Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kin...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5939
- Acceso en línea:
- http://hdl.handle.net/11407/5939
- Palabra clave:
- chiral anthracene
diels Alders reaction mechanisms
reaction electronic flux (REF)
reaction force analysis
Activation analysis
Activation energy
Anthracene
Chemical bonds
Quantum chemistry
Stereochemistry
Thermodynamics
Diels-Alder reaction
Natural bond orders
Population analysis
Quantum chemical calculations
Reaction electronic flux (REF)
Reaction electronic fluxes
Structural rearrangement
Thermodynamics and kinetics
Reaction kinetics
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_277d8c359519c48369567124a0a86ae7 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5939 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
title |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
spellingShingle |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux chiral anthracene diels Alders reaction mechanisms reaction electronic flux (REF) reaction force analysis Activation analysis Activation energy Anthracene Chemical bonds Quantum chemistry Stereochemistry Thermodynamics Diels-Alder reaction Natural bond orders Population analysis Quantum chemical calculations Reaction electronic flux (REF) Reaction electronic fluxes Structural rearrangement Thermodynamics and kinetics Reaction kinetics |
title_short |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
title_full |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
title_fullStr |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
title_full_unstemmed |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
title_sort |
Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux |
dc.subject.spa.fl_str_mv |
chiral anthracene diels Alders reaction mechanisms reaction electronic flux (REF) reaction force analysis |
topic |
chiral anthracene diels Alders reaction mechanisms reaction electronic flux (REF) reaction force analysis Activation analysis Activation energy Anthracene Chemical bonds Quantum chemistry Stereochemistry Thermodynamics Diels-Alder reaction Natural bond orders Population analysis Quantum chemical calculations Reaction electronic flux (REF) Reaction electronic fluxes Structural rearrangement Thermodynamics and kinetics Reaction kinetics |
dc.subject.keyword.eng.fl_str_mv |
Activation analysis Activation energy Anthracene Chemical bonds Quantum chemistry Stereochemistry Thermodynamics Diels-Alder reaction Natural bond orders Population analysis Quantum chemical calculations Reaction electronic flux (REF) Reaction electronic fluxes Structural rearrangement Thermodynamics and kinetics Reaction kinetics |
description |
Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kinetics of the reactions are quite consistent: the lower the activation energy, the lower the reaction energy, thus following the Bell-Evans-Polanyi principle. It has been found that activation energies are mostly due to structural rearrangements that in most cases represented more than 70% of the activation energy. Electronic activity mostly due to changes in σ and π bonding were revealed by the reaction electronic flux (REF), this property helps identify whether changes on σ or π bonding drive the reaction. Additionally, new global indexes describing the behavior of the electronic activity were introduced and then used to classify the reactions in terms of the spontaneity of their electronic activity. Local natural bond order electronic population analysis was used to check consistency with global REF through the characterization of specific changes in the electronic density that might be responsible for the activity already detected by the REF. Results show that reactions involving acetoxy lactones are driven by spontaneous electronic activity coming from bond forming/strengthening processes; in the case of maleic anhydrides and maleimides it appears that both spontaneous and non-spontaneous electronic activity are quite active in driving the reactions. © 2020 Wiley Periodicals LLC |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:06Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:06Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
1928651 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5939 |
dc.identifier.doi.none.fl_str_mv |
10.1002/jcc.26360 |
identifier_str_mv |
1928651 10.1002/jcc.26360 |
url |
http://hdl.handle.net/11407/5939 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087162376&doi=10.1002%2fjcc.26360&partnerID=40&md5=f7de9efcd429c79b448188de5f2fdaf7 |
dc.relation.references.none.fl_str_mv |
