Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters

Purpose: To evaluate structural brain abnormalities in glaucoma patients using 3-Tesla magnetic resonance imaging and assess their correlation with associated structural and functional ocular findings. Patients and Methods: This cross-sectional prospective study included 30 glaucoma patients and 18...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6020
Acceso en línea:
http://hdl.handle.net/11407/6020
Palabra clave:
3-Tesla
glaucoma
magnetic resonance imaging
occipital pole
visual field
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_26f1aa321c03fb47dd39adf119835ca0
oai_identifier_str oai:repository.udem.edu.co:11407/6020
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
title Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
spellingShingle Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
3-Tesla
glaucoma
magnetic resonance imaging
occipital pole
visual field
title_short Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
title_full Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
title_fullStr Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
title_full_unstemmed Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
title_sort Structural Analysis of Glaucoma Brain and its Association with Ocular Parameters
dc.subject.spa.fl_str_mv 3-Tesla
glaucoma
magnetic resonance imaging
occipital pole
visual field
topic 3-Tesla
glaucoma
magnetic resonance imaging
occipital pole
visual field
description Purpose: To evaluate structural brain abnormalities in glaucoma patients using 3-Tesla magnetic resonance imaging and assess their correlation with associated structural and functional ocular findings. Patients and Methods: This cross-sectional prospective study included 30 glaucoma patients and 18 healthy volunteers. All participants underwent standard automated perimetry, spectral-domain optical coherence tomography, and 3.0-Tesla magnetic resonance imaging. Results: There was a significant difference between the surface area of the occipital pole in the left hemisphere of glaucoma patients (mean: 1253.9±149.3 mm2) and that of control subjects (mean: 1341.9±129.8 mm2), P=0.043. There was also a significant difference between the surface area of the occipital pole in the right hemisphere of glaucoma patients (mean: 1910.5±309.4 mm2) and that of control subjects (mean: 2089.1±164.2 mm2), P=0.029. There was no significant difference between the lingual, calcarine, superior frontal, and inferior frontal gyri of glaucoma patients and those of the control subjects (P>0.05 for all comparisons). The surface area of the occipital pole in the left hemisphere was significantly correlated with perimetry mean deviation values, visual acuity, age, and retinal nerve fiber layer thickness (P=0.001, P<0.001, P=0.010, P=0.006, respectively). The surface area of the occipital pole in the right hemisphere was significantly correlated with perimetry mean deviation values, visual field indices, visual acuity, age, and retinal nerve fiber layer thickness (P<0.001, P=0.007, P<0.001, P=0.046, P<0.001, respectively). Conclusions: Glaucoma patients presented a decreased occipital pole surface area in both hemispheres that independently correlated with functional and structural ocular parameters. Copyright © 2020 Wolters Kluwer Health, Inc.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:48Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:48Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 10570829
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6020
dc.identifier.doi.none.fl_str_mv 10.1097/IJG.0000000000001470
identifier_str_mv 10570829
10.1097/IJG.0000000000001470
url http://hdl.handle.net/11407/6020
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080029636&doi=10.1097%2fIJG.0000000000001470&partnerID=40&md5=606bbbf100289a0010e14e4651d237da
dc.relation.references.none.fl_str_mv Weinreb, R.N., Aung, T., Medeiros, F.A., The pathophysiology and treatment of glaucoma: A review (2014) JAMA, 311 (18), pp. 1901-1911
Tham, Y.C., Li, X., Wong, T.Y., Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis (2014) Ophthalmology, 121 (11), pp. 2081-2090
Weber, A.J., Chen, H., Hubbard, W.C., Kaufman, P.L., Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus (2000) Invest Ophthalmol Vis Sci, 41 (6), pp. 1370-1379
Yucel, Y.H., Zhang, Q., Weinreb, R.N., Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma (2003) Prog Retin Eye Res, 22 (4), pp. 465-481
Gupta, N., Ang, L.C., Noel-De-Tilly, L., Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex (2006) Br J Ophthalmol, 90 (6), pp. 674-678
Duyn, J.H., Study of brain anatomy with high-field MRI: Recent progress (2010) Magn Reson Imaging, 28 (8), pp. 1210-1215
Nuzzi, R., Dallorto, L., Rolle, T., Changes of visual pathway and brain connectivity in glaucoma: A systematic review (2018) Front Neurosci, 12, p. 363
Li, C., Cai, P., Shi, L., Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma (2012) Curr Eye Res, 37 (9), pp. 794-802
Chen, W.W., Wang, N., Cai, S., Structural brain abnormalities in patients with primary open-angle glaucoma: A study with 3T MR imaging (2013) Invest Ophthalmol Vis Sci, 54 (1), pp. 545-554
Bogorodzki, P., Piatkowska-Janko, E., Szaflik, J., Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps (2014) PLoS One, 9 (4)
Ito, Y., Shimazawa, M., Chen, Y.N., Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys (2009) Exp Eye Res, 89 (2), pp. 246-255
Gupta, N., Greenberg, G., De-Tilly, L.N., Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging (2009) Br J Ophthalmol, 93 (1), pp. 56-60
Furlanetto, R.L., Teixeira, S.H., Gracitelli, C.P.B., Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma (2018) PLoS One, 13 (3)
Medeiros, F.A., Alencar, L.M., Zangwill, L.M., Prediction of functional loss in glaucoma from progressive optic disc damage (2009) Arch Ophthalmol, 127 (10), pp. 1250-1256
Medeiros, F.A., Alencar, L.M., Zangwill, L.M., The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma (2009) Ophthalmology, 116 (6), pp. 1125-1133
Leung, C.K., Chiu, V., Weinreb, R.N., Evaluation of retinal nerve fiber layer progression in glaucoma: A comparison between spectral-domain and time-domain optical coherence tomography (2011) Ophthalmology, 118 (8), pp. 1558-1562
Artes, P.H., Chauhan, B.C., Longitudinal changes in the visual field and optic disc in glaucoma (2005) Prog Retin Eye Res, 24 (3), pp. 333-354
Hodap, E.E., Anderson, D.R., II, (1993) Clinical Decisions in Glaucoma, pp. 52-61. , Mo Mosby-Year Book
Sponsel, W.E., Ritch, R., Stamper, R., Prevent blindness America visual field screening study. The prevent blindness America Glaucoma Advisory Committee (1995) Am J Ophthalmol, 120 (6), pp. 699-708
Sponsel, W.E., Arango, S., Trigo, Y., Mensah, J., Clinical classification of glaucomatous visual field loss by frequency doubling perimetry (1998) Am J Ophthalmol, 125 (6), pp. 830-836
Medeiros, F.A., Lisboa, R., Weinreb, R.N., Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma (2013) Ophthalmology, 120 (4), pp. 736-744
Dale, A.M., Fischl, B., Sereno, M.I., Cortical surface-based analysis. I. Segmentation and surface reconstruction (1999) Neuroimage, 9 (2), pp. 179-194
Fischl, B., Dale, A.M., Measuring the thickness of the human cerebral cortex from magnetic resonance images (2000) Proc Natl Acad Sci U S A, 97 (20), pp. 11050-11055
Rosas, H.D., Liu, A.K., Hersch, S., Regional and progressive thinning of the cortical ribbon in huntington's disease (2002) Neurology, 58 (5), pp. 695-701
Kuperberg, G.R., Broome, M.R., McGuire, P.K., Regionally localized thinning of the cerebral cortex in schizophrenia (2003) Arch Gen Psychiatry, 60 (9), pp. 878-888
Afonso, R.F., Balardin, J.B., Lazar, S., Greater cortical thickness in elderly female yoga practitioners-A cross-sectional study (2017) Front Aging Neurosci, 9, p. 201
Fischl, B., Van-Der-Kouwe, A., Destrieux, C., Automatically parcellating the human cerebral cortex (2004) Cereb Cortex, 14 (1), pp. 11-22
Burton, P., Gurrin, L., Sly, P., Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modelling (1998) Stat Med, 17 (11), pp. 1261-1291
Hanley, J.A., Negassa, A., Edwardes, M.D., Forrester, J.E., Statistical analysis of correlated data using generalized estimating equations: An orientation (2003) Am J Epidemiol, 157 (4), pp. 364-375
Field, C.A., Welsh, A.H., Bootstrapping clustered data (2007) Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69 (3), pp. 369-390
Furlanetto, R.L., Teixeira, S.H., Gracitelli, C.P., Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma (2018) PLoS One, , In Press
Perry, V.H., Oehler, R., Cowey, A., Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey (1984) Neuroscience, 12 (4), pp. 1101-1123
Gupta, N., Yucel, Y.H., What changes can we expect in the brain of glaucoma patients? (2007) Surv Ophthalmol, 52, pp. S122-S126
Zhang, Y.Q., Li, J., Xu, L., Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma (2012) Acta Ophthalmol, 90 (4), pp. e295-e302
Duncan, R.O., Sample, P.A., Weinreb, R.N., Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss (2007) Prog Retin Eye Res, 26 (1), pp. 38-56
Duncan, R.O., Sample, P.A., Weinreb, R.N., Retinotopic organization of primary visual cortex in glaucoma: A method for comparing cortical function with damage to the optic disk (2007) Invest Ophthalmol Vis Sci, 48 (2), pp. 733-744
Qing, G., Zhang, S., Wang, B., Wang, N., Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma (2010) Invest Ophthalmol Vis Sci, 51 (9), pp. 4627-4634
Gerente, V.M., Schor, R.R., Chaim, K.T., Evaluation of glaucomatous damage via functional magnetic resonance imaging, and correlations thereof with anatomical and psychophysical ocular findings (2015) PLoS One, 10 (5)
Amaro, E., Jr., Barker, G.J., Study design in fMRI: Basic principles (2006) Brain Cogn, 60 (3), pp. 220-232
Logothetis, N.K., Wandell, B.A., Interpreting the BOLD signal (2004) Annu Rev Physiol, 66, pp. 735-769
Winkler, A.M., Kochunov, P., Blangero, J., Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies (2010) Neuroimage, 53 (3), pp. 1135-1146
Thompson, P.M., Cannon, T.D., Narr, K.L., Genetic influences on brain structure (2001) Nat Neurosci, 4 (12), pp. 1253-1258
Glahn, D.C., Thompson, P.M., Blangero, J., Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function (2007) Hum Brain Mapp, 28 (6), pp. 488-501
Honea, R.A., Meyer-Lindenberg, A., Hobbs, K.B., Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings (2008) Biol Psychiatry, 63 (5), pp. 465-474
McDonald, C., Marshall, N., Sham, P.C., Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives (2006) Am J Psychiatry, 163 (3), pp. 478-487
Panizzon, M.S., Fennema-Notestine, C., Eyler, L.T., Distinct genetic influences on cortical surface area and cortical thickness (2009) Cereb Cortex, 19 (11), pp. 2728-2735
Hofman, M.A., Size and shape of the cerebral cortex in mammals. I. The cortical surface (1985) Brain Behav Evol, 27 (1), pp. 28-40
Rao, D.C., An overview of the genetic dissection of complex traits (2008) Adv Genet, 60, pp. 3-34
Cosgrove, K.P., Mazure, C.M., Staley, J.K., Evolving knowledge of sex differences in brain structure, function, and chemistry (2007) Biol Psychiatry, 62 (8), pp. 847-855
Ankney, C.D., The brain size/IQ debate (1992) Nature, 360 (6402), p. 292
Ankney, C.D., Differences in brain size (1992) Nature, 358 (6387), p. 532
Hernowo, A.T., Boucard, C.C., Jansonius, N.M., Automated morphometry of the visual pathway in primary open-angle glaucoma (2011) Invest Ophthalmol Vis Sci, 52 (5), pp. 2758-2766
Zikou, A.K., Kitsos, G., Tzarouchi, L.C., Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: A preliminary study (2012) AJNR Am J Neuroradiol, 33 (1), pp. 128-134
Williams, A.L., Lackey, J., Wizov, S.S., Evidence for widespread structural brain changes in glaucoma: A preliminary voxel-based MRI study (2013) Invest Ophthalmol Vis Sci, 54 (8), pp. 5880-5887
Allen, J.S., Bruss, J., Brown, C.K., Damasio, H., Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region (2005) Neurobiol Aging, 26 (9), pp. 1245-1260. , discussion 79-82
Lemaitre, H., Goldman, A.L., Sambataro, F., Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? (2012) Neurobiol Aging, 33 (3), pp. e1-e9
Fotenos, A.F., Snyder, A.Z., Girton, L.E., Normative estimates of crosssectional and longitudinal brain volume decline in aging and AD (2005) Neurology, 64 (6), pp. 1032-1039
Good, C.D., Johnsrude, I.S., Ashburner, J., A voxel-based morphometric study of ageing in 465 normal adult human brains (2001) Neuroimage, 14 (1), pp. 21-36
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Lippincott Williams and Wilkins
dc.publisher.program.spa.fl_str_mv Psicología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Sociales y Humanas
publisher.none.fl_str_mv Lippincott Williams and Wilkins
dc.source.none.fl_str_mv Journal of Glaucoma
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159169403486208
spelling 20202021-02-05T14:58:48Z2021-02-05T14:58:48Z10570829http://hdl.handle.net/11407/602010.1097/IJG.0000000000001470Purpose: To evaluate structural brain abnormalities in glaucoma patients using 3-Tesla magnetic resonance imaging and assess their correlation with associated structural and functional ocular findings. Patients and Methods: This cross-sectional prospective study included 30 glaucoma patients and 18 healthy volunteers. All participants underwent standard automated perimetry, spectral-domain optical coherence tomography, and 3.0-Tesla magnetic resonance imaging. Results: There was a significant difference between the surface area of the occipital pole in the left hemisphere of glaucoma patients (mean: 1253.9±149.3 mm2) and that of control subjects (mean: 1341.9±129.8 mm2), P=0.043. There was also a significant difference between the surface area of the occipital pole in the right hemisphere of glaucoma patients (mean: 1910.5±309.4 mm2) and that of control subjects (mean: 2089.1±164.2 mm2), P=0.029. There was no significant difference between the lingual, calcarine, superior frontal, and inferior frontal gyri of glaucoma patients and those of the control subjects (P>0.05 for all comparisons). The surface area of the occipital pole in the left hemisphere was significantly correlated with perimetry mean deviation values, visual acuity, age, and retinal nerve fiber layer thickness (P=0.001, P<0.001, P=0.010, P=0.006, respectively). The surface area of the occipital pole in the right hemisphere was significantly correlated with perimetry mean deviation values, visual field indices, visual acuity, age, and retinal nerve fiber layer thickness (P<0.001, P=0.007, P<0.001, P=0.046, P<0.001, respectively). Conclusions: Glaucoma patients presented a decreased occipital pole surface area in both hemispheres that independently correlated with functional and structural ocular parameters. Copyright © 2020 Wolters Kluwer Health, Inc.engLippincott Williams and WilkinsPsicologíaFacultad de Ciencias Sociales y Humanashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85080029636&doi=10.1097%2fIJG.0000000000001470&partnerID=40&md5=606bbbf100289a0010e14e4651d237daWeinreb, R.N., Aung, T., Medeiros, F.A., The pathophysiology and treatment of glaucoma: A review (2014) JAMA, 311 (18), pp. 1901-1911Tham, Y.C., Li, X., Wong, T.Y., Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis (2014) Ophthalmology, 121 (11), pp. 2081-2090Weber, A.J., Chen, H., Hubbard, W.C., Kaufman, P.L., Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus (2000) Invest Ophthalmol Vis Sci, 41 (6), pp. 1370-1379Yucel, Y.H., Zhang, Q., Weinreb, R.N., Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma (2003) Prog Retin Eye Res, 22 (4), pp. 465-481Gupta, N., Ang, L.C., Noel-De-Tilly, L., Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex (2006) Br J Ophthalmol, 90 (6), pp. 674-678Duyn, J.H., Study of brain anatomy with high-field MRI: Recent progress (2010) Magn Reson Imaging, 28 (8), pp. 1210-1215Nuzzi, R., Dallorto, L., Rolle, T., Changes of visual pathway and brain connectivity in glaucoma: A systematic review (2018) Front Neurosci, 12, p. 363Li, C., Cai, P., Shi, L., Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma (2012) Curr Eye Res, 37 (9), pp. 794-802Chen, W.W., Wang, N., Cai, S., Structural brain abnormalities in patients with primary open-angle glaucoma: A study with 3T MR imaging (2013) Invest Ophthalmol Vis Sci, 54 (1), pp. 545-554Bogorodzki, P., Piatkowska-Janko, E., Szaflik, J., Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps (2014) PLoS One, 9 (4)Ito, Y., Shimazawa, M., Chen, Y.N., Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys (2009) Exp Eye Res, 89 (2), pp. 246-255Gupta, N., Greenberg, G., De-Tilly, L.N., Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging (2009) Br J Ophthalmol, 93 (1), pp. 56-60Furlanetto, R.L., Teixeira, S.H., Gracitelli, C.P.B., Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma (2018) PLoS One, 13 (3)Medeiros, F.A., Alencar, L.M., Zangwill, L.M., Prediction of functional loss in glaucoma from progressive optic disc damage (2009) Arch Ophthalmol, 127 (10), pp. 1250-1256Medeiros, F.A., Alencar, L.M., Zangwill, L.M., The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma (2009) Ophthalmology, 116 (6), pp. 1125-1133Leung, C.K., Chiu, V., Weinreb, R.N., Evaluation of retinal nerve fiber layer progression in glaucoma: A comparison between spectral-domain and time-domain optical coherence tomography (2011) Ophthalmology, 118 (8), pp. 1558-1562Artes, P.H., Chauhan, B.C., Longitudinal changes in the visual field and optic disc in glaucoma (2005) Prog Retin Eye Res, 24 (3), pp. 333-354Hodap, E.E., Anderson, D.R., II, (1993) Clinical Decisions in Glaucoma, pp. 52-61. , Mo Mosby-Year BookSponsel, W.E., Ritch, R., Stamper, R., Prevent blindness America visual field screening study. The prevent blindness America Glaucoma Advisory Committee (1995) Am J Ophthalmol, 120 (6), pp. 699-708Sponsel, W.E., Arango, S., Trigo, Y., Mensah, J., Clinical classification of glaucomatous visual field loss by frequency doubling perimetry (1998) Am J Ophthalmol, 125 (6), pp. 830-836Medeiros, F.A., Lisboa, R., Weinreb, R.N., Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma (2013) Ophthalmology, 120 (4), pp. 736-744Dale, A.M., Fischl, B., Sereno, M.I., Cortical surface-based analysis. I. Segmentation and surface reconstruction (1999) Neuroimage, 9 (2), pp. 179-194Fischl, B., Dale, A.M., Measuring the thickness of the human cerebral cortex from magnetic resonance images (2000) Proc Natl Acad Sci U S A, 97 (20), pp. 11050-11055Rosas, H.D., Liu, A.K., Hersch, S., Regional and progressive thinning of the cortical ribbon in huntington's disease (2002) Neurology, 58 (5), pp. 695-701Kuperberg, G.R., Broome, M.R., McGuire, P.K., Regionally localized thinning of the cerebral cortex in schizophrenia (2003) Arch Gen Psychiatry, 60 (9), pp. 878-888Afonso, R.F., Balardin, J.B., Lazar, S., Greater cortical thickness in elderly female yoga practitioners-A cross-sectional study (2017) Front Aging Neurosci, 9, p. 201Fischl, B., Van-Der-Kouwe, A., Destrieux, C., Automatically parcellating the human cerebral cortex (2004) Cereb Cortex, 14 (1), pp. 11-22Burton, P., Gurrin, L., Sly, P., Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modelling (1998) Stat Med, 17 (11), pp. 1261-1291Hanley, J.A., Negassa, A., Edwardes, M.D., Forrester, J.E., Statistical analysis of correlated data using generalized estimating equations: An orientation (2003) Am J Epidemiol, 157 (4), pp. 364-375Field, C.A., Welsh, A.H., Bootstrapping clustered data (2007) Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69 (3), pp. 369-390Furlanetto, R.L., Teixeira, S.H., Gracitelli, C.P., Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma (2018) PLoS One, , In PressPerry, V.H., Oehler, R., Cowey, A., Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey (1984) Neuroscience, 12 (4), pp. 1101-1123Gupta, N., Yucel, Y.H., What changes can we expect in the brain of glaucoma patients? (2007) Surv Ophthalmol, 52, pp. S122-S126Zhang, Y.Q., Li, J., Xu, L., Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma (2012) Acta Ophthalmol, 90 (4), pp. e295-e302Duncan, R.O., Sample, P.A., Weinreb, R.N., Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss (2007) Prog Retin Eye Res, 26 (1), pp. 38-56Duncan, R.O., Sample, P.A., Weinreb, R.N., Retinotopic organization of primary visual cortex in glaucoma: A method for comparing cortical function with damage to the optic disk (2007) Invest Ophthalmol Vis Sci, 48 (2), pp. 733-744Qing, G., Zhang, S., Wang, B., Wang, N., Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma (2010) Invest Ophthalmol Vis Sci, 51 (9), pp. 4627-4634Gerente, V.M., Schor, R.R., Chaim, K.T., Evaluation of glaucomatous damage via functional magnetic resonance imaging, and correlations thereof with anatomical and psychophysical ocular findings (2015) PLoS One, 10 (5)Amaro, E., Jr., Barker, G.J., Study design in fMRI: Basic principles (2006) Brain Cogn, 60 (3), pp. 220-232Logothetis, N.K., Wandell, B.A., Interpreting the BOLD signal (2004) Annu Rev Physiol, 66, pp. 735-769Winkler, A.M., Kochunov, P., Blangero, J., Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies (2010) Neuroimage, 53 (3), pp. 1135-1146Thompson, P.M., Cannon, T.D., Narr, K.L., Genetic influences on brain structure (2001) Nat Neurosci, 4 (12), pp. 1253-1258Glahn, D.C., Thompson, P.M., Blangero, J., Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function (2007) Hum Brain Mapp, 28 (6), pp. 488-501Honea, R.A., Meyer-Lindenberg, A., Hobbs, K.B., Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings (2008) Biol Psychiatry, 63 (5), pp. 465-474McDonald, C., Marshall, N., Sham, P.C., Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives (2006) Am J Psychiatry, 163 (3), pp. 478-487Panizzon, M.S., Fennema-Notestine, C., Eyler, L.T., Distinct genetic influences on cortical surface area and cortical thickness (2009) Cereb Cortex, 19 (11), pp. 2728-2735Hofman, M.A., Size and shape of the cerebral cortex in mammals. I. The cortical surface (1985) Brain Behav Evol, 27 (1), pp. 28-40Rao, D.C., An overview of the genetic dissection of complex traits (2008) Adv Genet, 60, pp. 3-34Cosgrove, K.P., Mazure, C.M., Staley, J.K., Evolving knowledge of sex differences in brain structure, function, and chemistry (2007) Biol Psychiatry, 62 (8), pp. 847-855Ankney, C.D., The brain size/IQ debate (1992) Nature, 360 (6402), p. 292Ankney, C.D., Differences in brain size (1992) Nature, 358 (6387), p. 532Hernowo, A.T., Boucard, C.C., Jansonius, N.M., Automated morphometry of the visual pathway in primary open-angle glaucoma (2011) Invest Ophthalmol Vis Sci, 52 (5), pp. 2758-2766Zikou, A.K., Kitsos, G., Tzarouchi, L.C., Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: A preliminary study (2012) AJNR Am J Neuroradiol, 33 (1), pp. 128-134Williams, A.L., Lackey, J., Wizov, S.S., Evidence for widespread structural brain changes in glaucoma: A preliminary voxel-based MRI study (2013) Invest Ophthalmol Vis Sci, 54 (8), pp. 5880-5887Allen, J.S., Bruss, J., Brown, C.K., Damasio, H., Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region (2005) Neurobiol Aging, 26 (9), pp. 1245-1260. , discussion 79-82Lemaitre, H., Goldman, A.L., Sambataro, F., Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? (2012) Neurobiol Aging, 33 (3), pp. e1-e9Fotenos, A.F., Snyder, A.Z., Girton, L.E., Normative estimates of crosssectional and longitudinal brain volume decline in aging and AD (2005) Neurology, 64 (6), pp. 1032-1039Good, C.D., Johnsrude, I.S., Ashburner, J., A voxel-based morphometric study of ageing in 465 normal adult human brains (2001) Neuroimage, 14 (1), pp. 21-36Journal of Glaucoma3-Teslaglaucomamagnetic resonance imagingoccipital polevisual fieldStructural Analysis of Glaucoma Brain and its Association with Ocular ParametersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gracitelli, C.P., Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, BrazilDuque-Chica, G.L., Institute of Psychology, University of São Paulo, São Paulo, Brazil, Department of Psychology, University of Medellin, Medellin, ColombiaSanches, L.G., Hospital Israelita Albert Einstein, São Paulo, BrazilMoura, A.L., Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, Brazil, Institute of Psychology, University of São Paulo, São Paulo, BrazilNagy, B.V., Institute of Psychology, University of São Paulo, São Paulo, Brazil, Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics, Budapest, HungaryTeixeira, S.H., Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, BrazilAmaro, E., Hospital Israelita Albert Einstein, São Paulo, BrazilVentura, D.F., Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, Brazil, Institute of Psychology, University of São Paulo, São Paulo, BrazilParanhos, A., Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, Brazil, Hospital Israelita Albert Einstein, São Paulo, Brazilhttp://purl.org/coar/access_right/c_16ecGracitelli C.P.Duque-Chica G.L.Sanches L.G.Moura A.L.Nagy B.V.Teixeira S.H.Amaro E.Ventura D.F.Paranhos A.11407/6020oai:repository.udem.edu.co:11407/60202021-02-05 09:58:48.215Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co