Magneto-optical properties of Fibonacci graphene superlattices

Abstract: We have studied the transition strength and magneto-optical absorption in Fibonacci graphene superlattices under the effects of perpendicularly applied magnetic field. It is shown that the former quantity present self-similarity and anti-self-similarity behavior at magnetic field strengths...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5735
Acceso en línea:
http://hdl.handle.net/11407/5735
Palabra clave:
Graphene
Light absorption
Optical properties
Applied magnetic fields
Graphene superlattices
Incident radiation
Magnetic field strengths
Magnetic subbands
Magnetooptical properties
Scaling properties
Transition strengths
Magnetic field effects
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2519e5f6f073bd0d71dcc9eb264a99f5
oai_identifier_str oai:repository.udem.edu.co:11407/5735
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Magneto-optical properties of Fibonacci graphene superlattices
title Magneto-optical properties of Fibonacci graphene superlattices
spellingShingle Magneto-optical properties of Fibonacci graphene superlattices
Graphene
Light absorption
Optical properties
Applied magnetic fields
Graphene superlattices
Incident radiation
Magnetic field strengths
Magnetic subbands
Magnetooptical properties
Scaling properties
Transition strengths
Magnetic field effects
title_short Magneto-optical properties of Fibonacci graphene superlattices
title_full Magneto-optical properties of Fibonacci graphene superlattices
title_fullStr Magneto-optical properties of Fibonacci graphene superlattices
title_full_unstemmed Magneto-optical properties of Fibonacci graphene superlattices
title_sort Magneto-optical properties of Fibonacci graphene superlattices
dc.subject.none.fl_str_mv Graphene
Light absorption
Optical properties
Applied magnetic fields
Graphene superlattices
Incident radiation
Magnetic field strengths
Magnetic subbands
Magnetooptical properties
Scaling properties
Transition strengths
Magnetic field effects
topic Graphene
Light absorption
Optical properties
Applied magnetic fields
Graphene superlattices
Incident radiation
Magnetic field strengths
Magnetic subbands
Magnetooptical properties
Scaling properties
Transition strengths
Magnetic field effects
description Abstract: We have studied the transition strength and magneto-optical absorption in Fibonacci graphene superlattices under the effects of perpendicularly applied magnetic field. It is shown that the former quantity present self-similarity and anti-self-similarity behavior at magnetic field strengths connected via ?4 and ?2, respectively, ? being the golden mean. In order to be able to observe this effect, it is necessary that for a particular field the transition strength curve is displaced laterally as a rigid body so that the adjustment is achieved with that corresponding to the other field. It was found that this shifting is determined by the symmetry and scaling properties of the Fibonacci structure. For all the magnetic fields and polarizations of the incident radiation considered here, it is observed that the absorption spectra have the characteristic of self-similarity and also that they show resonant peak structures that satisfy selection rules that keep, in very good approximation, the same characteristics of graphene monolayers. We showed analytically that the similarity properties of both the transition strength and optical absorption are a direct consequence of those of the magnetic subbands. Graphical abstract: [Figure not available: see fulltext.] © 2020, EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:49Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:49Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14346028
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5735
dc.identifier.doi.none.fl_str_mv 10.1140/epjb/e2020-100583-x
identifier_str_mv 14346028
10.1140/epjb/e2020-100583-x
url http://hdl.handle.net/11407/5735
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081378088&doi=10.1140%2fepjb%2fe2020-100583-x&partnerID=40&md5=986b6d8da9b0dabc3e666abc9b315be7
dc.relation.citationvolume.none.fl_str_mv 93
dc.relation.citationissue.none.fl_str_mv 3
dc.relation.references.none.fl_str_mv Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., (2009) Rev. Mod. Phys., 81, p. 109
Goerbig, M.O., (2011) Rev. Mod. Phys., 83, p. 1193
Yang, C.H., Peeters, F.M., Xu, W., (2010) Phys. Rev. B, 82, p. 205428
Yao, X., Belyanin, A., (2013) J. Phys.: Condens. Matter, 25, p. 054203
Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A., (2006) Phys. Rev. Lett., 97, p. 266405
Booshehri, L.G., Mielke, C.H., Rickel, D.G., Crooker, S.A., Zhang, Q., Ren, L., Hároz, E.H., Kono, J., (2012) Phys. Rev. B, 85, p. 205407
Guçlu, A.D., Potasz, P., Hawrylak, P., (2013) Phys. Rev. B, 88, p. 155429
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., (2005) Nature, 438, p. 197
Gusynin, V.P., Sharapov, S.G., (2006) Phys. Rev. B, 73, p. 245411
Gusynin, V.P., Sharapov, S.G., Carbotte, J.P., (2007) Phys. Rev. Lett., 98, p. 157402
Koshino, M., Ando, T., (2008) Phys. Rev. B, 77, p. 115313
Mikhailov, S.A., (2009) Phys. Rev. B, 79, p. 241309
Deacon, R.S., Chuang, K.-C., Nicholas, R.J., Novoselov, K.S., Geim, A.K., (2007) Phys. Rev. B, 76, p. 081406
Park, C.-H., Son, Y.-W., Yang, L., Cohen, M.L., Louie, S.G., (2009) Phys. Rev. Lett., 103, p. 046808
Jiang, L., Zheng, Y., (2011) J. Appl. Phys., 109, p. 053701
Wu, S., Killi, M., Paramekanti, A., (2012) Phys. Rev. B, 85, p. 195404
Duque, C.A., Hernández-Bertrán, M.A., Morales, A.L., de Dios-Leyva, M., (2017) J. Appl. Phys., 121, p. 074301
de Dios-Leyva, M., Hernández-Bertrán, M.A., Morales, A.L., Duque, C.A., Phuc, H.V., (2018) Ann. Phys., 530, p. 1700414
Merlin, R., Bajema, K., Clarke, R., Juang, F.Y., Bhattacharya, P.K., (1985) Phys. Rev. Lett., 55, p. 1768
Sokoloff, J.B., (1985) Phys. Rep., 126, p. 189
Macdonald, A.H., (1987) Ininterfaces, Quantum Wells, and Superlattices, p. 347. , C.R. Leavens, R. Taylor, Plenum, New York
Wang, Y.Y., Maan, J.C., (1989) Phys. Rev. B, 40, p. 1955
Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., de Dios-Leyva, M., (1995) J. Appl. Phys., 78, p. 1379
Toet, D., Potemski, M., Wang, Y.Y., Maan, J.C., Tapfer, L., Ploog, K., (1991) Phys. Rev. Lett., 66, p. 2128
de Dios-Leyva, M., Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., (1995) J. Phys.: Condens. Matter, 7, p. 9799
Reyes-Gómez, E., Perdomo-Leiva, C.A., de Dios-Leyva, M., Oliveira, L.E., (2006) Phys. Rev. B, 74, p. 033314
de Dios-Leyva, M., Hernández-Bertrán, M.A., Morales, A.L., Duque, C.A., (2018) Solid State Commun., 284-286, p. 93
Kolár, M., Ali, M.K., (1989) Phys. Rev. B, 39, p. 426
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv European Physical Journal B
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159148427771904
spelling 20202020-04-29T14:53:49Z2020-04-29T14:53:49Z14346028http://hdl.handle.net/11407/573510.1140/epjb/e2020-100583-xAbstract: We have studied the transition strength and magneto-optical absorption in Fibonacci graphene superlattices under the effects of perpendicularly applied magnetic field. It is shown that the former quantity present self-similarity and anti-self-similarity behavior at magnetic field strengths connected via ?4 and ?2, respectively, ? being the golden mean. In order to be able to observe this effect, it is necessary that for a particular field the transition strength curve is displaced laterally as a rigid body so that the adjustment is achieved with that corresponding to the other field. It was found that this shifting is determined by the symmetry and scaling properties of the Fibonacci structure. For all the magnetic fields and polarizations of the incident radiation considered here, it is observed that the absorption spectra have the characteristic of self-similarity and also that they show resonant peak structures that satisfy selection rules that keep, in very good approximation, the same characteristics of graphene monolayers. We showed analytically that the similarity properties of both the transition strength and optical absorption are a direct consequence of those of the magnetic subbands. Graphical abstract: [Figure not available: see fulltext.] © 2020, EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature.engSpringerFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081378088&doi=10.1140%2fepjb%2fe2020-100583-x&partnerID=40&md5=986b6d8da9b0dabc3e666abc9b315be7933Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., (2009) Rev. Mod. Phys., 81, p. 109Goerbig, M.O., (2011) Rev. Mod. Phys., 83, p. 1193Yang, C.H., Peeters, F.M., Xu, W., (2010) Phys. Rev. B, 82, p. 205428Yao, X., Belyanin, A., (2013) J. Phys.: Condens. Matter, 25, p. 054203Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A., (2006) Phys. Rev. Lett., 97, p. 266405Booshehri, L.G., Mielke, C.H., Rickel, D.G., Crooker, S.A., Zhang, Q., Ren, L., Hároz, E.H., Kono, J., (2012) Phys. Rev. B, 85, p. 205407Guçlu, A.D., Potasz, P., Hawrylak, P., (2013) Phys. Rev. B, 88, p. 155429Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., (2005) Nature, 438, p. 197Gusynin, V.P., Sharapov, S.G., (2006) Phys. Rev. B, 73, p. 245411Gusynin, V.P., Sharapov, S.G., Carbotte, J.P., (2007) Phys. Rev. Lett., 98, p. 157402Koshino, M., Ando, T., (2008) Phys. Rev. B, 77, p. 115313Mikhailov, S.A., (2009) Phys. Rev. B, 79, p. 241309Deacon, R.S., Chuang, K.-C., Nicholas, R.J., Novoselov, K.S., Geim, A.K., (2007) Phys. Rev. B, 76, p. 081406Park, C.-H., Son, Y.-W., Yang, L., Cohen, M.L., Louie, S.G., (2009) Phys. Rev. Lett., 103, p. 046808Jiang, L., Zheng, Y., (2011) J. Appl. Phys., 109, p. 053701Wu, S., Killi, M., Paramekanti, A., (2012) Phys. Rev. B, 85, p. 195404Duque, C.A., Hernández-Bertrán, M.A., Morales, A.L., de Dios-Leyva, M., (2017) J. Appl. Phys., 121, p. 074301de Dios-Leyva, M., Hernández-Bertrán, M.A., Morales, A.L., Duque, C.A., Phuc, H.V., (2018) Ann. Phys., 530, p. 1700414Merlin, R., Bajema, K., Clarke, R., Juang, F.Y., Bhattacharya, P.K., (1985) Phys. Rev. Lett., 55, p. 1768Sokoloff, J.B., (1985) Phys. Rep., 126, p. 189Macdonald, A.H., (1987) Ininterfaces, Quantum Wells, and Superlattices, p. 347. , C.R. Leavens, R. Taylor, Plenum, New YorkWang, Y.Y., Maan, J.C., (1989) Phys. Rev. B, 40, p. 1955Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., de Dios-Leyva, M., (1995) J. Appl. Phys., 78, p. 1379Toet, D., Potemski, M., Wang, Y.Y., Maan, J.C., Tapfer, L., Ploog, K., (1991) Phys. Rev. Lett., 66, p. 2128de Dios-Leyva, M., Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., (1995) J. Phys.: Condens. Matter, 7, p. 9799Reyes-Gómez, E., Perdomo-Leiva, C.A., de Dios-Leyva, M., Oliveira, L.E., (2006) Phys. Rev. B, 74, p. 033314de Dios-Leyva, M., Hernández-Bertrán, M.A., Morales, A.L., Duque, C.A., (2018) Solid State Commun., 284-286, p. 93Kolár, M., Ali, M.K., (1989) Phys. Rev. B, 39, p. 426European Physical Journal BGrapheneLight absorptionOptical propertiesApplied magnetic fieldsGraphene superlatticesIncident radiationMagnetic field strengthsMagnetic subbandsMagnetooptical propertiesScaling propertiesTransition strengthsMagnetic field effectsMagneto-optical properties of Fibonacci graphene superlatticesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1de Dios-Leyva, M., Department of Theoretical Physics, University of Havana, San Lázaro y L, Vedado, Havana 10400, Cuba; Hernández-Bertrán, M.A., Department of Theoretical Physics, University of Havana, San Lázaro y L, Vedado, Havana 10400, Cuba; Akimov, V., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Facultad de Ciencias Básicas, Universidad de Medellín-UdeM, Carrera 87 No. 30-65, Medellín, Colombia; Vinasco, J.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Morales, A.L., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecde Dios-Leyva M.Hernández-Bertrán M.A.Akimov V.Vinasco J.A.Morales A.L.Duque C.A.11407/5735oai:repository.udem.edu.co:11407/57352020-05-27 16:31:54.328Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co