Atherton, J.C.C., Jones, S., (2001) Tetrahedron Lett., 42, p. 8239 Sanyal, A., Snyder, J.K., (2000) Organic Lett., 2, p. 2527 Van Damme, J., Du Prez, F., (2018) Progress Polym. Sci., 82, p. 92 Fringuelli, F., Taticchi, A., (2002) The Diels-Alder reaction: Selected practical methods, , John Wiley & Sons, Ltd, Baffins Lane, Chichester Teixeira, M.G., Alvarenga, E.S., (2016) Mag. Reson. Chem., 54, p. 623 Amant, A.H.S., Lemen, D., Florinas, S., Mao, S., Fazenbaker, C., Zhong, H., Wu, H., De Alaniz, J.R., (2018) Bioconjugate Chem., 29, p. 2406 Resende, G.C., Alvarenga, E.S., Willoughby, P.H., (2015) J. Mol. Struct., 1101, p. 212 Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, p. 931 Toro-Labbé, A., (1999) J. Phys. Chem. A, 103, p. 4398 Martínez, J., Toro-Labbé, A., (2004) Chem. Phys. Lett., 392, p. 132 Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., Chermette, H., (2005) J. Phys. Chem. A, 109, p. 1748 Duarte, F., Toro-Labbé, A., (2011) J. Phys. Chem. A, 115, p. 3050 Villegas-Escobar, N., Poater, A., Solà, M., Schaefer, H.F., III, Toro-Labbé, A., (2019) Phys. Chem. Chem. Phys., 21, p. 5039 Politzer, P., Toro-Labbé, A., Gutiérrez-Oliva, S., Herrera, B., Jaque, P., Concha, M.C., Murray, J.S., (2005) J. Chem. Sci., 117, p. 467 Politzer, P., Murray, J.S., Yepes, D., Jaque, P., (2014) J. Mol. Model., 20, p. 2351 Politzer, P., Murray, J.S., Jaque, P., (2013) J. Mol. Model., 19, p. 4111 Rincón, E., Jaque, P., Toro-Labbé, A., (2006) J. Phys. Chem. A, 110, p. 9478 Jaque, P., Toro-Labbé, A., (2000) J. Phys. Chem. A, 104, p. 995 McQuarrie, D.A., Simon, J.D., (1997) Physical Chemistry: A Molecular Approach, , University Science Books, Sausalito, CA Nguyen, T.L., Stanton, J.F., Barker, J.R., (2010) Chem. Phys. Lett., 499, p. 9 Andres, N.J., Juan, L.B., (2000) Coleccion ciencia experimental, 2. , Universiatat Jaume I, Castellón, Spain Perdew, J.P., Parr, R.G., Levy, M., Balduz, J.L., (1982) Phys. Rev. Lett., 49, p. 1691 Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E., (1978) J. Chem. Phys., 68, p. 3801 Parr, R.G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, 16. , Oxford University Press, New York, Oxford Koopmans, T., (1934) Physica, 1, p. 104 Janak, J.F., (1978) Phys. Rev. B, 18, p. 7165 Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793 Pearson, R.G., (1985) J. Am. Chem. Soc., 107, p. 6801 Cerón, M.L., Echegaray, E., Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., (2011) Sci. China Chem., 54, p. 1982 Vogt-Geisse, S., Toro-Labbé, A., (2009) J. Chem. Phys., 130 Echegaray, E., Toro-Labbé, A., (2008) J. Phys. Chem. A, 112 Herrera, B., Toro-Labbé, A., (2007) J. Phys. Chem. A, 111, p. 5921 Frisch, G.E.S.M.J., Trucks, G.W., Schlegel, H.B., Robb, V.B.M.A., Cheeseman, J.R., Scalmani, G., Petersson, A.V.M.G.A., Foresman, D.J.F.J.B., (2016) Gaussian 16, Rev. B.01, , 2016,, Gaussian Inc., Wallingford, CT Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215 Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412 Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angewandle Chem. Int. Ed., 47, p. 7746 Fukui, K., Kato, S., Fujimoto, H., (1975) J. Am. Chem. Soc., 97, p. 1 Jensen, F., (2007) Introduction to Computational Chemistry, , 2a ed., The Atrium, Southern Gate, Chichester Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) Natural Bond Order 6.0, , University of Wisconsin Press, Madison Pearson, R.G., (1990) Coord. Chem. Rev., 100, p. 403 Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899 Foster, J.P., Weinhold, F., (1980) J. Am. Chem. Soc., 102, p. 7211 Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., 32, p. 1333 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.source.none.fl_str_mv |
Journal of Computational Chemistry |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159150239711232 |
spelling |
20202021-02-05T14:58:06Z2021-02-05T14:58:06Z1928651http://hdl.handle.net/11407/593910.1002/jcc.26360Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kinetics of the reactions are quite consistent: the lower the activation energy, the lower the reaction energy, thus following the Bell-Evans-Polanyi principle. It has been found that activation energies are mostly due to structural rearrangements that in most cases represented more than 70% of the activation energy. Electronic activity mostly due to changes in σ and π bonding were revealed by the reaction electronic flux (REF), this property helps identify whether changes on σ or π bonding drive the reaction. Additionally, new global indexes describing the behavior of the electronic activity were introduced and then used to classify the reactions in terms of the spontaneity of their electronic activity. Local natural bond order electronic population analysis was used to check consistency with global REF through the characterization of specific changes in the electronic density that might be responsible for the activity already detected by the REF. Results show that reactions involving acetoxy lactones are driven by spontaneous electronic activity coming from bond forming/strengthening processes; in the case of maleic anhydrides and maleimides it appears that both spontaneous and non-spontaneous electronic activity are quite active in driving the reactions. © 