepo, A., Structures, energies, and bonding in the water heptamer (2013) J. Chem. Phys., 139, p. 044310Mata, I., Alkorta, I., Molins, E., Espinosa, E., Electrostatics at the Origin of the Stability of Phosphate-Phosphate Complexes Locked by Hydrogen Bonds (2012) ChemPhysChem, 13, pp. 1421-1424Mata, I., Alkorta, I., Molins, E., Espinosa, E., Tracing environment effects that influence the stability of anion-anion complexes: The case of phosphate-phosphate interactions (2013) Chem. Phys. Lett., 555, pp. 106-109Weinhold, F., Klein, R., Anti-Electrostatic Hydrogen Bonds (2014) Angew. Chem., Int. Ed., 53, pp. 11214-11217Karton, A., Martin, J., Explicitly correlated Wn theory: W1-F12 and W2-F12 (2012) J. Chem. Phys., 136, p. 124114Flórez, E., Acelas, N., Ibarguen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., Microsolvation of NO3 -: Structural exploration and bonding analysis (2016) RSC Adv., 6, pp. 71913-71923Vargas-Caamal, A., Cabellos, J., Ortiz-Chi, F., Rzepa, H., Restrepo, A., Merino, G., How Many Water Molecules Does it Take to Dissociate HCl? (2016) Chem. - Eur. J., 22, pp. 2812-2818Limbach, H., Pietrzak, M., Sharif, S., Tolstoy, P., Shenderovich, I., Smirnov, S., Golubev, N., Denisov, G., NMR Parameters and Geometries of OHN and ODN Hydrogen Bonds of Pyridine-Acid Complexes (2004) Chem. - Eur. J., 10, pp. 5195-5204Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542Mata, I., Alkorta, I., Molins, E., Espinosa, E., Universal Features of the Electron Density Distribution in Hydrogen-Bonding Regions: A Comprehensive Study Involving H···X (X = H, C, N, O, F, S, Cl, ?) Interactions (2010) Chem. - Eur. J., 16, pp. 2442-2452Linus, P., (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, , Cornell University Press: Ithaca, NYCoulson, C.A., (1961) Valence, , Oxford University PressCollins, K.D., Washabaugh, M.W., The Hoffmeister effect and the behaviour of water at interfaces (1985) Q. Rev. Biophys., 18, pp. 323-422O'Brien, J.T., Williams, E.R., Effects of Ions on Hydrogen-Bonding Water Networks in Large Aqueous Nanodrops (2012) J. Am. Chem. Soc., 134, pp. 10228-10236Journal of Physical Chemistry AHydrogen bondsPotential energyQuantum chemistryStochastic systemsAb initio computationsCoulomb repulsionsExplicit water moleculesIntermolecular interactionsProton abstractionStochastic methodsWater dissociationWater moleculeMoleculesA Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acelas, N., Grupo de Materiales Con Impacto, Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Flórez, E., Grupo de Materiales Con Impacto, Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Hadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Merino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida Km 6 Antigua Carretera A Progreso, Apdo. Postal 73 Cordemex, 97310, Mérida, Yuc, Mexico; Restrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecAcelas N.Flórez E.Hadad C.Merino G.Restrepo A.11407/5756oai:repository.udem.edu.co:11407/57562020-05-27 18:29:05.684Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |