Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux

Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kin...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5939
Acceso en línea:
http://hdl.handle.net/11407/5939
Palabra clave:
chiral anthracene
diels Alders reaction mechanisms
reaction electronic flux (REF)
reaction force analysis
Activation analysis
Activation energy
Anthracene
Chemical bonds
Quantum chemistry
Stereochemistry
Thermodynamics
Diels-Alder reaction
Natural bond orders
Population analysis
Quantum chemical calculations
Reaction electronic flux (REF)
Reaction electronic fluxes
Structural rearrangement
Thermodynamics and kinetics
Reaction kinetics
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_277d8c359519c48369567124a0a86ae7
oai_identifier_str oai:repository.udem.edu.co:11407/5939
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
title Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
spellingShingle Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
chiral anthracene
diels Alders reaction mechanisms
reaction electronic flux (REF)
reaction force analysis
Activation analysis
Activation energy
Anthracene
Chemical bonds
Quantum chemistry
Stereochemistry
Thermodynamics
Diels-Alder reaction
Natural bond orders
Population analysis
Quantum chemical calculations
Reaction electronic flux (REF)
Reaction electronic fluxes
Structural rearrangement
Thermodynamics and kinetics
Reaction kinetics
title_short Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
title_full Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
title_fullStr Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
title_full_unstemmed Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
title_sort Diels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
dc.subject.spa.fl_str_mv chiral anthracene
diels Alders reaction mechanisms
reaction electronic flux (REF)
reaction force analysis
topic chiral anthracene
diels Alders reaction mechanisms
reaction electronic flux (REF)
reaction force analysis
Activation analysis
Activation energy
Anthracene
Chemical bonds
Quantum chemistry
Stereochemistry
Thermodynamics
Diels-Alder reaction
Natural bond orders
Population analysis
Quantum chemical calculations
Reaction electronic flux (REF)
Reaction electronic fluxes
Structural rearrangement
Thermodynamics and kinetics
Reaction kinetics
dc.subject.keyword.eng.fl_str_mv Activation analysis
Activation energy
Anthracene
Chemical bonds
Quantum chemistry
Stereochemistry
Thermodynamics
Diels-Alder reaction
Natural bond orders
Population analysis
Quantum chemical calculations
Reaction electronic flux (REF)
Reaction electronic fluxes
Structural rearrangement
Thermodynamics and kinetics
Reaction kinetics
description Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kinetics of the reactions are quite consistent: the lower the activation energy, the lower the reaction energy, thus following the Bell-Evans-Polanyi principle. It has been found that activation energies are mostly due to structural rearrangements that in most cases represented more than 70% of the activation energy. Electronic activity mostly due to changes in σ and π bonding were revealed by the reaction electronic flux (REF), this property helps identify whether changes on σ or π bonding drive the reaction. Additionally, new global indexes describing the behavior of the electronic activity were introduced and then used to classify the reactions in terms of the spontaneity of their electronic activity. Local natural bond order electronic population analysis was used to check consistency with global REF through the characterization of specific changes in the electronic density that might be responsible for the activity already detected by the REF. Results show that reactions involving acetoxy lactones are driven by spontaneous electronic activity coming from bond forming/strengthening processes; in the case of maleic anhydrides and maleimides it appears that both spontaneous and non-spontaneous electronic activity are quite active in driving the reactions. © 2020 Wiley Periodicals LLC
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:06Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:06Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1928651
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5939
dc.identifier.doi.none.fl_str_mv 10.1002/jcc.26360
identifier_str_mv 1928651
10.1002/jcc.26360
url http://hdl.handle.net/11407/5939
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087162376&doi=10.1002%2fjcc.26360&partnerID=40&md5=f7de9efcd429c79b448188de5f2fdaf7
dc.relation.references.none.fl_str_mv Atherton, J.C.C., Jones, S., (2001) Tetrahedron Lett., 42, p. 8239
Sanyal, A., Snyder, J.K., (2000) Organic Lett., 2, p. 2527
Van Damme, J., Du Prez, F., (2018) Progress Polym. Sci., 82, p. 92
Fringuelli, F., Taticchi, A., (2002) The Diels-Alder reaction: Selected practical methods, , John Wiley & Sons, Ltd, Baffins Lane, Chichester
Teixeira, M.G., Alvarenga, E.S., (2016) Mag. Reson. Chem., 54, p. 623
Amant, A.H.S., Lemen, D., Florinas, S., Mao, S., Fazenbaker, C., Zhong, H., Wu, H., De Alaniz, J.R., (2018) Bioconjugate Chem., 29, p. 2406
Resende, G.C., Alvarenga, E.S., Willoughby, P.H., (2015) J. Mol. Struct., 1101, p. 212
Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, p. 931
Toro-Labbé, A., (1999) J. Phys. Chem. A, 103, p. 4398
Martínez, J., Toro-Labbé, A., (2004) Chem. Phys. Lett., 392, p. 132
Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., Chermette, H., (2005) J. Phys. Chem. A, 109, p. 1748
Duarte, F., Toro-Labbé, A., (2011) J. Phys. Chem. A, 115, p. 3050
Villegas-Escobar, N., Poater, A., Solà, M., Schaefer, H.F., III, Toro-Labbé, A., (2019) Phys. Chem. Chem. Phys., 21, p. 5039
Politzer, P., Toro-Labbé, A., Gutiérrez-Oliva, S., Herrera, B., Jaque, P., Concha, M.C., Murray, J.S., (2005) J. Chem. Sci., 117, p. 467
Politzer, P., Murray, J.S., Yepes, D., Jaque, P., (2014) J. Mol. Model., 20, p. 2351
Politzer, P., Murray, J.S., Jaque, P., (2013) J. Mol. Model., 19, p. 4111
Rincón, E., Jaque, P., Toro-Labbé, A., (2006) J. Phys. Chem. A, 110, p. 9478
Jaque, P., Toro-Labbé, A., (2000) J. Phys. Chem. A, 104, p. 995
McQuarrie, D.A., Simon, J.D., (1997) Physical Chemistry: A Molecular Approach, , University Science Books, Sausalito, CA
Nguyen, T.L., Stanton, J.F., Barker, J.R., (2010) Chem. Phys. Lett., 499, p. 9
Andres, N.J., Juan, L.B., (2000) Coleccion ciencia experimental, 2. , Universiatat Jaume I, Castellón, Spain
Perdew, J.P., Parr, R.G., Levy, M., Balduz, J.L., (1982) Phys. Rev. Lett., 49, p. 1691
Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E., (1978) J. Chem. Phys., 68, p. 3801
Parr, R.G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, 16. , Oxford University Press, New York, Oxford
Koopmans, T., (1934) Physica, 1, p. 104
Janak, J.F., (1978) Phys. Rev. B, 18, p. 7165
Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793
Pearson, R.G., (1985) J. Am. Chem. Soc., 107, p. 6801
Cerón, M.L., Echegaray, E., Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., (2011) Sci. China Chem., 54, p. 1982
Vogt-Geisse, S., Toro-Labbé, A., (2009) J. Chem. Phys., 130
Echegaray, E., Toro-Labbé, A., (2008) J. Phys. Chem. A, 112
Herrera, B., Toro-Labbé, A., (2007) J. Phys. Chem. A, 111, p. 5921
Frisch, G.E.S.M.J., Trucks, G.W., Schlegel, H.B., Robb, V.B.M.A., Cheeseman, J.R., Scalmani, G., Petersson, A.V.M.G.A., Foresman, D.J.F.J.B., (2016) Gaussian 16, Rev. B.01, , 2016,, Gaussian Inc., Wallingford, CT
Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215
Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412
Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angewandle Chem. Int. Ed., 47, p. 7746
Fukui, K., Kato, S., Fujimoto, H., (1975) J. Am. Chem. Soc., 97, p. 1
Jensen, F., (2007) Introduction to Computational Chemistry, , 2a ed., The Atrium, Southern Gate, Chichester
Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) Natural Bond Order 6.0, , University of Wisconsin Press, Madison
Pearson, R.G., (1990) Coord. Chem. Rev., 100, p. 403
Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899
Foster, J.P., Weinhold, F., (1980) J. Am. Chem. Soc., 102, p. 7211
Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., 32, p. 1333
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv John Wiley and Sons Inc.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv John Wiley and Sons Inc.
dc.source.none.fl_str_mv Journal of Computational Chemistry
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159150239711232
spelling 20202021-02-05T14:58:06Z2021-02-05T14:58:06Z1928651http://hdl.handle.net/11407/593910.1002/jcc.26360Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kinetics of the reactions are quite consistent: the lower the activation energy, the lower the reaction energy, thus following the Bell-Evans-Polanyi principle. It has been found that activation energies are mostly due to structural rearrangements that in most cases represented more than 70% of the activation energy. Electronic activity mostly due to changes in σ and π bonding were revealed by the reaction electronic flux (REF), this property helps identify whether changes on σ or π bonding drive the reaction. Additionally, new global indexes describing the behavior of the electronic activity were introduced and then used to classify the reactions in terms of the spontaneity of their electronic activity. Local natural bond order electronic population analysis was used to check consistency with global REF through the characterization of specific changes in the electronic density that might be responsible for the activity already detected by the REF. Results show that reactions involving acetoxy lactones are driven by spontaneous electronic activity coming from bond forming/strengthening processes; in the case of maleic anhydrides and maleimides it appears that both spontaneous and non-spontaneous electronic activity are quite active in driving the reactions. © 2020 Wiley Periodicals LLCengJohn Wiley and Sons Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087162376&doi=10.1002%2fjcc.26360&partnerID=40&md5=f7de9efcd429c79b448188de5f2fdaf7Atherton, J.C.C., Jones, S., (2001) Tetrahedron Lett., 42, p. 8239Sanyal, A., Snyder, J.K., (2000) Organic Lett., 2, p. 2527Van Damme, J., Du Prez, F., (2018) Progress Polym. Sci., 82, p. 92Fringuelli, F., Taticchi, A., (2002) The Diels-Alder reaction: Selected practical methods, , John Wiley & Sons, Ltd, Baffins Lane, ChichesterTeixeira, M.G., Alvarenga, E.S., (2016) Mag. Reson. Chem., 54, p. 623Amant, A.H.S., Lemen, D., Florinas, S., Mao, S., Fazenbaker, C., Zhong, H., Wu, H., De Alaniz, J.R., (2018) Bioconjugate Chem., 29, p. 2406Resende, G.C., Alvarenga, E.S., Willoughby, P.H., (2015) J. Mol. Struct., 1101, p. 212Corbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, p. 931Toro-Labbé, A., (1999) J. Phys. Chem. A, 103, p. 4398Martínez, J., Toro-Labbé, A., (2004) Chem. Phys. Lett., 392, p. 132Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., Chermette, H., (2005) J. Phys. Chem. A, 109, p. 1748Duarte, F., Toro-Labbé, A., (2011) J. Phys. Chem. A, 115, p. 3050Villegas-Escobar, N., Poater, A., Solà, M., Schaefer, H.F., III, Toro-Labbé, A., (2019) Phys. Chem. Chem. Phys., 21, p. 5039Politzer, P., Toro-Labbé, A., Gutiérrez-Oliva, S., Herrera, B., Jaque, P., Concha, M.C., Murray, J.S., (2005) J. Chem. Sci., 117, p. 467Politzer, P., Murray, J.S., Yepes, D., Jaque, P., (2014) J. Mol. Model., 20, p. 2351Politzer, P., Murray, J.S., Jaque, P., (2013) J. Mol. Model., 19, p. 4111Rincón, E., Jaque, P., Toro-Labbé, A., (2006) J. Phys. Chem. A, 110, p. 9478Jaque, P., Toro-Labbé, A., (2000) J. Phys. Chem. A, 104, p. 995McQuarrie, D.A., Simon, J.D., (1997) Physical Chemistry: A Molecular Approach, , University Science Books, Sausalito, CANguyen, T.L., Stanton, J.F., Barker, J.R., (2010) Chem. Phys. Lett., 499, p. 9Andres, N.J., Juan, L.B., (2000) Coleccion ciencia experimental, 2. , Universiatat Jaume I, Castellón, SpainPerdew, J.P., Parr, R.G., Levy, M., Balduz, J.L., (1982) Phys. Rev. Lett., 49, p. 1691Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E., (1978) J. Chem. Phys., 68, p. 3801Parr, R.G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, 16. , Oxford University Press, New York, OxfordKoopmans, T., (1934) Physica, 1, p. 104Janak, J.F., (1978) Phys. Rev. B, 18, p. 7165Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793Pearson, R.G., (1985) J. Am. Chem. Soc., 107, p. 6801Cerón, M.L., Echegaray, E., Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., (2011) Sci. China Chem., 54, p. 1982Vogt-Geisse, S., Toro-Labbé, A., (2009) J. Chem. Phys., 130Echegaray, E., Toro-Labbé, A., (2008) J. Phys. Chem. A, 112Herrera, B., Toro-Labbé, A., (2007) J. Phys. Chem. A, 111, p. 5921Frisch, G.E.S.M.J., Trucks, G.W., Schlegel, H.B., Robb, V.B.M.A., Cheeseman, J.R., Scalmani, G., Petersson, A.V.M.G.A., Foresman, D.J.F.J.B., (2016) Gaussian 16, Rev. B.01, , 2016,, Gaussian Inc., Wallingford, CTZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215Yepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412Pieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angewandle Chem. Int. Ed., 47, p. 7746Fukui, K., Kato, S., Fujimoto, H., (1975) J. Am. Chem. Soc., 97, p. 1Jensen, F., (2007) Introduction to Computational Chemistry, , 2a ed., The Atrium, Southern Gate, ChichesterGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) Natural Bond Order 6.0, , University of Wisconsin Press, MadisonPearson, R.G., (1990) Coord. Chem. Rev., 100, p. 403Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899Foster, J.P., Weinhold, F., (1980) J. Am. Chem. Soc., 102, p. 7211Evans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., 32, p. 1333Journal of Computational Chemistrychiral anthracenediels Alders reaction mechanismsreaction electronic flux (REF)reaction force analysisActivation analysisActivation energyAnthraceneChemical bondsQuantum chemistryStereochemistryThermodynamicsDiels-Alder reactionNatural bond ordersPopulation analysisQuantum chemical calculationsReaction electronic flux (REF)Reaction electronic fluxesStructural rearrangementThermodynamics and kineticsReaction kineticsDiels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic fluxArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hernández Mancera, J.P., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaGutiérrez-Oliva, S., Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, ChileToro-Labbé, A., Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, ChileVivas-Reyes, R., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia, Grupo CipTec, Fundación Universitaria Tecnológico de Comfenalco, Facultad de Ingenierías, Programa de Ingeniería Industrial, Cartagena de Indias, Bolivar, Colombiahttp://purl.org/coar/access_right/c_16ecHernández Mancera J.P.Núñez-Zarur F.Gutiérrez-Oliva S.Toro-Labbé A.Vivas-Reyes R.11407/5939oai:repository.udem.edu.co:11407/59392021-02-05 09:58:06.664Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co