Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study

Using first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene n...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4274
Acceso en línea:
http://hdl.handle.net/11407/4274
Palabra clave:
DFT
Nanoribbons
Optical
Phosphorene
Calculations
Electric fields
Electronic properties
Energy gap
Nanoribbons
DFT study
Dielectric functions
External electric field
First-principles calculation
Imaginary parts
Optical
Optical and electronic properties
Phosphorene
Optical properties
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_2260d444cc24b3cf942cd9f3dc1f5ca5
oai_identifier_str oai:repository.udem.edu.co:11407/4274
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
title Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
spellingShingle Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
DFT
Nanoribbons
Optical
Phosphorene
Calculations
Electric fields
Electronic properties
Energy gap
Nanoribbons
DFT study
Dielectric functions
External electric field
First-principles calculation
Imaginary parts
Optical
Optical and electronic properties
Phosphorene
Optical properties
title_short Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
title_full Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
title_fullStr Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
title_full_unstemmed Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
title_sort Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
dc.contributor.affiliation.spa.fl_str_mv Ospina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, Mexico
Correa, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv DFT
Nanoribbons
Optical
Phosphorene
Calculations
Electric fields
Electronic properties
Energy gap
Nanoribbons
DFT study
Dielectric functions
External electric field
First-principles calculation
Imaginary parts
Optical
Optical and electronic properties
Phosphorene
Optical properties
topic DFT
Nanoribbons
Optical
Phosphorene
Calculations
Electric fields
Electronic properties
Energy gap
Nanoribbons
DFT study
Dielectric functions
External electric field
First-principles calculation
Imaginary parts
Optical
Optical and electronic properties
Phosphorene
Optical properties
description Using first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:43Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:43Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 9270256
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4274
dc.identifier.doi.none.fl_str_mv 10.1016/j.commatsci.2017.03.048
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 9270256
10.1016/j.commatsci.2017.03.048
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4274
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017564283&doi=10.1016%2fj.commatsci.2017.03.048&partnerID=40&md5=afadd141c7c2adf51634b63d1727703b
dc.relation.ispartofes.spa.fl_str_mv Computational Materials Science
Computational Materials Science Volume 135, 1 July 2017, Pages 43-53
dc.relation.references.spa.fl_str_mv Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408
Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408
Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 92(16) doi:10.1103/PhysRevB.92.165406
Carvalho, A., Rodin, A. S., & Castro Neto, A. H. (2014). Phosphorene nanoribbons. EPL, 108(4) doi:10.1209/0295-5075/108/47005
Dai, J., & Zeng, X. C. (2014). Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 5(7), 1289-1293. doi:10.1021/jz500409m
Ding, Y., & Wang, Y. (2015). Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene:A first-principles study. Journal of Physical Chemistry C, 119(19), 10610-10622. doi:10.1021/jp5114152
Du, Y., Liu, H., Xu, B., Sheng, L., Yin, J., Duan, C. -., & Wan, X. (2015). Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Scientific Reports, 5 doi:10.1038/srep08921
Fan, Z. -., Sun, W. -., Jiang, X. -., Luo, J. -., & Li, S. -. (2017). Two dimensional schottky contact structure based on in-plane zigzag phosphorene nanoribbon. Organic Electronics: Physics, Materials, Applications, 44, 20-24. doi:10.1016/j.orgel.2017.02.002
Gomes Da Rocha, C., Clayborne, P. A., Koskinen, P., & Häkkinen, H. (2014). Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16(8), 3558-3565. doi:10.1039/c3cp53780c
Guan, J., Zhu, Z., & Tománek, D. (2014). Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Physical Review Letters, 113(4) doi:10.1103/PhysRevLett.113.046804
Guan, J., Zhu, Z., & Tománek, D. (2014). Tiling phosphorene. ACS Nano, 8(12), 12763-12768. doi:10.1021/nn5059248
Guo, H., Lu, N., Dai, J., Wu, X., & Zeng, X. C. (2014). Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. Journal of Physical Chemistry C, 118(25), 14051-14059. doi:10.1021/jp505257g
Han, X., Morgan Stewart, H., Shevlin, S. A., Catlow, C. R. A., & Guo, Z. X. (2014). Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Letters, 14(8), 4607-4614. doi:10.1021/nl501658d
Hu, T., & Hong, J. (2015). Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons. Journal of Applied Physics, 118(5) doi:10.1063/1.4927848
Kou, L., Chen, C., & Smith, S. C. (2015). Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 6(14), 2794-2805. doi:10.1021/acs.jpclett.5b01094
Kou, L., Frauenheim, T., & Chen, C. (2014). Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response. Journal of Physical Chemistry Letters, 5(15), 2675-2681. doi:10.1021/jz501188k
Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., . . . Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372-377. doi:10.1038/nnano.2014.35
Lin, J. -., Zhang, H., & Cheng, X. -. (2015). First-principle study on the optical response of phosphorene. Frontiers of Physics, 10(4) doi:10.1007/s11467-015-0468-y
Ling, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4523-4530. doi:10.1073/pnas.1416581112
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., & Ye, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4), 4033-4041. doi:10.1021/nn501226z
Nourbakhsh, Z., & Asgari, R. (2016). Excitons and optical spectra of phosphorene nanoribbons. Physical Review B, 94(3) doi:10.1103/PhysRevB.94.035437
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865
Ramasubramaniam, A., & Muniz, A. R. (2014). Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 90(8) doi:10.1103/PhysRevB.90.085424
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302
Sorkin, V., & Zhang, Y. W. (2015). The deformation and failure behaviour of phosphorene nanoribbons under uniaxial tensile strain. 2D Materials, 2(3) doi:10.1088/2053-1583/2/3/035007
Sun, M., Tang, W., Ren, Q., Wang, S. -., Yu, J., & Du, Y. (2015). A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 356, 110-114. doi:10.1016/j.apsusc.2015.08.009
Sun, M., Wang, S., Yu, J., & Tang, W. (2017). Hydrogenated and halogenated blue phosphorene as dirac materials: A first principles study. Applied Surface Science, 392, 46-50. doi:10.1016/j.apsusc.2016.08.094
Swaroop, R., Ahluwalia, P. K., Tankeshwar, K., & Kumar, A. (2017). Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 7(5), 2992-3002. doi:10.1039/c6ra26253h
Taghizadeh Sisakht, E., Zare, M. H., & Fazileh, F. (2015). Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Physical Review B - Condensed Matter and Materials Physics, 91(8) doi:10.1103/PhysRevB.91.085409
Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 89(23) doi:10.1103/PhysRevB.89.235319
Tran, V., & Yang, L. (2014). Scaling law|s for the band gap and optical response of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 89(24) doi:10.1103/PhysRevB.89.245407
Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., & Feng, Y. P. (2015). Electronic and transport properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 92(3) doi:10.1103/PhysRevB.92.035436
Xiao, J., Long, M., Deng, C. -., He, J., Cui, L. -., & Xu, H. (2016). Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: A first-principles study. Journal of Physical Chemistry C, 120(8), 4638-4646. doi:10.1021/acs.jpcc.5b12112
Xie, F., Fan, Z. -., Zhang, X. -., Liu, J. -., Wang, H. -., Liu, K., . . . Long, M. -. (2017). Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Organic Electronics: Physics, Materials, Applications, 42, 21-27. doi:10.1016/j.orgel.2016.12.020
Xie, J., Si, M. S., Yang, D. Z., Zhang, Z. Y., & Xue, D. S. (2014). A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. Journal of Applied Physics, 116(7) doi:10.1063/1.4893589
Xu, L. -., Song, X. -., Yang, Z., Cao, L., Liu, R. -., & Li, X. -. (2015). Phosphorene nanoribbons: Passivation effect on bandgap and effective mass. Applied Surface Science, 324, 640-644. doi:10.1016/j.apsusc.2014.10.166
Yang, G., Xu, S., Zhang, W., Ma, T., & Wu, C. (2016). Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Physical Review B, 94(7) doi:10.1103/PhysRevB.94.075106
Yao, Q., Huang, C., Yuan, Y., Liu, Y., Liu, S., Deng, K., & Kan, E. (2015). Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. Journal of Physical Chemistry C, 119(12), 6923-6928. doi:10.1021/acs.jpcc.5b02130
Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., . . . Zhang, Q. J. (2014). Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 4 doi:10.1038/srep06452
Zhang, X., Li, Q., Xu, B., Wan, B., Yin, J., & Wan, X. G. (2016). Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 380(4), 614-620. doi:10.1016/j.physleta.2015.11.019
Zhang, Z., & Guo, W. (2008). Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 77(7) doi:10.1103/PhysRevB.77.075403
Zhu, Z., Li, C., Yu, W., Chang, D., Sun, Q., & Jia, Y. (2014). Magnetism of zigzag edge phosphorene nanoribbons. Applied Physics Letters, 105(11) doi:10.1063/1.4895924
Zhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17) doi:10.1103/PhysRevLett.112.176802
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159195767832576
spelling 2017-12-19T19:36:43Z2017-12-19T19:36:43Z20179270256http://hdl.handle.net/11407/427410.1016/j.commatsci.2017.03.048reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínUsing first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017564283&doi=10.1016%2fj.commatsci.2017.03.048&partnerID=40&md5=afadd141c7c2adf51634b63d1727703bComputational Materials ScienceComputational Materials Science Volume 135, 1 July 2017, Pages 43-53Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 92(16) doi:10.1103/PhysRevB.92.165406Carvalho, A., Rodin, A. S., & Castro Neto, A. H. (2014). Phosphorene nanoribbons. EPL, 108(4) doi:10.1209/0295-5075/108/47005Dai, J., & Zeng, X. C. (2014). Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 5(7), 1289-1293. doi:10.1021/jz500409mDing, Y., & Wang, Y. (2015). Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene:A first-principles study. Journal of Physical Chemistry C, 119(19), 10610-10622. doi:10.1021/jp5114152Du, Y., Liu, H., Xu, B., Sheng, L., Yin, J., Duan, C. -., & Wan, X. (2015). Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Scientific Reports, 5 doi:10.1038/srep08921Fan, Z. -., Sun, W. -., Jiang, X. -., Luo, J. -., & Li, S. -. (2017). Two dimensional schottky contact structure based on in-plane zigzag phosphorene nanoribbon. Organic Electronics: Physics, Materials, Applications, 44, 20-24. doi:10.1016/j.orgel.2017.02.002Gomes Da Rocha, C., Clayborne, P. A., Koskinen, P., & Häkkinen, H. (2014). Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16(8), 3558-3565. doi:10.1039/c3cp53780cGuan, J., Zhu, Z., & Tománek, D. (2014). Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Physical Review Letters, 113(4) doi:10.1103/PhysRevLett.113.046804Guan, J., Zhu, Z., & Tománek, D. (2014). Tiling phosphorene. ACS Nano, 8(12), 12763-12768. doi:10.1021/nn5059248Guo, H., Lu, N., Dai, J., Wu, X., & Zeng, X. C. (2014). Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. Journal of Physical Chemistry C, 118(25), 14051-14059. doi:10.1021/jp505257gHan, X., Morgan Stewart, H., Shevlin, S. A., Catlow, C. R. A., & Guo, Z. X. (2014). Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Letters, 14(8), 4607-4614. doi:10.1021/nl501658dHu, T., & Hong, J. (2015). Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons. Journal of Applied Physics, 118(5) doi:10.1063/1.4927848Kou, L., Chen, C., & Smith, S. C. (2015). Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 6(14), 2794-2805. doi:10.1021/acs.jpclett.5b01094Kou, L., Frauenheim, T., & Chen, C. (2014). Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response. Journal of Physical Chemistry Letters, 5(15), 2675-2681. doi:10.1021/jz501188kLi, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., . . . Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372-377. doi:10.1038/nnano.2014.35Lin, J. -., Zhang, H., & Cheng, X. -. (2015). First-principle study on the optical response of phosphorene. Frontiers of Physics, 10(4) doi:10.1007/s11467-015-0468-yLing, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4523-4530. doi:10.1073/pnas.1416581112Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., & Ye, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4), 4033-4041. doi:10.1021/nn501226zNourbakhsh, Z., & Asgari, R. (2016). Excitons and optical spectra of phosphorene nanoribbons. Physical Review B, 94(3) doi:10.1103/PhysRevB.94.035437Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Ramasubramaniam, A., & Muniz, A. R. (2014). Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 90(8) doi:10.1103/PhysRevB.90.085424Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302Sorkin, V., & Zhang, Y. W. (2015). The deformation and failure behaviour of phosphorene nanoribbons under uniaxial tensile strain. 2D Materials, 2(3) doi:10.1088/2053-1583/2/3/035007Sun, M., Tang, W., Ren, Q., Wang, S. -., Yu, J., & Du, Y. (2015). A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 356, 110-114. doi:10.1016/j.apsusc.2015.08.009Sun, M., Wang, S., Yu, J., & Tang, W. (2017). Hydrogenated and halogenated blue phosphorene as dirac materials: A first principles study. Applied Surface Science, 392, 46-50. doi:10.1016/j.apsusc.2016.08.094Swaroop, R., Ahluwalia, P. K., Tankeshwar, K., & Kumar, A. (2017). Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 7(5), 2992-3002. doi:10.1039/c6ra26253hTaghizadeh Sisakht, E., Zare, M. H., & Fazileh, F. (2015). Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Physical Review B - Condensed Matter and Materials Physics, 91(8) doi:10.1103/PhysRevB.91.085409Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 89(23) doi:10.1103/PhysRevB.89.235319Tran, V., & Yang, L. (2014). Scaling law|s for the band gap and optical response of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 89(24) doi:10.1103/PhysRevB.89.245407Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., & Feng, Y. P. (2015). Electronic and transport properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 92(3) doi:10.1103/PhysRevB.92.035436Xiao, J., Long, M., Deng, C. -., He, J., Cui, L. -., & Xu, H. (2016). Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: A first-principles study. Journal of Physical Chemistry C, 120(8), 4638-4646. doi:10.1021/acs.jpcc.5b12112Xie, F., Fan, Z. -., Zhang, X. -., Liu, J. -., Wang, H. -., Liu, K., . . . Long, M. -. (2017). Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Organic Electronics: Physics, Materials, Applications, 42, 21-27. doi:10.1016/j.orgel.2016.12.020Xie, J., Si, M. S., Yang, D. Z., Zhang, Z. Y., & Xue, D. S. (2014). A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. Journal of Applied Physics, 116(7) doi:10.1063/1.4893589Xu, L. -., Song, X. -., Yang, Z., Cao, L., Liu, R. -., & Li, X. -. (2015). Phosphorene nanoribbons: Passivation effect on bandgap and effective mass. Applied Surface Science, 324, 640-644. doi:10.1016/j.apsusc.2014.10.166Yang, G., Xu, S., Zhang, W., Ma, T., & Wu, C. (2016). Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Physical Review B, 94(7) doi:10.1103/PhysRevB.94.075106Yao, Q., Huang, C., Yuan, Y., Liu, Y., Liu, S., Deng, K., & Kan, E. (2015). Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. Journal of Physical Chemistry C, 119(12), 6923-6928. doi:10.1021/acs.jpcc.5b02130Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., . . . Zhang, Q. J. (2014). Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 4 doi:10.1038/srep06452Zhang, X., Li, Q., Xu, B., Wan, B., Yin, J., & Wan, X. G. (2016). Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 380(4), 614-620. doi:10.1016/j.physleta.2015.11.019Zhang, Z., & Guo, W. (2008). Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 77(7) doi:10.1103/PhysRevB.77.075403Zhu, Z., Li, C., Yu, W., Chang, D., Sun, Q., & Jia, Y. (2014). Magnetism of zigzag edge phosphorene nanoribbons. Applied Physics Letters, 105(11) doi:10.1063/1.4895924Zhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17) doi:10.1103/PhysRevLett.112.176802ScopusEffects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ospina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, MexicoCorrea, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOspina D.A.Duque C.A.Mora-Ramos M.E.Correa J.D.Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaCentro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, MexicoDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaDFTNanoribbonsOpticalPhosphoreneCalculationsElectric fieldsElectronic propertiesEnergy gapNanoribbonsDFT studyDielectric functionsExternal electric fieldFirst-principles calculationImaginary partsOpticalOptical and electronic propertiesPhosphoreneOptical propertiesUsing first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.http://purl.org/coar/access_right/c_16ec11407/4274oai:repository.udem.edu.co:11407/42742020-05-27 18:14:10.128Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co