Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 

Durante el siglo pasado diferentes autores presentaron sus teorías sobre el oleaje basados en las leyes de la física relacionadas con el movimiento ondulatorio, estas teorías hicieron representaciones de las olas del mar como ondas de amplitud finita o de amplitud pequeña en las cuales la interacció...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2007
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/3347
Acceso en línea:
http://hdl.handle.net/11407/3347
Palabra clave:
Modelos de Predicción
Pronóstico de Oleaje
Olas de Viento
Oleajes
Ecuación de la Energía
Ondas
Prediction Models
Wave Forecast
Wind Waves
Wave Motion
Equation of the Energy
Waves
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUDEM2_23efc753a4e9b6414d9ad217af9cdcd9
oai_identifier_str oai:repository.udem.edu.co:11407/3347
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
title Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
spellingShingle Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
Modelos de Predicción
Pronóstico de Oleaje
Olas de Viento
Oleajes
Ecuación de la Energía
Ondas
Prediction Models
Wave Forecast
Wind Waves
Wave Motion
Equation of the Energy
Waves
title_short Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
title_full Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
title_fullStr Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
title_full_unstemmed Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
title_sort Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia 
dc.subject.spa.fl_str_mv Modelos de Predicción
Pronóstico de Oleaje
Olas de Viento
Oleajes
Ecuación de la Energía
Ondas
Prediction Models
Wave Forecast
Wind Waves
Wave Motion
Equation of the Energy
Waves
topic Modelos de Predicción
Pronóstico de Oleaje
Olas de Viento
Oleajes
Ecuación de la Energía
Ondas
Prediction Models
Wave Forecast
Wind Waves
Wave Motion
Equation of the Energy
Waves
description Durante el siglo pasado diferentes autores presentaron sus teorías sobre el oleaje basados en las leyes de la física relacionadas con el movimiento ondulatorio, estas teorías hicieron representaciones de las olas del mar como ondas de amplitud finita o de amplitud pequeña en las cuales la interacción entre ondas podía considerarse como lineal; sin embargo quedaron incompletas al tratar de explicar los mecanismos físicos relacionados con el crecimiento del oleaje. Sólo fue hasta mediados del siglo XX cuando los principales aportes matemáticos y experimentales impulsaron los modelos de generación de oleaje que explicaban de forma más completa y precisa la física del fenómeno. La información del oleaje con características adecuadas es de vital importancia para el diseño de cualquier obra costera, sin embargo ésta no siempre está disponible y es necesario utilizar modelos que permitan suplir dicha información. El presente artículo muestra de forma resumida la caracterización y evolución de los principales modelos que han sido empleados para el pronóstico del oleaje producido por el viento, sus ventajas y desventajas respecto a otros modelos. Por último presenta una recopilación de la información de oleaje disponible en Colombia.
publishDate 2007
dc.date.created.none.fl_str_mv 2007
dc.date.accessioned.none.fl_str_mv 2017-06-15T21:49:40Z
dc.date.available.none.fl_str_mv 2017-06-15T21:49:40Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Montoya Ramírez, R., & Osorio Arias, A. (2007). Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia. Avances en recursos hidráulicos, 0(15).
dc.identifier.issn.none.fl_str_mv 01215701
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3347
identifier_str_mv Montoya Ramírez, R., & Osorio Arias, A. (2007). Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia. Avances en recursos hidráulicos, 0(15).
01215701
url http://hdl.handle.net/11407/3347
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.spa.fl_str_mv http://revistas.unal.edu.co/index.php/arh/article/view/9325/9968
dc.relation.ispartofes.spa.fl_str_mv Avances en recursos hidráulicos número 15, mayo de 2007
dc.relation.references.spa.fl_str_mv Agudelo, P., Restrepo, A.F., Molares R., Tejada C.E., Torres, R. y Osorio A.F., 2005. Determinación del clima medio y extremal en el Caribe colombiano. Boletín científico CIOH. N°23.
Agrawal, J.D. y Deo, M.C., 2002. On­line wave prediction. Marine Structures, 15:pp. 57­74.
Alexey, V. F. y Kendall, M.W., 1998. Nonlinear gravity capillary waves with forcing and dissipation. J. Fluid Mech., 354: pp.1­42.
Alves, J.H.G.M. y Banner, M.L., 2003. Performance of a saturationbased dissipation­rate source term in modelling the fetch­limited evolution of wind waves, J. Phys. Oceanogr., 33, pp.1274­1298.
Al’Zanaidi, M.A. y Hui, H. W., 1984. Turbulent air flow over water waves­A numerical study. J. Fluid Mech., 48, pp.225­246.
Battjes, J.A. y. Janssen, J.P.F.M., 1978. Energy loss and set­up due to breaking of random wave. Proc. 16th Int. Conf. Coastal Engineering, Hamburg. pp.569­587.
Banner, M. L. y Peregrine, D. H., 1993. Wave breaking in deep water. Annu. Rev. Fluid Mech., 25, pp.373­397.
Barnett, T. P. y Wilkerson, J. C., 1967. On the generation of ocean wind waves as inferred from airborne radar measurements of fetch­limited spectra. J. Mar. Res., 25, pp.292­321.
Barnett, T. P., 1968. On the generation, dissipation and prediction of ocean wind wave. J. Geophys. Res., 73(2):pp.513­529.
Belcher, S. E. y Hunt, J. C. R., 1993. Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109­148.
Booij, N.y Holthuijsen, L.H., 1987. Propagation of ocean waves in discrete spectral wave models. J. Coput. Physics, 68, pp.307¬326.
Booij, N., Ris, R.C. y Holthuijsen, L.H., 1999. A third­ generation wave model for coastal regions, Part I, Model description and validation, J.Geoph.Research, 104, C4, pp.7649­7666.
Bretschneider, C., 1952. Revised wave forecasting relationships. Proceeding of the 2nd Coastal Enrineering Conference. American Society of Civil Enginneers. 1­5.
Bretschneider, C., 1958. Revisions in wave forecasting: deep and shallow water. Proceeding of the 6nd Coastal Enrineering Conference. American Society of Civil Enginneers. New York.
Bouws, E. y Battjes, J.A., 1982. AMonte­Carlo approach to the computation of refraction of water waves, J. Geophys. Res., 87, pp.5718­5722.
Bouws, E. y Komen, G.J., 1983. On the balance between growth and dissipation in an extreme, depth­limited wind­sea in the southern North Sea, J. Phys. Oceanogr., 13, pp.1653­1658.
Cavaleri, L. y Rizzoli, P.M., 1981. Wind wave prediction in Shallow water ­ theory and applications. J.Geoph.Res. 8b, CII:pp. 10961­10973.
Chalikov, D.V. y Belevich, M.Y., 1993. One­dimensional theory of the wave boundary layer. Bound. Layer Meteor., 63, pp.65­96.
Chalikov, D.V., 1995. The parameterization of the wave boundary layer. J. Phys. Oceanogr., 25, pp.1333­1349.
Charnock, H., 1955. Wind stress on water surface. Quart. J. Roy. Meteor.Soc., 81, pp.639­640.
Chereskin, T. K. y Christensen, M.E., 1985. Modulational development of nonlinear gravity­wave groups. J. Fluid Mech. 151:pp.337­65.
Collins, J.I., 1972. Prediction of shallow water spectra, J. Geophys. Res., 77, No. 15, pp.2693­2707.
Cox, C. S., 1958. Measurements of slopes of high­ frequency wind waves. J. Mar. Res., 16, pp.199­225.
Crapper, G.D., 1970. Non­linear capillary waves generated by steep gravity waves, J. Fluid Mech. 40:pp.149­159.
Deo, M.C., Jha, A., Chaphekar, A.S. y Ravikant, K., 2001. Neural networks for wave forecasting. Ocean Engng., 28, pp.889­898.
Donelan, M. A., Hamilton, J. y Hui, W. H., 1985. Directional spectra of wind­generated waves. Phil. Trans. Roy. Soc.London, A, 315, pp.509­562.
Donelan, M.A. y Pierson, W.J., 1987. Radar scattering and equilibrium ranges in wind­generated waves with application to scatterometry, J. Geophys. Res., 92, pp.4971­5029.
Dommermuth, D.G., 1994. Efficient simulation of short and long­wave interactions with applications to capillary waves. J. Fluids Eng. 116:pp.77­82.
Ebuchi, N., Kawamura, H. y Toba Y., 1987. Fine structure of laboratory wind­wave surfaces using an optical method. Boundary­Layer Meteorol, 39. pp.133­51.
Eckart, C., 1953. The generation of wind waves over a water surface. J. Appl.Phys., 24. pp.1485­1494.
Eldeberky, Y., 1996. Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.
Eldeberky, Y. y Battjes, J.A., 1996. Spectral modelling of wave breaking: Application to Boussinesq equations, J. Geophys. Res., 101, No. C1, pp. 1253­1264.
Fox, M. J. H., 1976. On the nonlinear transfer of energy in the peak of a gravity­wave spectrum­II. Proc. Roy. Soc. A, 348, pp. 467­483.
Gent, P. R. y Taylor, P. A., 1976. A numerical model of the air flow above water waves. J. Fluid Mech., 77, pp. 105­128.
Guillaume, A., 1987. VAG: modele de prévision de l’état de la mer en eau profonde. Technical Report 118, Etablissement d’Et udes et Recher ches Météorologiques, N 178.
Gunther, H., Hasselmann, S. y Janssen, P.A.E.M., 1992. The WAM model Cycle 4 (revised version), Deutsch. Klim.
Rechenzentrum, Techn. Rep. No. 4, Hamburg, Germany.
GIOC. Grupo de Ingeniería oceanográfica y de costas de la Universidad de Cantabria., 2002. Manuales de Referencia. Vol 1. Dinámica.
Hanson, J. L. y Phillips, O.M., 1999. Wind sea growth and dissipation in the open ocean. J. Phys.Oceanogr, 29, pp. 1633­1648.
Hasselmann, K., 1962. On the non­linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech., 12, pp. 481­500.
Hasselmann, K., 1963. On the non­linear energy transfer in a gravity wave spectrum. Part 2. J. Fluid Mech., 15, 273­281; Part 3. 15, pp. 385­398.
Hasselmann, K., 1963a. On the non­linear transfer in a gravity wave spectrum, part 2. Conservation theory, wave­particle correspondence, irreversibility, J. Fluid Mech., 15, pp. 273­281.
Hasselmann, K., 1963b. On the non­linear transfer in a gravity wave spectrum, part 3. Evaluation of energy flux and sea­swell interactions for a Neuman spectrum, J. Fluid Mech., 15, pp. 385­398.
Hass elmann, K., 1966. Feynman diagrams and interaction rules of wave­wave scattering processes. Rev. of Geophys., 4(1):pp.1­32.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., et al., 1973. Measurements of wind­wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogh. Z. Suppl., 12, A8.N 12, 95 P.
Hasselmann, K., Ross, D.B., Muller P. y Sell, W., 1976. A parametric wave prediction model, J. Phys. Oceanogr., 6, pp. 200.228.
Hasselmann, S. y Hasselmann, K., 1981. A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum. Hamb. Geophys. Einzelschr. Ser. A., Wiss. Abh. 52. 163 P.
Hasselmann, B. y Hasselmann, K., 1985. Computations and parameterizations of the nonlinear energy transfer in gravity wave spectrum. Part 1. J.Phys. Oceanog., 15, pp.1369­1377.
Hasselmann, S., Hasselmann, K.J., Allender H. y Barnett, T. P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity­wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, pp.1378­ 1391.
Hashimoto, N., Tsuruya, H. y Nakagawa, Y., 1998. Numerical computations of the nonlinear energy transfer of gravity­wave spectra in finite water depths, Coastal Engng. J., 40, pp.23­40.
Herterich, K. y Hasselmann, K., 1980. A similarity relation for the nonlinear energy transfer in a finite­ depth gravity­wave spectrum, J. Fluid Mech., 97, pp. 215­224.
Hsieh, B.B. y Pratt, T.C., 2001. Field data recovery in tidal system using artificial neural networks (ANNs), Coastal and Hydraulic Engineering Technical note CHETN­IV­38, U.S. Army Engineer Research and Development Center, Vicksburg, MS.
Hsiao, S. V. y Shemdin,O.H., 1983. Measurements of wind velocity and pressure with a wave follower during MARSEN. J. Geophys. Res., 88, C14, pp. 9841­9849.
Hurdle, D.P. y G. Ph. van Vledder, 2004. Proc. 23rd Int. Conf. On Off_shore Mech. And Arctic. Eng.
Isozaki, I. y Uji, T., 1973. Numerical prediction of ocean wind waves. Paper Meteorol. Geophys. 24, pp. 207­231.
Jahne, B. y Riemer, K.S., 1990. Two­dimensional wavenumber spectra of small­scale water surface waves. J. Geophys. Res, 95, pp. 11 431­11 546. Janssen, P.A.E.M., 1989. Wave­induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19: pp. 745­754.
Janssen, P.A.E.M., 1991a. Quasi­linear theory of wind­ wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, pp. 1631­1642.
Janssen, P.A.E.M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow, Int. Union of Theor. And Appl. Mech. (IUTAM), Sydney, Australia, pp. 193­198.
Jeffreys, H., 1924. On the formation of waves by wind. Proc.Roy. Soc. A, 107, pp. 189­206.
Jeffreys, H., 1925. On the formation of waves by wind, II. Proc. Roy. Soc. A, 110, pp. 341­347.
Jillians, W. J., 1989. The superharmonic instability of Stokes waves in deep water. J. Fluid Mech. 284: pp. 563­79.
Jonsson, I.G., 1966. Wave boundary layers and friction factors, Proc. 10th Int. Conf. Coastal Engineering, ASCE, pp. 127­148.
Jonsson, I.G. y Carlsen, N.A., 1976. Experimental and theoretical investigations in an oscillatory turbulent boundary layer, J. Hydraulic Research, 14, pp. 45­60.
Jonsson, I.G., 1980. A new approach to rough turbulent boundary layers, Ocean Engineering, 7, pp. 109­152.
Kambua, W., Supharatid, S. y Tang, I.M., 2005. Ocean wave forecasting in the gulf of Thailand during typhoon Linda 1997: WAM and Neural Network approaches. ScienceAsia., 31, pp. 243­250.
Kawai, S., 1979. Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech., 93, pp. 661­703.
Kelvin, Lord W., 1871. The influence of wind on waves in water supposed frictionless. Philos. Mag., 42: pp. 368­374.
Klinke, J. y Jahne, B., 1995. Measurements of short ocean waves during the MBL ARI West Coast experiment,” in Air­Water Gas Trans­ fer ­ Selected papers from the Third Interna­ tional Symposium on Air­Water Gas Transfer (B. J. Monahan, ed.), pp. 165­173.
Kunishi, H., 1963. An experimental study on the generation and growth of wind waves. Bulletin of Disaster Prevention Research Institute, Kyoto Univ., No. 61, pp. 1­41.
Komatsu K., Masuda A., 1996. A new scheme of nonlinear energy transfer amoung the wind waves:RIAM method ­ Algorithm and performance, J. of Oceanography, 52, pp. 509­537.
Komen, G.J., Hasselmann, S. y Hasselmann, K., 1984. On the existenceof a fully developed wind­sea spectrum, J. Phys. Oceanogr., 14, pp. 1271­1285.
Lavrenov, I.V., 1991. Nonlinear interaction of waves rips, Izu. USRR AS J.fizika atmosfery i okeana, 27, N 4, pp. 438­447.
Lavrenov, I.V., 2001. Efect of wind wave parameter fluctuation on the nonlinear spectrum evolution. J. Phys. Oceanogr., 31:861­873, 2001.
LeBlond, P.H. y Mysak, L.A., 1978. Waves in the Ocean.Elsevier, Amsterdam, The Netherlands, 602 p.
Lighthill, M. J., 1962. Physical interpretation of mathematical theory of wave generation by wind. J. Fluid Mech., 14, pp. 385­398.
Liu, A. K., P. W. Vachon, y C. y. Peng. 1991. Observation of wave refraction at an ice edge by synthetic aperture radar, J. Geophys. Res., 96(C3), pp. 4803­4808.
Lizano, R., 2001. Evaluación de modelos numéricos de tercera generación para el pronóstico de oleaje en Centroamérica y México. Top. Meteor. Oceanog., 8(1), pp. 40­29.
Lizano, R., 2003. Técnicas de pronóstico de oleaje para las costas de Costa Rica. Centro de Investigaciones Geofísicas (CIGEFI) Universidad de Costa Rica.
Lock, R. C., 1954. Hydrodynamic stability of the flow in the laminar boundary layer between parallel streams. Proc.Camb. Phil. Soc., 50, pp. 105­124.
Lonin, S., Lonina, I. y Tuchkovenko, Y.S., 1996. Utilización del modelo Nedwam para el cálculo y pronóstico del oleaje en el Mar Caribe Boletín Científico CIOH No. 17, ISSN 0120­0542, Cartagena de Indias, Colombia, pp. 37­45.
Longuet­Higgins, M. S., Cartwright , D. E. y Smith, N. D., 1963. Observations of the directional spectrum of sea waves using the motion of a floating buoy. In Ocean Wave Spectra, Englewood Cliffs, N.J., Prentice­Hall. pp. 111­136.
Longuet­Higgins, M.S., 1976. On the nonlinear transfer of energy in the peak of a gravity­wave spectrum: A simplified model. Proc. Roy. Soc. Lond. A, 347, pp.311­ 328.
Longuet ­ Higgins MS., 1995. Parasitic capillary waves: a direct calculation. J. Fluid Mech 301, pp. 79­107.
LUO, W., 1995. Wind wave modeling in shallow water with application to the Southern North Sea. Katholieke Universiteit Leuven. Belgica. 198 P.
Madsen, O.S., Poon, Y.K. y Graber, H.C., 1988. Spectral wave attenuation by bottom friction: Theory, Proc. 21th Int. Conf. Coastal Engineering, ASCE, pp.492­ 504.
Mase, H., Sakamoto, M. y Sakai, T., 1995. Neural network for stability analysis of rubble­mound breakwaters. J. Waterway, Port, Coastal and Ocean Engng., ASCE, 121 (6), pp. 294­299.
Makin, V. K. y Kudryavtsev, V. N., 1999. Coupled sea surfaceatmosphere model, Pt.1 Wind over waves coupling, J. Geophys. Res., 104, pp. 7613­7623.
Massel, S.R., 1996. Ocean Surface Waves: Their physics and prediction. Advanced series on Ocean Engineering ­Volume 11.World Scientic. 494p.
Masuda, A., 1980. Nonlinear energy transfer between wind waves. J. Phys. Oceanogr., 10, pp. 2082­2093.
McGoldrick, M. F., Phillips, O. M., Huang, N. y Hodgson, T., 1966. Measurement of resonant wave interactions. J. Fluid Mech., 25, pp. 437­456.
Melville, W. K., 1983. Wave modulation and breakdown. J. Fluid Mech. 128, pp. 489­506.
Melville, W. K., Loewen, M. R., Felizardo, F. C., Jessup, A. T. y Buckingham, M. J., 1988. Acoustic and microwave signature of breaking waves. Nature 336, pp. 54­59.
Melville, W. K., 1996. The roll of surface­wave breaking in air­sea interaction. Annu. Rev. Fluid Mech., 28, pp. 279­321.
Miles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech. 3(2) pp. 185­204.
Miles, J. W., 1960. On the generation of surface waves by turbulent shear flow. J. Fluid Mech., 7, pp. 469­478.
Miles, J. W., 1993. Surface wave generation revisited. J. Fluid Mech., 256, pp. 427­441.
Mitsuyasu, H., 1968a. A note on the nonlinear energy transfer in the spectrum of wind­generated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ., 16, pp. 251­264.
Mitsuyasu, H. y Rikiishi, K., 1978. The growth of durationlimited wind waves. J. Fluid Mech., 85(4), 705­ 730.
Mitsuyasu, H. and Honda, T. (1982): Wind­induced growth of water waves. J. Fluid Mech., 123, pp. 425­ 442.
Motzfeld, H., 1937. Die turbulente Strömung an welligen Wänden. Z. angew. Math. Mech., 17, pp. 193­212.
Mui, R.C.Y. y Dommermuth, DG. 1995. The vertical structure of parasitic capillary waves. J. Fluids Eng. 117, pp. 355­61.
Neumann, G., 1953. On ocean wave spectra and a new method of forecasting Wind­Generated Sea. Beach Erosion Board, Corps of engineers,Tech. Memo., No. 43. 42 P.
Nordheim, L.W., 1928. On the kinetic method in the new statistics and its application in the electron theory of conductivity, Proc. R. Soc., A 119, pp. 689­699.
Padilla, H., Osuna, R.P., Monbaliu, J. y. Holthuijsen, L. 1998. Intercomparing third­generation wave model nesting, 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27­30, Melbourne, Florida, pp. 102­112.
Perlin, M., Lin, H. y Ting, C.L., 1993. On parasitic capillary waves generated by steep gravity waves: an experimental investigation with spatial and temporal measurements. J. Fluid Mech. 255, pp. 597­620.
Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mechanics. 2 (5): pp. 417­445.
Phillips, O. M., 1958. The equilibrium range in the spectrum of wind­generated waves. J. Fluid Mech., 4(4), pp. 426­434.
Pierls, R., 1981. Quantum theory of Solids, Clarendon Press, Oxford.
Pierson, W.J., 1952. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves, parts I and II. Technical report, New York University, College of Engineering, Res. Div Dept; of Meteorol. and Oceanogr. Prepared for the Beach Erosion Board, Dept. of the Army, and Ocean of Naval Res., Dept. of the Navy, 461.
Pierson, W.J. y Marks W., 1952. The power spectrum analysis of ocean wave records. Tra s. Amer. Geophys. Union. 33, pp.834­844.
Pierson, W. J., 1953. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves, Parts I and II, N.Y.U., Coll. of Eng., Res. Div., Dept. Meteorol. And Oceanogr., 461 P.
Pierson, W.J. y Moskowitz,L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69(24), pp. 5,181­ 5,190.
Pierson, W., Tick, L. y Baer, L., 1966. Computer­based rocedures for predicting global wave forecasts and wind field analyses capable of using wave data obtained by space craft. Proc. Nav. Hydrodyn.Symp., 6th, pp. 499­529.
Plant, W. J., 1982. A relationship between wind stress and wave slope. J. Geophys. Res., 87, pp. 1961­1967.
Polnikov, V.G., 1989. Calculation of nonlinear energy transfer by surface gravitacional waves spectrum, Izu.USSR AS L. fiziku atmosfery i okeana, 25, pp. 1214­1225.
Polnikov, V. G., 1991. A third generation spectral model for wind waves, Izvestiya, Atm. and Ocean. Phys. 27, N8, (English transl.), pp. 615­623.
Polnikov, V.G., 1996. Nonlinear Energy Transfer through the spectrum of gravity waves for the Finite Depth Case, J. Physical oceanography. J., 27, pp. 1482­1491.
Polnikov, V.G., Volkov, Y.A. y Pogarskii, F.A., 2002. Wind wave model with a dynamic boundary layer. Nonlinear Processes in Geophysics 9, pp. 367­371.
Polkinov. V.G., 2003. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves. Nonlinear Processes in Geophysics 10: pp. 425­434.
Pushkarev, A., Resio, D. y Zakharov, V., 2004. Second generation diffusion model of interacting gravity waves on the surface of deep fluid. Nonlinear Processes in Geophysics 11, pp.329­342.
Repko, A., Van Gelder, P.H.A.J.M.,Voortman H.G. y Vrijling, J.K., 2001. Bivariate statistical analysis of wave climat es, Proceedings of International Conference on Coastal Engineering.
Resio, D.T., 1981. The estimation of a wind wave spectrum in a discrete spectral model. J. Phys., 11, pp. 510 ­525.
Resio, D. y Perrie, W., 1991. A numerical study of nonlinear energy fluxes due to wave­wave interactions. Part I: Methodology and basic results, J. Fluid Mech., 223, pp. 609­629.
Resio, D.T., Pihl, J.H., Tracy, B.A. y Vincent, C.L., 2001. Nonlinear energyfluxes andthefinitedepthequilibriumrange wave spectra, J. Geophys. Res., 106, C4, pp. 6985­7000.
Ris, R.C., 1997. Communications on hydraulic and geotechnical engineering. Report No. 97­4. Faculty of Civil Engineering. Delf University of Technology. 160 P.
Roske, F., 1997.Sea level forecasts using neural networks. German J. of Hydrography, 49 (1), pp.71­99.
Ruvinsky, K.D., Feldstein, F.I. y Freidman, G.I., 1991. Numerical simulations of the quasistationary stage of ripple excitation by steep gravity­capillary waves. J. Fluid Mech. 230; pp. 339­53.
Shemdin, O. H. y Hsu, E. Y., 1967. The dynamics of wind in the vicinity of progressive water waves. J. Fluid Mech., 30, pp. 403­416.
Snyder, R. L. y Cox, C. S., 1966. A field study of the wind generation of ocean waves. J. Mar. Res., 24, pp. 141­178.
Snyder, R. L., Dobson, F. W., Elliott, J. A. y Long, R.B., 1981. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, pp. 1­59.
Stanton, T. E., Marshal, D. y Houghton, R., 1932. The growth of waves on water due to the action of the wind. Proc. Roy.Soc. A, 137, pp. 283­293.
Steward, R. , 2005. Introduction to Phys ical Oceanography. Department of Oceanography Texas A & M University. 279 P.
Stokes G.G. (1847). On the theory of oscillatory waves. Camb. Trans. 8; pp.441­473.
Su, M.­Y., Bergin, M., Marlev, P. y Myrick, R.,1982. Experiments on nonlinear instabilities and evolution of steep gravitywave trains. J. Fluid Mech. 124; pp.45­72.
Suzuki, Y. y Isozaki, I., 1994. On the development of a global ocean wave model JWA3G. Proc. Pacific Ocean Remote Sensing Conf. in Melbourne, Australia, 195­201.
Suzuki, T., 1995. In First Edoardo Amaldi Conference on Gravitational Wave Experiments, edited by E. Coccia, G. Pizzella and F. Ronga (World Scientific, Singapore) 115 P.
Sverdrup, H. y Munk, W., 1947. Wind, sea and swell: theory of relation for forecasting. H. O. Publication 601. U. S. Naval Oceanographic Office. Washington, D. C.
SWAN, 2006. Technical Documentation. Cycle III version 40.51.Delft University of Technology Faculty of Civil Engineering and Geosciences. Netherlands. pp. 12­33.
Tejada, C., M. Gonzáles y L. Otero. (2004). Desarrollo de un módulo informático para el manejo de datos de oleaje visual para aguas jurisdiccionales colombianas. XXI Congreso Latinoamericano de Hidráulica. Sao Pedro, estado Sao Paulo, Brasil. 11 P.
Thirumalaiah, K., y M.C. Deo, 1998: River stage forecasting using artificial neural networks. J.Hydrologic Engng., ASCE, 3 (1), pp.26­32.
Tsai, C.P. y Lee, T.L., 1999. Back­propagation neural network in tidal­level forecasting. J. Waterway, Port, Coastal and Ocean Engineering., ASCE, 125 (4), pp.195­202.
Toba, Y., 1988. Similarity laws of the wind wave and the coupling process of the air and water turbulent boundary layers. Fluid Dyn. Res., 2, pp.263­279.
Tolman, H. L., 1989. The numerical model WAVEWATCH: a third generation model for hindcasting of wind waves on tides in shelf seas. Technical Report 89­2, Faculty of Civil engineering, Delft University of Technology, ISSN 0169­6548.
Tolman, H. L., 1991. A third generation model for wind waves on slowly var ying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, pp. 782­797.
Tolman, H. L., 1992. Effects of numerics on the physics in a third­generation wind­wave model. J. Phys. Oceanogr., 22, pp. 1095­1111.
Tolman, H.J., 1992a. Effects of numerics on the physics in a third generation wind­wave model, J. Phys. Oceanogr., 22, 10, pp.1095­1111.
Tolman, H.L. y.Chalikov, D.V., 1996. Source terms in a thir d ­ generation wind­wave model. J.P hys. Oceanogr., 26, pp. 2497­2518.
Tolman, H. L., 2002. User Manual and system documentation of WAVEWATCH­III. Version 2.22. Tech. Note 222, NOAA/NWS/NCEP/OMB,133P.
Tolman, H. L., 2002b. Validation of WAVEWATCH III version 1.15 for a global domain. NOAA / NWS / NCEP / OMB Technical Note Nr. 213, 33 P.
Tolman, H. L., 2002c. Validation of WAVEWATCH­III Version 1.15 for global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB,P.
Townsend, A. A., 1972. Flow in a deep turbulent boundary layer over a surface distorted by water waves. J. Fluid Mech., 55, pp. 719­735.
Tracy, B. y Resio, D.T. 1982. Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WES Report 11, US Army Corps of Engineers.
Ueno, K. y Ishizaka M., 1997. Efficient computationalscheme of nonlinear energy transfer of wind waves. SokkoJihou, 64, pp.75­80.
Ueno, K., 1998. On the energy dissipation term of wave models. Sokkou­Jihou, 65, pp.S181­S187.
Ueno, K. y Kohno, N., 2004. The development of the third generation wave model MRI­III for operational use. In: The 8th International Workshop on Wave Hindcasting Oahu, Hawaii. November.
Ursell, F., 1956. Wave generation by wind. In Surveys in Mechanics, ed. by G. K. Batchelor, Cambridge University Press. pp. 216­249.
Valenzuela, G., 1976. The growth of gravity capillary waves in a coupled shear flow, J. Fluid Mech., 76, pp. 229­250.
Vaziri, M., 1997. Prediction of Caspian sea surface water level by ANN and ARIMA models, J. Wtrwy., Port, Coast., and Oc. Engrg., ASCE, 123(4) 4), pp. 158­62.
Waseda, T,. Toba, Y, y Tulin, M.P., 2001. Adjustment of wind waves to sudden shanges of wind speed. Journal of Oceanography, Vol. 57, pp. 519 ­ 533.
WAMDI Group (13 authors) 1988. The WAM model. A third genereation ocean wave prediction model. J. Phys.Oceanogr., 18, pp.1775­1810.
Wang, C., Wang, Z., Jin, J. y Peng, Q., 2003. Real­time Simulation of Ocean Wave Based on Cellular Automata.CAD/Graphics 2003.
Webb, D.J., 1978. Non­linear transfers between sea waves, Deep­Sea Res., 25, pp. 279­298.
Wetzel, L.B., 1993. A time domain model for sea scatter. Radio Sci, 28, pp.139­150.
Wheless, G. H. y Csandy, G. T., 1993. Instability waves on the air­sea interface. J. Fluid Mech., 248, pp. 363­381.
Wilson, B. W., 1965. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deut. Hydrogr. Z., 18, pp. 114­130.
Winebrenner D.P. y Hasselmann, K., 1988. Specular point scattering contribution to the mean synthetic aperture radar image of the ocean surface. J. Geophys. Res, 93, pp. 9281­9294.
Wu, J., 1982. Wind ­ stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, pp. 9704­9706.
Wues t, W., 1949. Beitrag zur Ent stehung von Wasserwellen durch Wind. Z. Angew. Math. Mech., 29, pp. 239­252.
Zakharov, V. E., 1966. Some aspects of nonlinear theory of surface waves (in Russian), PhD Thesis, Budker Institute for uclear Physics for Nuclear Physics, Novosibirsk, USSR.
Zakharov, V.E. y Filonenko, N.N., 1966. Energy spectrum of stochastic oscillation in fluid surface Doklady Acad. Nauk SSSR, 170, N6, pp. 1292­1295.
Zakharov, V.Y. y Zaslavskii, M.M., 1982. Kinetic equation and Kolmogorov’s spectra in in week turbulent theory of wind waves, Proc.Acad.Sc.USSR, Atmosphere and Ocean Physics, Vol.18, 9, pp. 970 ­ 980.
Zakharov, V. E. y Pushkarev, A., 1999. Diffusion Model of Interacting Gravity Waves on the Surface of Deep Fluid, Nonlin. Proc. Geophys., 6, pp. 1­10.
Zhang, X., 1995. Capillary­gravity and capillary waves generated in a wind­wave tank: observations and theories. J. Fluid Mech. 289, pp.51­8.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Avances en recursos hidráulicos
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3347/1/Articulo.html
bitstream.checksum.fl_str_mv 34eb53733027250f2b7bf2a202f7dadb
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481171174064128
spelling 2017-06-15T21:49:40Z2017-06-15T21:49:40Z2007Montoya Ramírez, R., & Osorio Arias, A. (2007). Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia. Avances en recursos hidráulicos, 0(15).01215701http://hdl.handle.net/11407/3347Durante el siglo pasado diferentes autores presentaron sus teorías sobre el oleaje basados en las leyes de la física relacionadas con el movimiento ondulatorio, estas teorías hicieron representaciones de las olas del mar como ondas de amplitud finita o de amplitud pequeña en las cuales la interacción entre ondas podía considerarse como lineal; sin embargo quedaron incompletas al tratar de explicar los mecanismos físicos relacionados con el crecimiento del oleaje. Sólo fue hasta mediados del siglo XX cuando los principales aportes matemáticos y experimentales impulsaron los modelos de generación de oleaje que explicaban de forma más completa y precisa la física del fenómeno. La información del oleaje con características adecuadas es de vital importancia para el diseño de cualquier obra costera, sin embargo ésta no siempre está disponible y es necesario utilizar modelos que permitan suplir dicha información. El presente artículo muestra de forma resumida la caracterización y evolución de los principales modelos que han sido empleados para el pronóstico del oleaje producido por el viento, sus ventajas y desventajas respecto a otros modelos. Por último presenta una recopilación de la información de oleaje disponible en Colombia.During the last century different authors presented their wave action theories based on the laws of the physics related to the undulatory movement, these theories made representations of the sea waves like waves of finite amplitude or small amplitude in which the interaction between waves could be considered like linear; nevertheless they were short when trying to explain the physical mechanisms related to the growth of the wave action. It was until half¬full of century XX when the main mathematical and experimental contributions impelled the models of wave generation that explained of more complete form the physics of the phenomenon. The surge information with the suitable characteristics is too important for the design of any coastal structure, nevertheless not always this information is available, for that reason the use ofmodelsthat allowto replace this information havevital importance. This articlepresents a summarized characterization and evolution of the main models that have been used to forecast the wave action produced by the wind, their advantages and disadvantages respect others. Finally it presents a compilation of information available in ColombiaspaUniversidad Nacional de ColombiaIngeniería CivilFacultad de Ingenieríashttp://revistas.unal.edu.co/index.php/arh/article/view/9325/9968Avances en recursos hidráulicos número 15, mayo de 2007Agudelo, P., Restrepo, A.F., Molares R., Tejada C.E., Torres, R. y Osorio A.F., 2005. Determinación del clima medio y extremal en el Caribe colombiano. Boletín científico CIOH. N°23.Agrawal, J.D. y Deo, M.C., 2002. On­line wave prediction. Marine Structures, 15:pp. 57­74.Alexey, V. F. y Kendall, M.W., 1998. Nonlinear gravity capillary waves with forcing and dissipation. J. Fluid Mech., 354: pp.1­42.Alves, J.H.G.M. y Banner, M.L., 2003. Performance of a saturationbased dissipation­rate source term in modelling the fetch­limited evolution of wind waves, J. Phys. Oceanogr., 33, pp.1274­1298.Al’Zanaidi, M.A. y Hui, H. W., 1984. Turbulent air flow over water waves­A numerical study. J. Fluid Mech., 48, pp.225­246.Battjes, J.A. y. Janssen, J.P.F.M., 1978. Energy loss and set­up due to breaking of random wave. Proc. 16th Int. Conf. Coastal Engineering, Hamburg. pp.569­587.Banner, M. L. y Peregrine, D. H., 1993. Wave breaking in deep water. Annu. Rev. Fluid Mech., 25, pp.373­397.Barnett, T. P. y Wilkerson, J. C., 1967. On the generation of ocean wind waves as inferred from airborne radar measurements of fetch­limited spectra. J. Mar. Res., 25, pp.292­321.Barnett, T. P., 1968. On the generation, dissipation and prediction of ocean wind wave. J. Geophys. Res., 73(2):pp.513­529.Belcher, S. E. y Hunt, J. C. R., 1993. Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109­148.Booij, N.y Holthuijsen, L.H., 1987. Propagation of ocean waves in discrete spectral wave models. J. Coput. Physics, 68, pp.307¬326.Booij, N., Ris, R.C. y Holthuijsen, L.H., 1999. A third­ generation wave model for coastal regions, Part I, Model description and validation, J.Geoph.Research, 104, C4, pp.7649­7666.Bretschneider, C., 1952. Revised wave forecasting relationships. Proceeding of the 2nd Coastal Enrineering Conference. American Society of Civil Enginneers. 1­5.Bretschneider, C., 1958. Revisions in wave forecasting: deep and shallow water. Proceeding of the 6nd Coastal Enrineering Conference. American Society of Civil Enginneers. New York.Bouws, E. y Battjes, J.A., 1982. AMonte­Carlo approach to the computation of refraction of water waves, J. Geophys. Res., 87, pp.5718­5722.Bouws, E. y Komen, G.J., 1983. On the balance between growth and dissipation in an extreme, depth­limited wind­sea in the southern North Sea, J. Phys. Oceanogr., 13, pp.1653­1658.Cavaleri, L. y Rizzoli, P.M., 1981. Wind wave prediction in Shallow water ­ theory and applications. J.Geoph.Res. 8b, CII:pp. 10961­10973.Chalikov, D.V. y Belevich, M.Y., 1993. One­dimensional theory of the wave boundary layer. Bound. Layer Meteor., 63, pp.65­96.Chalikov, D.V., 1995. The parameterization of the wave boundary layer. J. Phys. Oceanogr., 25, pp.1333­1349.Charnock, H., 1955. Wind stress on water surface. Quart. J. Roy. Meteor.Soc., 81, pp.639­640.Chereskin, T. K. y Christensen, M.E., 1985. Modulational development of nonlinear gravity­wave groups. J. Fluid Mech. 151:pp.337­65.Collins, J.I., 1972. Prediction of shallow water spectra, J. Geophys. Res., 77, No. 15, pp.2693­2707.Cox, C. S., 1958. Measurements of slopes of high­ frequency wind waves. J. Mar. Res., 16, pp.199­225.Crapper, G.D., 1970. Non­linear capillary waves generated by steep gravity waves, J. Fluid Mech. 40:pp.149­159.Deo, M.C., Jha, A., Chaphekar, A.S. y Ravikant, K., 2001. Neural networks for wave forecasting. Ocean Engng., 28, pp.889­898.Donelan, M. A., Hamilton, J. y Hui, W. H., 1985. Directional spectra of wind­generated waves. Phil. Trans. Roy. Soc.London, A, 315, pp.509­562.Donelan, M.A. y Pierson, W.J., 1987. Radar scattering and equilibrium ranges in wind­generated waves with application to scatterometry, J. Geophys. Res., 92, pp.4971­5029.Dommermuth, D.G., 1994. Efficient simulation of short and long­wave interactions with applications to capillary waves. J. Fluids Eng. 116:pp.77­82.Ebuchi, N., Kawamura, H. y Toba Y., 1987. Fine structure of laboratory wind­wave surfaces using an optical method. Boundary­Layer Meteorol, 39. pp.133­51.Eckart, C., 1953. The generation of wind waves over a water surface. J. Appl.Phys., 24. pp.1485­1494.Eldeberky, Y., 1996. Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.Eldeberky, Y. y Battjes, J.A., 1996. Spectral modelling of wave breaking: Application to Boussinesq equations, J. Geophys. Res., 101, No. C1, pp. 1253­1264.Fox, M. J. H., 1976. On the nonlinear transfer of energy in the peak of a gravity­wave spectrum­II. Proc. Roy. Soc. A, 348, pp. 467­483.Gent, P. R. y Taylor, P. A., 1976. A numerical model of the air flow above water waves. J. Fluid Mech., 77, pp. 105­128.Guillaume, A., 1987. VAG: modele de prévision de l’état de la mer en eau profonde. Technical Report 118, Etablissement d’Et udes et Recher ches Météorologiques, N 178.Gunther, H., Hasselmann, S. y Janssen, P.A.E.M., 1992. The WAM model Cycle 4 (revised version), Deutsch. Klim.Rechenzentrum, Techn. Rep. No. 4, Hamburg, Germany.GIOC. Grupo de Ingeniería oceanográfica y de costas de la Universidad de Cantabria., 2002. Manuales de Referencia. Vol 1. Dinámica.Hanson, J. L. y Phillips, O.M., 1999. Wind sea growth and dissipation in the open ocean. J. Phys.Oceanogr, 29, pp. 1633­1648.Hasselmann, K., 1962. On the non­linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech., 12, pp. 481­500.Hasselmann, K., 1963. On the non­linear energy transfer in a gravity wave spectrum. Part 2. J. Fluid Mech., 15, 273­281; Part 3. 15, pp. 385­398.Hasselmann, K., 1963a. On the non­linear transfer in a gravity wave spectrum, part 2. Conservation theory, wave­particle correspondence, irreversibility, J. Fluid Mech., 15, pp. 273­281.Hasselmann, K., 1963b. On the non­linear transfer in a gravity wave spectrum, part 3. Evaluation of energy flux and sea­swell interactions for a Neuman spectrum, J. Fluid Mech., 15, pp. 385­398.Hass elmann, K., 1966. Feynman diagrams and interaction rules of wave­wave scattering processes. Rev. of Geophys., 4(1):pp.1­32.Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., et al., 1973. Measurements of wind­wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogh. Z. Suppl., 12, A8.N 12, 95 P.Hasselmann, K., Ross, D.B., Muller P. y Sell, W., 1976. A parametric wave prediction model, J. Phys. Oceanogr., 6, pp. 200.228.Hasselmann, S. y Hasselmann, K., 1981. A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum. Hamb. Geophys. Einzelschr. Ser. A., Wiss. Abh. 52. 163 P.Hasselmann, B. y Hasselmann, K., 1985. Computations and parameterizations of the nonlinear energy transfer in gravity wave spectrum. Part 1. J.Phys. Oceanog., 15, pp.1369­1377.Hasselmann, S., Hasselmann, K.J., Allender H. y Barnett, T. P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity­wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, pp.1378­ 1391.Hashimoto, N., Tsuruya, H. y Nakagawa, Y., 1998. Numerical computations of the nonlinear energy transfer of gravity­wave spectra in finite water depths, Coastal Engng. J., 40, pp.23­40.Herterich, K. y Hasselmann, K., 1980. A similarity relation for the nonlinear energy transfer in a finite­ depth gravity­wave spectrum, J. Fluid Mech., 97, pp. 215­224.Hsieh, B.B. y Pratt, T.C., 2001. Field data recovery in tidal system using artificial neural networks (ANNs), Coastal and Hydraulic Engineering Technical note CHETN­IV­38, U.S. Army Engineer Research and Development Center, Vicksburg, MS.Hsiao, S. V. y Shemdin,O.H., 1983. Measurements of wind velocity and pressure with a wave follower during MARSEN. J. Geophys. Res., 88, C14, pp. 9841­9849.Hurdle, D.P. y G. Ph. van Vledder, 2004. Proc. 23rd Int. Conf. On Off_shore Mech. And Arctic. Eng.Isozaki, I. y Uji, T., 1973. Numerical prediction of ocean wind waves. Paper Meteorol. Geophys. 24, pp. 207­231.Jahne, B. y Riemer, K.S., 1990. Two­dimensional wavenumber spectra of small­scale water surface waves. J. Geophys. Res, 95, pp. 11 431­11 546. Janssen, P.A.E.M., 1989. Wave­induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19: pp. 745­754.Janssen, P.A.E.M., 1991a. Quasi­linear theory of wind­ wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, pp. 1631­1642.Janssen, P.A.E.M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow, Int. Union of Theor. And Appl. Mech. (IUTAM), Sydney, Australia, pp. 193­198.Jeffreys, H., 1924. On the formation of waves by wind. Proc.Roy. Soc. A, 107, pp. 189­206.Jeffreys, H., 1925. On the formation of waves by wind, II. Proc. Roy. Soc. A, 110, pp. 341­347.Jillians, W. J., 1989. The superharmonic instability of Stokes waves in deep water. J. Fluid Mech. 284: pp. 563­79.Jonsson, I.G., 1966. Wave boundary layers and friction factors, Proc. 10th Int. Conf. Coastal Engineering, ASCE, pp. 127­148.Jonsson, I.G. y Carlsen, N.A., 1976. Experimental and theoretical investigations in an oscillatory turbulent boundary layer, J. Hydraulic Research, 14, pp. 45­60.Jonsson, I.G., 1980. A new approach to rough turbulent boundary layers, Ocean Engineering, 7, pp. 109­152.Kambua, W., Supharatid, S. y Tang, I.M., 2005. Ocean wave forecasting in the gulf of Thailand during typhoon Linda 1997: WAM and Neural Network approaches. ScienceAsia., 31, pp. 243­250.Kawai, S., 1979. Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech., 93, pp. 661­703.Kelvin, Lord W., 1871. The influence of wind on waves in water supposed frictionless. Philos. Mag., 42: pp. 368­374.Klinke, J. y Jahne, B., 1995. Measurements of short ocean waves during the MBL ARI West Coast experiment,” in Air­Water Gas Trans­ fer ­ Selected papers from the Third Interna­ tional Symposium on Air­Water Gas Transfer (B. J. Monahan, ed.), pp. 165­173.Kunishi, H., 1963. An experimental study on the generation and growth of wind waves. Bulletin of Disaster Prevention Research Institute, Kyoto Univ., No. 61, pp. 1­41.Komatsu K., Masuda A., 1996. A new scheme of nonlinear energy transfer amoung the wind waves:RIAM method ­ Algorithm and performance, J. of Oceanography, 52, pp. 509­537.Komen, G.J., Hasselmann, S. y Hasselmann, K., 1984. On the existenceof a fully developed wind­sea spectrum, J. Phys. Oceanogr., 14, pp. 1271­1285.Lavrenov, I.V., 1991. Nonlinear interaction of waves rips, Izu. USRR AS J.fizika atmosfery i okeana, 27, N 4, pp. 438­447.Lavrenov, I.V., 2001. Efect of wind wave parameter fluctuation on the nonlinear spectrum evolution. J. Phys. Oceanogr., 31:861­873, 2001.LeBlond, P.H. y Mysak, L.A., 1978. Waves in the Ocean.Elsevier, Amsterdam, The Netherlands, 602 p.Lighthill, M. J., 1962. Physical interpretation of mathematical theory of wave generation by wind. J. Fluid Mech., 14, pp. 385­398.Liu, A. K., P. W. Vachon, y C. y. Peng. 1991. Observation of wave refraction at an ice edge by synthetic aperture radar, J. Geophys. Res., 96(C3), pp. 4803­4808.Lizano, R., 2001. Evaluación de modelos numéricos de tercera generación para el pronóstico de oleaje en Centroamérica y México. Top. Meteor. Oceanog., 8(1), pp. 40­29.Lizano, R., 2003. Técnicas de pronóstico de oleaje para las costas de Costa Rica. Centro de Investigaciones Geofísicas (CIGEFI) Universidad de Costa Rica.Lock, R. C., 1954. Hydrodynamic stability of the flow in the laminar boundary layer between parallel streams. Proc.Camb. Phil. Soc., 50, pp. 105­124.Lonin, S., Lonina, I. y Tuchkovenko, Y.S., 1996. Utilización del modelo Nedwam para el cálculo y pronóstico del oleaje en el Mar Caribe Boletín Científico CIOH No. 17, ISSN 0120­0542, Cartagena de Indias, Colombia, pp. 37­45.Longuet­Higgins, M. S., Cartwright , D. E. y Smith, N. D., 1963. Observations of the directional spectrum of sea waves using the motion of a floating buoy. In Ocean Wave Spectra, Englewood Cliffs, N.J., Prentice­Hall. pp. 111­136.Longuet­Higgins, M.S., 1976. On the nonlinear transfer of energy in the peak of a gravity­wave spectrum: A simplified model. Proc. Roy. Soc. Lond. A, 347, pp.311­ 328.Longuet ­ Higgins MS., 1995. Parasitic capillary waves: a direct calculation. J. Fluid Mech 301, pp. 79­107.LUO, W., 1995. Wind wave modeling in shallow water with application to the Southern North Sea. Katholieke Universiteit Leuven. Belgica. 198 P.Madsen, O.S., Poon, Y.K. y Graber, H.C., 1988. Spectral wave attenuation by bottom friction: Theory, Proc. 21th Int. Conf. Coastal Engineering, ASCE, pp.492­ 504.Mase, H., Sakamoto, M. y Sakai, T., 1995. Neural network for stability analysis of rubble­mound breakwaters. J. Waterway, Port, Coastal and Ocean Engng., ASCE, 121 (6), pp. 294­299.Makin, V. K. y Kudryavtsev, V. N., 1999. Coupled sea surfaceatmosphere model, Pt.1 Wind over waves coupling, J. Geophys. Res., 104, pp. 7613­7623.Massel, S.R., 1996. Ocean Surface Waves: Their physics and prediction. Advanced series on Ocean Engineering ­Volume 11.World Scientic. 494p.Masuda, A., 1980. Nonlinear energy transfer between wind waves. J. Phys. Oceanogr., 10, pp. 2082­2093.McGoldrick, M. F., Phillips, O. M., Huang, N. y Hodgson, T., 1966. Measurement of resonant wave interactions. J. Fluid Mech., 25, pp. 437­456.Melville, W. K., 1983. Wave modulation and breakdown. J. Fluid Mech. 128, pp. 489­506.Melville, W. K., Loewen, M. R., Felizardo, F. C., Jessup, A. T. y Buckingham, M. J., 1988. Acoustic and microwave signature of breaking waves. Nature 336, pp. 54­59.Melville, W. K., 1996. The roll of surface­wave breaking in air­sea interaction. Annu. Rev. Fluid Mech., 28, pp. 279­321.Miles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech. 3(2) pp. 185­204.Miles, J. W., 1960. On the generation of surface waves by turbulent shear flow. J. Fluid Mech., 7, pp. 469­478.Miles, J. W., 1993. Surface wave generation revisited. J. Fluid Mech., 256, pp. 427­441.Mitsuyasu, H., 1968a. A note on the nonlinear energy transfer in the spectrum of wind­generated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ., 16, pp. 251­264.Mitsuyasu, H. y Rikiishi, K., 1978. The growth of durationlimited wind waves. J. Fluid Mech., 85(4), 705­ 730.Mitsuyasu, H. and Honda, T. (1982): Wind­induced growth of water waves. J. Fluid Mech., 123, pp. 425­ 442.Motzfeld, H., 1937. Die turbulente Strömung an welligen Wänden. Z. angew. Math. Mech., 17, pp. 193­212.Mui, R.C.Y. y Dommermuth, DG. 1995. The vertical structure of parasitic capillary waves. J. Fluids Eng. 117, pp. 355­61.Neumann, G., 1953. On ocean wave spectra and a new method of forecasting Wind­Generated Sea. Beach Erosion Board, Corps of engineers,Tech. Memo., No. 43. 42 P.Nordheim, L.W., 1928. On the kinetic method in the new statistics and its application in the electron theory of conductivity, Proc. R. Soc., A 119, pp. 689­699.Padilla, H., Osuna, R.P., Monbaliu, J. y. Holthuijsen, L. 1998. Intercomparing third­generation wave model nesting, 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27­30, Melbourne, Florida, pp. 102­112.Perlin, M., Lin, H. y Ting, C.L., 1993. On parasitic capillary waves generated by steep gravity waves: an experimental investigation with spatial and temporal measurements. J. Fluid Mech. 255, pp. 597­620.Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mechanics. 2 (5): pp. 417­445.Phillips, O. M., 1958. The equilibrium range in the spectrum of wind­generated waves. J. Fluid Mech., 4(4), pp. 426­434.Pierls, R., 1981. Quantum theory of Solids, Clarendon Press, Oxford.Pierson, W.J., 1952. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves, parts I and II. Technical report, New York University, College of Engineering, Res. Div Dept; of Meteorol. and Oceanogr. Prepared for the Beach Erosion Board, Dept. of the Army, and Ocean of Naval Res., Dept. of the Navy, 461.Pierson, W.J. y Marks W., 1952. The power spectrum analysis of ocean wave records. Tra s. Amer. Geophys. Union. 33, pp.834­844.Pierson, W. J., 1953. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves, Parts I and II, N.Y.U., Coll. of Eng., Res. Div., Dept. Meteorol. And Oceanogr., 461 P.Pierson, W.J. y Moskowitz,L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69(24), pp. 5,181­ 5,190.Pierson, W., Tick, L. y Baer, L., 1966. Computer­based rocedures for predicting global wave forecasts and wind field analyses capable of using wave data obtained by space craft. Proc. Nav. Hydrodyn.Symp., 6th, pp. 499­529.Plant, W. J., 1982. A relationship between wind stress and wave slope. J. Geophys. Res., 87, pp. 1961­1967.Polnikov, V.G., 1989. Calculation of nonlinear energy transfer by surface gravitacional waves spectrum, Izu.USSR AS L. fiziku atmosfery i okeana, 25, pp. 1214­1225.Polnikov, V. G., 1991. A third generation spectral model for wind waves, Izvestiya, Atm. and Ocean. Phys. 27, N8, (English transl.), pp. 615­623.Polnikov, V.G., 1996. Nonlinear Energy Transfer through the spectrum of gravity waves for the Finite Depth Case, J. Physical oceanography. J., 27, pp. 1482­1491.Polnikov, V.G., Volkov, Y.A. y Pogarskii, F.A., 2002. Wind wave model with a dynamic boundary layer. Nonlinear Processes in Geophysics 9, pp. 367­371.Polkinov. V.G., 2003. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves. Nonlinear Processes in Geophysics 10: pp. 425­434.Pushkarev, A., Resio, D. y Zakharov, V., 2004. Second generation diffusion model of interacting gravity waves on the surface of deep fluid. Nonlinear Processes in Geophysics 11, pp.329­342.Repko, A., Van Gelder, P.H.A.J.M.,Voortman H.G. y Vrijling, J.K., 2001. Bivariate statistical analysis of wave climat es, Proceedings of International Conference on Coastal Engineering.Resio, D.T., 1981. The estimation of a wind wave spectrum in a discrete spectral model. J. Phys., 11, pp. 510 ­525.Resio, D. y Perrie, W., 1991. A numerical study of nonlinear energy fluxes due to wave­wave interactions. Part I: Methodology and basic results, J. Fluid Mech., 223, pp. 609­629.Resio, D.T., Pihl, J.H., Tracy, B.A. y Vincent, C.L., 2001. Nonlinear energyfluxes andthefinitedepthequilibriumrange wave spectra, J. Geophys. Res., 106, C4, pp. 6985­7000.Ris, R.C., 1997. Communications on hydraulic and geotechnical engineering. Report No. 97­4. Faculty of Civil Engineering. Delf University of Technology. 160 P.Roske, F., 1997.Sea level forecasts using neural networks. German J. of Hydrography, 49 (1), pp.71­99.Ruvinsky, K.D., Feldstein, F.I. y Freidman, G.I., 1991. Numerical simulations of the quasistationary stage of ripple excitation by steep gravity­capillary waves. J. Fluid Mech. 230; pp. 339­53.Shemdin, O. H. y Hsu, E. Y., 1967. The dynamics of wind in the vicinity of progressive water waves. J. Fluid Mech., 30, pp. 403­416.Snyder, R. L. y Cox, C. S., 1966. A field study of the wind generation of ocean waves. J. Mar. Res., 24, pp. 141­178.Snyder, R. L., Dobson, F. W., Elliott, J. A. y Long, R.B., 1981. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, pp. 1­59.Stanton, T. E., Marshal, D. y Houghton, R., 1932. The growth of waves on water due to the action of the wind. Proc. Roy.Soc. A, 137, pp. 283­293.Steward, R. , 2005. Introduction to Phys ical Oceanography. Department of Oceanography Texas A & M University. 279 P.Stokes G.G. (1847). On the theory of oscillatory waves. Camb. Trans. 8; pp.441­473.Su, M.­Y., Bergin, M., Marlev, P. y Myrick, R.,1982. Experiments on nonlinear instabilities and evolution of steep gravitywave trains. J. Fluid Mech. 124; pp.45­72.Suzuki, Y. y Isozaki, I., 1994. On the development of a global ocean wave model JWA3G. Proc. Pacific Ocean Remote Sensing Conf. in Melbourne, Australia, 195­201.Suzuki, T., 1995. In First Edoardo Amaldi Conference on Gravitational Wave Experiments, edited by E. Coccia, G. Pizzella and F. Ronga (World Scientific, Singapore) 115 P.Sverdrup, H. y Munk, W., 1947. Wind, sea and swell: theory of relation for forecasting. H. O. Publication 601. U. S. Naval Oceanographic Office. Washington, D. C.SWAN, 2006. Technical Documentation. Cycle III version 40.51.Delft University of Technology Faculty of Civil Engineering and Geosciences. Netherlands. pp. 12­33.Tejada, C., M. Gonzáles y L. Otero. (2004). Desarrollo de un módulo informático para el manejo de datos de oleaje visual para aguas jurisdiccionales colombianas. XXI Congreso Latinoamericano de Hidráulica. Sao Pedro, estado Sao Paulo, Brasil. 11 P.Thirumalaiah, K., y M.C. Deo, 1998: River stage forecasting using artificial neural networks. J.Hydrologic Engng., ASCE, 3 (1), pp.26­32.Tsai, C.P. y Lee, T.L., 1999. Back­propagation neural network in tidal­level forecasting. J. Waterway, Port, Coastal and Ocean Engineering., ASCE, 125 (4), pp.195­202.Toba, Y., 1988. Similarity laws of the wind wave and the coupling process of the air and water turbulent boundary layers. Fluid Dyn. Res., 2, pp.263­279.Tolman, H. L., 1989. The numerical model WAVEWATCH: a third generation model for hindcasting of wind waves on tides in shelf seas. Technical Report 89­2, Faculty of Civil engineering, Delft University of Technology, ISSN 0169­6548.Tolman, H. L., 1991. A third generation model for wind waves on slowly var ying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, pp. 782­797.Tolman, H. L., 1992. Effects of numerics on the physics in a third­generation wind­wave model. J. Phys. Oceanogr., 22, pp. 1095­1111.Tolman, H.J., 1992a. Effects of numerics on the physics in a third generation wind­wave model, J. Phys. Oceanogr., 22, 10, pp.1095­1111.Tolman, H.L. y.Chalikov, D.V., 1996. Source terms in a thir d ­ generation wind­wave model. J.P hys. Oceanogr., 26, pp. 2497­2518.Tolman, H. L., 2002. User Manual and system documentation of WAVEWATCH­III. Version 2.22. Tech. Note 222, NOAA/NWS/NCEP/OMB,133P.Tolman, H. L., 2002b. Validation of WAVEWATCH III version 1.15 for a global domain. NOAA / NWS / NCEP / OMB Technical Note Nr. 213, 33 P.Tolman, H. L., 2002c. Validation of WAVEWATCH­III Version 1.15 for global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB,P.Townsend, A. A., 1972. Flow in a deep turbulent boundary layer over a surface distorted by water waves. J. Fluid Mech., 55, pp. 719­735.Tracy, B. y Resio, D.T. 1982. Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WES Report 11, US Army Corps of Engineers.Ueno, K. y Ishizaka M., 1997. Efficient computationalscheme of nonlinear energy transfer of wind waves. SokkoJihou, 64, pp.75­80.Ueno, K., 1998. On the energy dissipation term of wave models. Sokkou­Jihou, 65, pp.S181­S187.Ueno, K. y Kohno, N., 2004. The development of the third generation wave model MRI­III for operational use. In: The 8th International Workshop on Wave Hindcasting Oahu, Hawaii. November.Ursell, F., 1956. Wave generation by wind. In Surveys in Mechanics, ed. by G. K. Batchelor, Cambridge University Press. pp. 216­249.Valenzuela, G., 1976. The growth of gravity capillary waves in a coupled shear flow, J. Fluid Mech., 76, pp. 229­250.Vaziri, M., 1997. Prediction of Caspian sea surface water level by ANN and ARIMA models, J. Wtrwy., Port, Coast., and Oc. Engrg., ASCE, 123(4) 4), pp. 158­62.Waseda, T,. Toba, Y, y Tulin, M.P., 2001. Adjustment of wind waves to sudden shanges of wind speed. Journal of Oceanography, Vol. 57, pp. 519 ­ 533.WAMDI Group (13 authors) 1988. The WAM model. A third genereation ocean wave prediction model. J. Phys.Oceanogr., 18, pp.1775­1810.Wang, C., Wang, Z., Jin, J. y Peng, Q., 2003. Real­time Simulation of Ocean Wave Based on Cellular Automata.CAD/Graphics 2003.Webb, D.J., 1978. Non­linear transfers between sea waves, Deep­Sea Res., 25, pp. 279­298.Wetzel, L.B., 1993. A time domain model for sea scatter. Radio Sci, 28, pp.139­150.Wheless, G. H. y Csandy, G. T., 1993. Instability waves on the air­sea interface. J. Fluid Mech., 248, pp. 363­381.Wilson, B. W., 1965. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deut. Hydrogr. Z., 18, pp. 114­130.Winebrenner D.P. y Hasselmann, K., 1988. Specular point scattering contribution to the mean synthetic aperture radar image of the ocean surface. J. Geophys. Res, 93, pp. 9281­9294.Wu, J., 1982. Wind ­ stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, pp. 9704­9706.Wues t, W., 1949. Beitrag zur Ent stehung von Wasserwellen durch Wind. Z. Angew. Math. Mech., 29, pp. 239­252.Zakharov, V. E., 1966. Some aspects of nonlinear theory of surface waves (in Russian), PhD Thesis, Budker Institute for uclear Physics for Nuclear Physics, Novosibirsk, USSR.Zakharov, V.E. y Filonenko, N.N., 1966. Energy spectrum of stochastic oscillation in fluid surface Doklady Acad. Nauk SSSR, 170, N6, pp. 1292­1295.Zakharov, V.Y. y Zaslavskii, M.M., 1982. Kinetic equation and Kolmogorov’s spectra in in week turbulent theory of wind waves, Proc.Acad.Sc.USSR, Atmosphere and Ocean Physics, Vol.18, 9, pp. 970 ­ 980.Zakharov, V. E. y Pushkarev, A., 1999. Diffusion Model of Interacting Gravity Waves on the Surface of Deep Fluid, Nonlin. Proc. Geophys., 6, pp. 1­10.Zhang, X., 1995. Capillary­gravity and capillary waves generated in a wind­wave tank: observations and theories. J. Fluid Mech. 289, pp.51­8.Avances en recursos hidráulicosModelos de PredicciónPronóstico de OleajeOlas de VientoOleajesEcuación de la EnergíaOndasPrediction ModelsWave ForecastWind WavesWave MotionEquation of the EnergyWavesLos modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montoya Ramírez, Rubén DaríoOsorio Arias, AndrésMontoya Ramírez, Rubén Darío; Universidad de MedellínOsorio Arias, Andrés; Universidad Nacional de Colombia, Sede MedellínORIGINALArticulo.htmltext/html491http://repository.udem.edu.co/bitstream/11407/3347/1/Articulo.html34eb53733027250f2b7bf2a202f7dadbMD5111407/3347oai:repository.udem.edu.co:11407/33472020-05-27 17:48:08.807Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co