2020 Wiley Periodicals LLCengJohn Wiley and Sons Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087162376&doi=10.1002%2fjcc.26360&partnerID=40&md5=f7de9efcd429c79b448188de5f2fdaf7Atherton, J.C.C., Jones, S., (2001) Tetrahedron Lett., 42, p. 8239Sanyal, A., Snyder, J.K., (2000) Organic Lett., 2, p. 2527Van Damme, J., Du Prez, F., (2018) Progress Polym. Sci., 82, p. 92Fringuelli, F., Taticchi, A., (2002) The Diels-Alder reaction: Selected practical methods, , John Wiley & Sons, Ltd, Baffins Lane, ChichesterTeixeira, M.G., Alvarenga, E.S., (2016) Mag. Reson. Chem., 54, p. 623Amant, A.H.S., Lemen, D., Florinas, S., Mao, S., Fazenbaker, C., Zhong, H., Wu, H., De Alaniz, J.R., (2018) Bioconjugate Chem., 29, p. 2406Resende, G.C., Alvarenga, E.S., Willoughby, P.H., (2015) J. Mol. Struct., 1101, p. 212Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, p. 931Toro-Labbé, A., (1999) J. Phys. Chem. A, 103, p. 4398Martínez, J., Toro-Labbé, A., (2004) Chem. Phys. Lett., 392, p. 132Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., Chermette, H., (2005) J. Phys. Chem. A, 109, p. 1748Duarte, F., Toro-Labbé, A., (2011) J. Phys. Chem. A, 115, p. 3050Villegas-Escobar, N., Poater, A., Solà, M., Schaefer, H.F., III, Toro-Labbé, A., (2019) Phys. Chem. Chem. Phys., 21, p. 5039Politzer, P., Toro-Labbé, A., Gutiérrez-Oliva, S., Herrera, B., Jaque, P., Concha, M.C., Murray, J.S., (2005) J. Chem. Sci., 117, p. 467Politzer, P., Murray, J.S., Yepes, D., Jaque, P., (2014) J. Mol. Model., 20, p. 2351Politzer, P., Murray, J.S., Jaque, P., (2013) J. Mol. Model., 19, p. 4111Rincón, E., Jaque, P., Toro-Labbé, A., (2006) J. Phys. Chem. A, 110, p. 9478Jaque, P., Toro-Labbé, A., (2000) J. Phys. Chem. A, 104, p. 995McQuarrie, D.A., Simon, J.D., (1997) Physical Chemistry: A Molecular Approach, , University Science Books, Sausalito, CANguyen, T.L., Stanton, J.F., Barker, J.R., (2010) Chem. Phys. Lett., 499, p. 9Andres, N.J., Juan, L.B., (2000) Coleccion ciencia experimental, 2. , Universiatat Jaume I, Castellón, SpainPerdew, J.P., Parr, R.G., Levy, M., Balduz, J.L., (1982) Phys. Rev. Lett., 49, p. 1691Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E., (1978) J. Chem. Phys., 68, p. 3801Parr, R.G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, 16. , Oxford University Press, New York, OxfordKoopmans, T., (1934) Physica, 1, p. 104Janak, J.F., (1978) Phys. Rev. B, 18, p. 7165Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793Pearson, R.G., (1985) J. Am. Chem. Soc., 107, p. 6801Cerón, M.L., Echegaray, E., Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., (2011) Sci. China Chem., 54, p. 1982Vogt-Geisse, S., Toro-Labbé, A., (2009) J. Chem. Phys., 130Echegaray, E., Toro-Labbé, A., (2008) J. Phys. Chem. A, 112Herrera, B., Toro-Labbé, A., (2007) J. Phys. Chem. A, 111, p. 5921Frisch, G.E.S.M.J., Trucks, G.W., Schlegel, H.B., Robb, V.B.M.A., Cheeseman, J.R., Scalmani, G., Petersson, A.V.M.G.A., Foresman, D.J.F.J.B., (2016) Gaussian 16, Rev. B.01, , 2016,, Gaussian Inc., Wallingford, CTZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angewandle Chem. Int. Ed., 47, p. 7746Fukui, K., Kato, S., Fujimoto, H., (1975) J. Am. Chem. Soc., 97, p. 1Jensen, F., (2007) Introduction to Computational Chemistry, , 2a ed., The Atrium, Southern Gate, ChichesterGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) Natural Bond Order 6.0, , University of Wisconsin Press, MadisonPearson, R.G., (1990) Coord. Chem. Rev., 100, p. 403Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899Foster, J.P., Weinhold, F., (1980) J. Am. Chem. Soc., 102, p. 7211Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., 32, p. 1333Journal of Computational Chemistrychiral anthracenediels Alders reaction mechanismsreaction electronic flux (REF)reaction force analysisActivation analysisActivation energyAnthraceneChemical bondsQuantum chemistryStereochemistryThermodynamicsDiels-Alder reactionNatural bond ordersPopulation analysisQuantum chemical calculationsReaction electronic flux (REF)Reaction electronic fluxesStructural rearrangementThermodynamics and kineticsReaction kineticsDiels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic fluxArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hernández Mancera, J.P., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaGutiérrez-Oliva, S., Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, ChileToro-Labbé, A., Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, ChileVivas-Reyes, R., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia, Grupo CipTec, Fundación Universitaria Tecnológico de Comfenalco, Facultad de Ingenierías, Programa de Ingeniería Industrial, Cartagena de Indias, Bolivar, Colombiahttp://purl.org/coar/access_right/c_16ecHernández Mancera J.P.Núñez-Zarur F.Gutiérrez-Oliva S.Toro-Labbé A.Vivas-Reyes R.11407/5939oai:repository.udem.edu.co:11407/59392021-02-05 09:58:06.664Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |