Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide
In this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow th...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4283
- Acceso en línea:
- http://hdl.handle.net/11407/4283
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_2758b421a18caeffd8dd2a91ce0082f8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4283 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
title |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
spellingShingle |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
title_short |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
title_full |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
title_fullStr |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
title_full_unstemmed |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
title_sort |
Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide |
dc.contributor.affiliation.spa.fl_str_mv |
Acelas, N.Y., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia Hadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Restrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Ibarguen, C., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Flórez, E., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia |
description |
In this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow the 5N + 1 (N is the number of Fe atoms, each having five unpaired electrons) rule are preferred. Monodentate mononuclear (MM1) surface complexes are shown to lead to the most favorable thermodynamic adsorption for both bicarbonate and nitrate with −63.91 and −28.25 kJ/mol, respectively, under neutral conditions. Our results suggest that four types of regular and charged-assisted hydrogen bonds are involved in the adsorption process; all of them can be classified as closed-shell (long-range or ionic). The formal charges induce unusually short and strong hydrogen bonds. The ability of high multiplicity states of Fe clusters to adsorb oxyanions in solvated environments arises from orbital interactions: the 4s virtual orbitals in Fe have a large affinity for the 2p-type electron pairs of oxygens. © 2017 American Chemical Society. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:44Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:44Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
201669 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4283 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.inorgchem.7b00513 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
201669 10.1021/acs.inorgchem.7b00513 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4283 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018400304&doi=10.1021%2facs.inorgchem.7b00513&partnerID=40&md5=0f0ed31db5796b23540d9095320bb02d |
dc.relation.ispartofes.spa.fl_str_mv |
Inorganic Chemistry Inorganic Chemistry Volume 56, Issue 9, 1 May 2017, Pages 5455-5464 |
dc.relation.references.spa.fl_str_mv |
Acelas, N., Hincapié, G., Guerra, D., David, J., & Restrepo, A. (2013). Structures, energies, and bonding in the water heptamer. Journal of Chemical Physics, 139(4) doi:10.1063/1.4816371 Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024 Acelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002 Adamescu, A., Hamilton, I. P., & Al-Abadleh, H. A. (2014). Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: Structures, reaction energies, and transition states. Journal of Physical Chemistry A, 118(30), 5667-5679. doi:10.1021/jp504710b Alkorta, I., Rozas, I., & Elguero, J. (1998). Bond length-electron density relationships: From covalent bonds to hydrogen bond interactions. Structural Chemistry, 9(4), 243-247. Alkorta, I., Rozas, I., & Elguero, J. (1998). Isocyanides as hydrogen bond acceptors. Theoretical Chemistry Accounts, 99(2), 116-123. Bader, R. F. W. (1990). Atoms in Molecules: A Quantum Theory. Baltrusaitis, J., Jensen, J. H., & Grassian, V. H. (2006). FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. Journal of Physical Chemistry B, 110(24), 12005-12016. doi:10.1021/jp057437j Baltrusaitis, J., Schuttlefield, J., Jensen, J. H., & Grassian, V. H. (2007). FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water. Physical Chemistry Chemical Physics, 9(36), 4970-4980. doi:10.1039/b705189a Baltrusaitis, J., Schuttlefield, J., Zeitler, E., & Grassian, V. H. (2011). Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal, 170(2-3), 471-481. doi:10.1016/j.cej.2010.12.041 Bargar, J. R., Kubicki, J. D., Reitmeyer, R., & Davis, J. A. (2005). ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite. Geochimica Et Cosmochimica Acta, 69(6), 1527-1542. doi:10.1016/j.gca.2004.08.002 Bargar, J. R., Reitmeyer, R., Lenhart, J. J., & Davis, J. A. (2000). Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica Et Cosmochimica Acta, 64(16), 2737-2749. doi:10.1016/S0016-7037(00)00398-7 Beheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012). Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Monatshefte Fur Chemie, 143(12), 1623-1626. doi:10.1007/s00706-012-0738-0 Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504. doi:10.1016/j.cej.2011.01.103 Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008 Boukhalfa, C. (2010). Sulfate removal from aqueous solutions by hydrous iron oxide in the presence of heavy metals and competitive anions. macroscopic and spectroscopic analyses. Desalination, 250(1), 428-432. doi:10.1016/j.desal.2009.09.070 Chernyshova, I. V., Ponnurangam, S., & Somasundaran, P. (2013). Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Physical Chemistry Chemical Physics, 15(18), 6953-6964. doi:10.1039/c3cp44264k Espinosa, E., Alkorta, I., Elguero, J., & Molins, E. (2002). From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. Journal of Chemical Physics, 117(12), 5529-5542. doi:10.1063/1.1501133 Flórez, E., Acelas, N. Y., Ibargüen, C., Mondal, S., Cabellos, J. L., Merino, G., & Restrepo, A. (2016). Microsolvation of NO3 -: Structural exploration and bonding analysis. RSC Advances, 6(76), 71913-71923. doi:10.1039/c6ra15059d Frisch, M. J. (2009). Gaussian 09. Gao, Y., & Mucci, A. (2003). Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chemical Geology, 199(1-2), 91-109. doi:10.1016/S0009-2541(03)00119-0 Geelhoed, J. S., Hiemstra, T., & Van Riemsdijk, W. H. (1997). Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochimica Et Cosmochimica Acta, 61(12), 2389-2396. doi:10.1016/S0016-7037(97)00096-3 Gillespie, R. J., & Popelier, P. L. A. (2001). Chemical Bonding and Molecular Geometry. Gonzalez, J. D., Florez, E., Romero, J., Reyes, A., & Restrepo, A. (2013). Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks. Journal of Molecular Modeling, 19(4), 1763-1777. doi:10.1007/s00894-012-1716-5 He, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019e Hincapié, G., Acelas, N., Castaño, M., David, J., & Restrepo, A. (2010). Structural studies of the water hexamer. Journal of Physical Chemistry A, 114(29), 7809-7814. doi:10.1021/jp103683m Ibargüen, C., Manrique-Moreno, M., Hadad, C. Z., David, J., & Restrepo, A. (2013). Microsolvation of dimethylphosphate: A molecular model for the interaction of cell membranes with water. Physical Chemistry Chemical Physics, 15(9), 3203-3211. doi:10.1039/c2cp42778h Kanematsu, M., Young, T. M., Fukushi, K., Sverjensky, D. A., Green, P. G., & Darby, J. L. (2011). Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent. Environmental Science and Technology, 45(2), 561-568. doi:10.1021/es1026745 Knop, O., Rankin, K. N., & Boyd, R. J. (2001). Coming to grips with N-H⋯N bonds. 1. distance relationships and electron density at the bond critical point. Journal of Physical Chemistry A, 105(26), 6552-6566. doi:10.1021/jp0106348 Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., . . . Xu, L. (2009). Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. Journal of Hazardous Materials, 161(2-3), 1444-1449. doi:10.1016/j.jhazmat.2008.04.114 Paul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139y Pedersen, O., Colmer, T. D., & Sand-Jensen, K. (2013). Underwater photosynthesis of submerged plants - recent advances and methods. Frontiers in Plant Science, 4(MAY) doi:10.3389/fpls.2013.00140 Pérez, J. F., Hadad, C. Z., & Restrepo, A. (2008). Structural studies of the water tetramer. International Journal of Quantum Chemistry, 108(10), 1653-1659. doi:10.1002/qua.21615 Pérez, J. F., & Restrepo, A. (2008). ASCEC V-02. Péreza, J. F., Florez, E., Hadad, C. Z., Fuentealba, P., & Restrepo, A. (2008). Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. Journal of Physical Chemistry A, 112(25), 5749-5755. doi:10.1021/jp802176w Ponnurangam, S., Chernyshova, I. V., & Somasundaran, P. (2010). Effect of coadsorption of electrolyte ions on the stability of inner-sphere complexes. Journal of Physical Chemistry C, 114(39), 16517-16524. doi:10.1021/jp105084h Popelier, P. L. A. (2000). Atoms in Molecules.an Introduction. Rahnemaie, R., Hiemstra, T., & van Riemsdijk, W. H. (2007). Carbonate adsorption on goethite in competition with phosphate. Journal of Colloid and Interface Science, 315(2), 415-425. doi:10.1016/j.jcis.2007.07.017 Ramírez, F., Hadad, C. Z., Guerra, D., David, J., & Restrepo, A. (2011). Structural studies of the water pentamer. Chemical Physics Letters, 507(4-6), 229-233. doi:10.1016/j.cplett.2011.03.084 Rojas-Valencia, N., Ibargüen, C., & Restrepo, A. (2015). Molecular interactions in the microsolvation of dimethylphosphate. Chemical Physics Letters, 635, 301-305. doi:10.1016/j.cplett.2015.06.064 Romero, J., Reyes, A., David, J., & Restrepo, A. (2011). Understanding microsolvation of li+: Structural and energetical analyses. Physical Chemistry Chemical Physics, 13(33), 15264-15271. doi:10.1039/c1cp20903e Rozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122(45), 11154-11161. doi:10.1021/ja0017864 Sarkar, S., Chatterjee, P. K., Cumbal, L. H., & SenGupta, A. K. (2011). Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chemical Engineering Journal, 166(3), 923-931. doi:10.1016/j.cej.2010.11.075 Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976r Shah, B., & Chudasama, U. (2014). Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions. Journal of Hazardous Materials, 276, 138-148. doi:10.1016/j.jhazmat.2014.05.031 Weinhold, F., & Landis, C. R. (2012). Discovering Chemistry with Natural Bond Orbitals. Wijnja, H., & Schulthess, C. P. (2001). Division S-2 - soil chemistry: Carbonate adsorption mechanism on goethite studied with ATR-FTIR, DRIFT, and proton coadsorption measurements. Soil Science Society of America Journal, 65(2), 324-330 Wu, Q., Chen, F., Xu, Y., & Yu, Y. (2015). Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica. Applied Surface Science, 351, 155-163. doi:10.1016/j.apsusc.2015.05.118 Xia, Y., Jiao, X., Liu, Y., Chen, D., Zhang, L., & Qin, Z. (2013). Study of the formation mechanism of boehmite with different morphology upon surface hydroxyls and adsorption of chloride ions. Journal of Physical Chemistry C, 117(29), 15279-15286. doi:10.1021/jp402530s Zapata-Escobar, A., Manrique-Moreno, M., Guerra, D., Hadad, C. Z., & Restrepo, A. (2014). A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water. Journal of Chemical Physics, 140(18) doi:10.1063/1.4874258 Zelmanov, G., & Semiat, R. (2015). The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates. Journal of Water Process Engineering, 5, 143-152. doi:10.1016/j.jwpe.2014.06.008 Zhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
American Chemical Society |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159215475818496 |
spelling |
2017-12-19T19:36:44Z2017-12-19T19:36:44Z2017201669http://hdl.handle.net/11407/428310.1021/acs.inorgchem.7b00513reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínIn this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow the 5N + 1 (N is the number of Fe atoms, each having five unpaired electrons) rule are preferred. Monodentate mononuclear (MM1) surface complexes are shown to lead to the most favorable thermodynamic adsorption for both bicarbonate and nitrate with −63.91 and −28.25 kJ/mol, respectively, under neutral conditions. Our results suggest that four types of regular and charged-assisted hydrogen bonds are involved in the adsorption process; all of them can be classified as closed-shell (long-range or ionic). The formal charges induce unusually short and strong hydrogen bonds. The ability of high multiplicity states of Fe clusters to adsorb oxyanions in solvated environments arises from orbital interactions: the 4s virtual orbitals in Fe have a large affinity for the 2p-type electron pairs of oxygens. © 2017 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018400304&doi=10.1021%2facs.inorgchem.7b00513&partnerID=40&md5=0f0ed31db5796b23540d9095320bb02dInorganic ChemistryInorganic Chemistry Volume 56, Issue 9, 1 May 2017, Pages 5455-5464Acelas, N., Hincapié, G., Guerra, D., David, J., & Restrepo, A. (2013). Structures, energies, and bonding in the water heptamer. Journal of Chemical Physics, 139(4) doi:10.1063/1.4816371Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024Acelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002Adamescu, A., Hamilton, I. P., & Al-Abadleh, H. A. (2014). Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: Structures, reaction energies, and transition states. Journal of Physical Chemistry A, 118(30), 5667-5679. doi:10.1021/jp504710bAlkorta, I., Rozas, I., & Elguero, J. (1998). Bond length-electron density relationships: From covalent bonds to hydrogen bond interactions. Structural Chemistry, 9(4), 243-247.Alkorta, I., Rozas, I., & Elguero, J. (1998). Isocyanides as hydrogen bond acceptors. Theoretical Chemistry Accounts, 99(2), 116-123.Bader, R. F. W. (1990). Atoms in Molecules: A Quantum Theory.Baltrusaitis, J., Jensen, J. H., & Grassian, V. H. (2006). FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. Journal of Physical Chemistry B, 110(24), 12005-12016. doi:10.1021/jp057437jBaltrusaitis, J., Schuttlefield, J., Jensen, J. H., & Grassian, V. H. (2007). FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water. Physical Chemistry Chemical Physics, 9(36), 4970-4980. doi:10.1039/b705189aBaltrusaitis, J., Schuttlefield, J., Zeitler, E., & Grassian, V. H. (2011). Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal, 170(2-3), 471-481. doi:10.1016/j.cej.2010.12.041Bargar, J. R., Kubicki, J. D., Reitmeyer, R., & Davis, J. A. (2005). ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite. Geochimica Et Cosmochimica Acta, 69(6), 1527-1542. doi:10.1016/j.gca.2004.08.002Bargar, J. R., Reitmeyer, R., Lenhart, J. J., & Davis, J. A. (2000). Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica Et Cosmochimica Acta, 64(16), 2737-2749. doi:10.1016/S0016-7037(00)00398-7Beheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012). Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Monatshefte Fur Chemie, 143(12), 1623-1626. doi:10.1007/s00706-012-0738-0Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504. doi:10.1016/j.cej.2011.01.103Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008Boukhalfa, C. (2010). Sulfate removal from aqueous solutions by hydrous iron oxide in the presence of heavy metals and competitive anions. macroscopic and spectroscopic analyses. Desalination, 250(1), 428-432. doi:10.1016/j.desal.2009.09.070Chernyshova, I. V., Ponnurangam, S., & Somasundaran, P. (2013). Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Physical Chemistry Chemical Physics, 15(18), 6953-6964. doi:10.1039/c3cp44264kEspinosa, E., Alkorta, I., Elguero, J., & Molins, E. (2002). From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. Journal of Chemical Physics, 117(12), 5529-5542. doi:10.1063/1.1501133Flórez, E., Acelas, N. Y., Ibargüen, C., Mondal, S., Cabellos, J. L., Merino, G., & Restrepo, A. (2016). Microsolvation of NO3 -: Structural exploration and bonding analysis. RSC Advances, 6(76), 71913-71923. doi:10.1039/c6ra15059dFrisch, M. J. (2009). Gaussian 09.Gao, Y., & Mucci, A. (2003). Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chemical Geology, 199(1-2), 91-109. doi:10.1016/S0009-2541(03)00119-0Geelhoed, J. S., Hiemstra, T., & Van Riemsdijk, W. H. (1997). Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochimica Et Cosmochimica Acta, 61(12), 2389-2396. doi:10.1016/S0016-7037(97)00096-3Gillespie, R. J., & Popelier, P. L. A. (2001). Chemical Bonding and Molecular Geometry.Gonzalez, J. D., Florez, E., Romero, J., Reyes, A., & Restrepo, A. (2013). Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks. Journal of Molecular Modeling, 19(4), 1763-1777. doi:10.1007/s00894-012-1716-5He, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019eHincapié, G., Acelas, N., Castaño, M., David, J., & Restrepo, A. (2010). Structural studies of the water hexamer. Journal of Physical Chemistry A, 114(29), 7809-7814. doi:10.1021/jp103683mIbargüen, C., Manrique-Moreno, M., Hadad, C. Z., David, J., & Restrepo, A. (2013). Microsolvation of dimethylphosphate: A molecular model for the interaction of cell membranes with water. Physical Chemistry Chemical Physics, 15(9), 3203-3211. doi:10.1039/c2cp42778hKanematsu, M., Young, T. M., Fukushi, K., Sverjensky, D. A., Green, P. G., & Darby, J. L. (2011). Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent. Environmental Science and Technology, 45(2), 561-568. doi:10.1021/es1026745Knop, O., Rankin, K. N., & Boyd, R. J. (2001). Coming to grips with N-H⋯N bonds. 1. distance relationships and electron density at the bond critical point. Journal of Physical Chemistry A, 105(26), 6552-6566. doi:10.1021/jp0106348Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., . . . Xu, L. (2009). Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. Journal of Hazardous Materials, 161(2-3), 1444-1449. doi:10.1016/j.jhazmat.2008.04.114Paul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139yPedersen, O., Colmer, T. D., & Sand-Jensen, K. (2013). Underwater photosynthesis of submerged plants - recent advances and methods. Frontiers in Plant Science, 4(MAY) doi:10.3389/fpls.2013.00140Pérez, J. F., Hadad, C. Z., & Restrepo, A. (2008). Structural studies of the water tetramer. International Journal of Quantum Chemistry, 108(10), 1653-1659. doi:10.1002/qua.21615Pérez, J. F., & Restrepo, A. (2008). ASCEC V-02.Péreza, J. F., Florez, E., Hadad, C. Z., Fuentealba, P., & Restrepo, A. (2008). Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. Journal of Physical Chemistry A, 112(25), 5749-5755. doi:10.1021/jp802176wPonnurangam, S., Chernyshova, I. V., & Somasundaran, P. (2010). Effect of coadsorption of electrolyte ions on the stability of inner-sphere complexes. Journal of Physical Chemistry C, 114(39), 16517-16524. doi:10.1021/jp105084hPopelier, P. L. A. (2000). Atoms in Molecules.an Introduction.Rahnemaie, R., Hiemstra, T., & van Riemsdijk, W. H. (2007). Carbonate adsorption on goethite in competition with phosphate. Journal of Colloid and Interface Science, 315(2), 415-425. doi:10.1016/j.jcis.2007.07.017Ramírez, F., Hadad, C. Z., Guerra, D., David, J., & Restrepo, A. (2011). Structural studies of the water pentamer. Chemical Physics Letters, 507(4-6), 229-233. doi:10.1016/j.cplett.2011.03.084Rojas-Valencia, N., Ibargüen, C., & Restrepo, A. (2015). Molecular interactions in the microsolvation of dimethylphosphate. Chemical Physics Letters, 635, 301-305. doi:10.1016/j.cplett.2015.06.064Romero, J., Reyes, A., David, J., & Restrepo, A. (2011). Understanding microsolvation of li+: Structural and energetical analyses. Physical Chemistry Chemical Physics, 13(33), 15264-15271. doi:10.1039/c1cp20903eRozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122(45), 11154-11161. doi:10.1021/ja0017864Sarkar, S., Chatterjee, P. K., Cumbal, L. H., & SenGupta, A. K. (2011). Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chemical Engineering Journal, 166(3), 923-931. doi:10.1016/j.cej.2010.11.075Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976rShah, B., & Chudasama, U. (2014). Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions. Journal of Hazardous Materials, 276, 138-148. doi:10.1016/j.jhazmat.2014.05.031Weinhold, F., & Landis, C. R. (2012). Discovering Chemistry with Natural Bond Orbitals.Wijnja, H., & Schulthess, C. P. (2001). Division S-2 - soil chemistry: Carbonate adsorption mechanism on goethite studied with ATR-FTIR, DRIFT, and proton coadsorption measurements. Soil Science Society of America Journal, 65(2), 324-330Wu, Q., Chen, F., Xu, Y., & Yu, Y. (2015). Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica. Applied Surface Science, 351, 155-163. doi:10.1016/j.apsusc.2015.05.118Xia, Y., Jiao, X., Liu, Y., Chen, D., Zhang, L., & Qin, Z. (2013). Study of the formation mechanism of boehmite with different morphology upon surface hydroxyls and adsorption of chloride ions. Journal of Physical Chemistry C, 117(29), 15279-15286. doi:10.1021/jp402530sZapata-Escobar, A., Manrique-Moreno, M., Guerra, D., Hadad, C. Z., & Restrepo, A. (2014). A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water. Journal of Chemical Physics, 140(18) doi:10.1063/1.4874258Zelmanov, G., & Semiat, R. (2015). The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates. Journal of Water Process Engineering, 5, 143-152. doi:10.1016/j.jwpe.2014.06.008Zhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0ScopusAdsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxideArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acelas, N.Y., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaHadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaRestrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaIbarguen, C., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaFlórez, E., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaAcelas N.Y.Hadad C.Restrepo A.Ibarguen C.Flórez E.Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaInstituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaIn this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow the 5N + 1 (N is the number of Fe atoms, each having five unpaired electrons) rule are preferred. Monodentate mononuclear (MM1) surface complexes are shown to lead to the most favorable thermodynamic adsorption for both bicarbonate and nitrate with −63.91 and −28.25 kJ/mol, respectively, under neutral conditions. Our results suggest that four types of regular and charged-assisted hydrogen bonds are involved in the adsorption process; all of them can be classified as closed-shell (long-range or ionic). The formal charges induce unusually short and strong hydrogen bonds. The ability of high multiplicity states of Fe clusters to adsorb oxyanions in solvated environments arises from orbital interactions: the 4s virtual orbitals in Fe have a large affinity for the 2p-type electron pairs of oxygens. © 2017 American Chemical Society.http://purl.org/coar/access_right/c_16ec11407/4283oai:repository.udem.edu.co:11407/42832020-05-27 18:27:22.745Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |