Characterization framework for Ex-combatants based on EEG and behavioral features
This paper presents a framework to characterize the emotional processing of Colombian ex-combatants from illegal groups. The classification process is performed using EEGERP data and behavioral features from psychological tests. The results show that ex-combatant and civilian populations can be auto...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4351
- Acceso en línea:
- http://hdl.handle.net/11407/4351
- Palabra clave:
- Emotional processing
Emotional recognition task
ERP
Ex-combatants
Supervised learning
Artificial intelligence
Biomedical engineering
Decision support systems
Enterprise resource planning
Supervised learning
Testing
Behavioral features
Civilian populations
Classification process
Colombians
Emotional recognition
Ex-combatants
Psychological tests
Behavioral research
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_256fe8efedcfbcae3d49d224d1c62faf |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4351 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Characterization framework for Ex-combatants based on EEG and behavioral features |
title |
Characterization framework for Ex-combatants based on EEG and behavioral features |
spellingShingle |
Characterization framework for Ex-combatants based on EEG and behavioral features Emotional processing Emotional recognition task ERP Ex-combatants Supervised learning Artificial intelligence Biomedical engineering Decision support systems Enterprise resource planning Supervised learning Testing Behavioral features Civilian populations Classification process Colombians Emotional recognition Ex-combatants Psychological tests Behavioral research |
title_short |
Characterization framework for Ex-combatants based on EEG and behavioral features |
title_full |
Characterization framework for Ex-combatants based on EEG and behavioral features |
title_fullStr |
Characterization framework for Ex-combatants based on EEG and behavioral features |
title_full_unstemmed |
Characterization framework for Ex-combatants based on EEG and behavioral features |
title_sort |
Characterization framework for Ex-combatants based on EEG and behavioral features |
dc.contributor.affiliation.spa.fl_str_mv |
Quintero-Zea, A., SISTEMIC, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, Colombia Sepúlveda-Cano, L.M., ARKADIUS, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, Colombia Calvache, M.R., SISTEMIC, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, Colombia Orrego, S.T., Mental Health Group, School of Public Health, Universidad de Antioquia UDEA, Cra. 53 No. 61-30, Medellín, Colombia Orrego, N.T., Mental Health Group, School of Public Health, Universidad de Antioquia UDEA, Cra. 53 No. 61-30, Medellín, Colombia, Neuroscience Group, Faculty of Medicine, Universidad de Antioquia UDEA, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Emotional processing Emotional recognition task ERP Ex-combatants Supervised learning Artificial intelligence Biomedical engineering Decision support systems Enterprise resource planning Supervised learning Testing Behavioral features Civilian populations Classification process Colombians Emotional recognition Ex-combatants Psychological tests Behavioral research |
topic |
Emotional processing Emotional recognition task ERP Ex-combatants Supervised learning Artificial intelligence Biomedical engineering Decision support systems Enterprise resource planning Supervised learning Testing Behavioral features Civilian populations Classification process Colombians Emotional recognition Ex-combatants Psychological tests Behavioral research |
description |
This paper presents a framework to characterize the emotional processing of Colombian ex-combatants from illegal groups. The classification process is performed using EEGERP data and behavioral features from psychological tests. The results show that ex-combatant and civilian populations can be automatically separated using supervised techniques.With this, we can provide a decision support system for psychologists to improve current interventions aimed to help ex-combatants to make a successful reintegration to civilian life. © Springer Nature Singapore Pte Ltd. 2017. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:50Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:50Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
9789811040856 |
dc.identifier.issn.none.fl_str_mv |
16800737 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4351 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-981-10-4086-3_52 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
9789811040856 16800737 10.1007/978-981-10-4086-3_52 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4351 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018389268&doi=10.1007%2f978-981-10-4086-3_52&partnerID=40&md5=bfebea4c0f97c7e3bb2d860a0035a255 |
dc.relation.ispartofes.spa.fl_str_mv |
IFMBE Proceedings |
dc.relation.references.spa.fl_str_mv |
Carlos, T., Agustín, I., Lina, V., Emotional Processing in Colombian Ex-Combatants and Its Relationship with Empathy and Executive Functions Social Neuroscience, 10, pp. 153-165. , PMID: 25302548 I-Wei, S., Onton Julie, A., Nitin, P., O’Connell Ryan, M., Simmons Alan, N., Matthews Scott, C., Combat Veterans with PTSD after Mild TBI Exhibit Greater Erps from Posterior-Medial Cortical Areas while Appraising Facial Features, 155, pp. 234-240 Light Gregory, A., Williams Lisa, E., Falk, M., Electroencephalography (EEG) and Event-Related Potentials (Erps) with Human Participants Current Protocols in Neuroscience, p. 2524. , CHAPTER:Unit-6 Shravani, S., Sinha, V.K., Event-Related Potential: An Overview, 18, p. 70 Vilfredo, P.D., Enrica, S., Patrizia, R., Fabiola, V., Personality, Event-Related Potential (ERP) and Heart Rate (HR) in Emotional Word Processing Personality and Individual Differences, 36, pp. 873-891 Agustín, I., Hugo, U., Agustín, P., Neural Processing of Emotional Facial and Semantic Expressions in Euthymic Bipolar Disorder (BD) and Its Association with Theory of Mind (Tom) Plos ONE, 7, pp. 1-12 Arnaud, D., Scott, M., EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics including Independent Component Analysis Journal of Neuroscience Methods, 134, pp. 9-21 Gismero, E., EHS Escala De Habilidades Sociales Madrid: TEA Publicaciones De Psicología Aplicada Adrian, R., Kenneth, D., Rolf, L., The Reactive-Proactive Aggression Questionnaire: Differential Correlates of Reactive and Proactive Aggression in Adolescent Boysaggressive Behavior, 32, pp. 159-171 Key Alexandra, P., Fonaryova, D.G.O., Maguire Mandy, J., Linking brainwaves to the brain An ERP Primer Developmental Neuropsychology, 27, pp. 183-215 Pawel, B., Semi-Supervised Feature Extraction Method Using Partial Least Squares and Gaussian Mixture Model Lecture Notes in Engineering and Computer Science Herv, A., Partial least squares regression and projection on latent structure regression (PLS Regression) Wiley Interdisciplinary Reviews Computational Statistics, 2, pp. 97-106 Padraig, C., Jane, D.S., K-Nearest Neighbour Classifiers Multiple Classifier Systems, pp. 1-17 Vapnik Vladimir, N., The Nature of Statistical Learning Theorych Methods of Pattern Recognition, pp. 138-155. , New York, NY: Springer-Verlag2nd ed Guo-You, S., Shuang, L., Model Selection of RBF Kernel for C-SVM Based on Genetic Algorithm and Multithreading in 2012 International Conference on Machine Learning and Cybernetics, 1, pp. 382-386 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159152479469568 |
spelling |
2017-12-19T19:36:50Z2017-12-19T19:36:50Z2017978981104085616800737http://hdl.handle.net/11407/435110.1007/978-981-10-4086-3_52reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThis paper presents a framework to characterize the emotional processing of Colombian ex-combatants from illegal groups. The classification process is performed using EEGERP data and behavioral features from psychological tests. The results show that ex-combatant and civilian populations can be automatically separated using supervised techniques.With this, we can provide a decision support system for psychologists to improve current interventions aimed to help ex-combatants to make a successful reintegration to civilian life. © Springer Nature Singapore Pte Ltd. 2017.engSpringer VerlagFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018389268&doi=10.1007%2f978-981-10-4086-3_52&partnerID=40&md5=bfebea4c0f97c7e3bb2d860a0035a255IFMBE ProceedingsCarlos, T., Agustín, I., Lina, V., Emotional Processing in Colombian Ex-Combatants and Its Relationship with Empathy and Executive Functions Social Neuroscience, 10, pp. 153-165. , PMID: 25302548I-Wei, S., Onton Julie, A., Nitin, P., O’Connell Ryan, M., Simmons Alan, N., Matthews Scott, C., Combat Veterans with PTSD after Mild TBI Exhibit Greater Erps from Posterior-Medial Cortical Areas while Appraising Facial Features, 155, pp. 234-240Light Gregory, A., Williams Lisa, E., Falk, M., Electroencephalography (EEG) and Event-Related Potentials (Erps) with Human Participants Current Protocols in Neuroscience, p. 2524. , CHAPTER:Unit-6Shravani, S., Sinha, V.K., Event-Related Potential: An Overview, 18, p. 70Vilfredo, P.D., Enrica, S., Patrizia, R., Fabiola, V., Personality, Event-Related Potential (ERP) and Heart Rate (HR) in Emotional Word Processing Personality and Individual Differences, 36, pp. 873-891Agustín, I., Hugo, U., Agustín, P., Neural Processing of Emotional Facial and Semantic Expressions in Euthymic Bipolar Disorder (BD) and Its Association with Theory of Mind (Tom) Plos ONE, 7, pp. 1-12Arnaud, D., Scott, M., EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics including Independent Component Analysis Journal of Neuroscience Methods, 134, pp. 9-21Gismero, E., EHS Escala De Habilidades Sociales Madrid: TEA Publicaciones De Psicología AplicadaAdrian, R., Kenneth, D., Rolf, L., The Reactive-Proactive Aggression Questionnaire: Differential Correlates of Reactive and Proactive Aggression in Adolescent Boysaggressive Behavior, 32, pp. 159-171Key Alexandra, P., Fonaryova, D.G.O., Maguire Mandy, J., Linking brainwaves to the brain An ERP Primer Developmental Neuropsychology, 27, pp. 183-215Pawel, B., Semi-Supervised Feature Extraction Method Using Partial Least Squares and Gaussian Mixture Model Lecture Notes in Engineering and Computer ScienceHerv, A., Partial least squares regression and projection on latent structure regression (PLS Regression) Wiley Interdisciplinary Reviews Computational Statistics, 2, pp. 97-106Padraig, C., Jane, D.S., K-Nearest Neighbour Classifiers Multiple Classifier Systems, pp. 1-17Vapnik Vladimir, N., The Nature of Statistical Learning Theorych Methods of Pattern Recognition, pp. 138-155. , New York, NY: Springer-Verlag2nd edGuo-You, S., Shuang, L., Model Selection of RBF Kernel for C-SVM Based on Genetic Algorithm and Multithreading in 2012 International Conference on Machine Learning and Cybernetics, 1, pp. 382-386ScopusCharacterization framework for Ex-combatants based on EEG and behavioral featuresConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fQuintero-Zea, A., SISTEMIC, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, ColombiaSepúlveda-Cano, L.M., ARKADIUS, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, ColombiaCalvache, M.R., SISTEMIC, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, ColombiaOrrego, S.T., Mental Health Group, School of Public Health, Universidad de Antioquia UDEA, Cra. 53 No. 61-30, Medellín, ColombiaOrrego, N.T., Mental Health Group, School of Public Health, Universidad de Antioquia UDEA, Cra. 53 No. 61-30, Medellín, Colombia, Neuroscience Group, Faculty of Medicine, Universidad de Antioquia UDEA, Medellín, ColombiaQuintero-Zea A.Sepúlveda-Cano L.M.Calvache M.R.Orrego S.T.Orrego N.T.SISTEMIC, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, ColombiaARKADIUS, Engineering Faculty, Universidad de Medell´ın UDEM, Cra. 87 No. 30 - 65, Medellín, ColombiaMental Health Group, School of Public Health, Universidad de Antioquia UDEA, Cra. 53 No. 61-30, Medellín, ColombiaNeuroscience Group, Faculty of Medicine, Universidad de Antioquia UDEA, Medellín, ColombiaEmotional processingEmotional recognition taskERPEx-combatantsSupervised learningArtificial intelligenceBiomedical engineeringDecision support systemsEnterprise resource planningSupervised learningTestingBehavioral featuresCivilian populationsClassification processColombiansEmotional recognitionEx-combatantsPsychological testsBehavioral researchThis paper presents a framework to characterize the emotional processing of Colombian ex-combatants from illegal groups. The classification process is performed using EEGERP data and behavioral features from psychological tests. The results show that ex-combatant and civilian populations can be automatically separated using supervised techniques.With this, we can provide a decision support system for psychologists to improve current interventions aimed to help ex-combatants to make a successful reintegration to civilian life. © Springer Nature Singapore Pte Ltd. 2017.http://purl.org/coar/access_right/c_16ec11407/4351oai:repository.udem.edu.co:11407/43512020-05-27 16:34:18.903Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |