Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study
Using first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene n...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4274
- Acceso en línea:
- http://hdl.handle.net/11407/4274
- Palabra clave:
- DFT
Nanoribbons
Optical
Phosphorene
Calculations
Electric fields
Electronic properties
Energy gap
Nanoribbons
DFT study
Dielectric functions
External electric field
First-principles calculation
Imaginary parts
Optical
Optical and electronic properties
Phosphorene
Optical properties
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_2260d444cc24b3cf942cd9f3dc1f5ca5 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4274 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
title |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
spellingShingle |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study DFT Nanoribbons Optical Phosphorene Calculations Electric fields Electronic properties Energy gap Nanoribbons DFT study Dielectric functions External electric field First-principles calculation Imaginary parts Optical Optical and electronic properties Phosphorene Optical properties |
title_short |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
title_full |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
title_fullStr |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
title_full_unstemmed |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
title_sort |
Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study |
dc.contributor.affiliation.spa.fl_str_mv |
Ospina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, Mexico Correa, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
DFT Nanoribbons Optical Phosphorene Calculations Electric fields Electronic properties Energy gap Nanoribbons DFT study Dielectric functions External electric field First-principles calculation Imaginary parts Optical Optical and electronic properties Phosphorene Optical properties |
topic |
DFT Nanoribbons Optical Phosphorene Calculations Electric fields Electronic properties Energy gap Nanoribbons DFT study Dielectric functions External electric field First-principles calculation Imaginary parts Optical Optical and electronic properties Phosphorene Optical properties |
description |
Using first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:43Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:43Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9270256 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4274 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.commatsci.2017.03.048 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
9270256 10.1016/j.commatsci.2017.03.048 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4274 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017564283&doi=10.1016%2fj.commatsci.2017.03.048&partnerID=40&md5=afadd141c7c2adf51634b63d1727703b |
dc.relation.ispartofes.spa.fl_str_mv |
Computational Materials Science Computational Materials Science Volume 135, 1 July 2017, Pages 43-53 |
dc.relation.references.spa.fl_str_mv |
Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408 Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408 Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 92(16) doi:10.1103/PhysRevB.92.165406 Carvalho, A., Rodin, A. S., & Castro Neto, A. H. (2014). Phosphorene nanoribbons. EPL, 108(4) doi:10.1209/0295-5075/108/47005 Dai, J., & Zeng, X. C. (2014). Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 5(7), 1289-1293. doi:10.1021/jz500409m Ding, Y., & Wang, Y. (2015). Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene:A first-principles study. Journal of Physical Chemistry C, 119(19), 10610-10622. doi:10.1021/jp5114152 Du, Y., Liu, H., Xu, B., Sheng, L., Yin, J., Duan, C. -., & Wan, X. (2015). Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Scientific Reports, 5 doi:10.1038/srep08921 Fan, Z. -., Sun, W. -., Jiang, X. -., Luo, J. -., & Li, S. -. (2017). Two dimensional schottky contact structure based on in-plane zigzag phosphorene nanoribbon. Organic Electronics: Physics, Materials, Applications, 44, 20-24. doi:10.1016/j.orgel.2017.02.002 Gomes Da Rocha, C., Clayborne, P. A., Koskinen, P., & Häkkinen, H. (2014). Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16(8), 3558-3565. doi:10.1039/c3cp53780c Guan, J., Zhu, Z., & Tománek, D. (2014). Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Physical Review Letters, 113(4) doi:10.1103/PhysRevLett.113.046804 Guan, J., Zhu, Z., & Tománek, D. (2014). Tiling phosphorene. ACS Nano, 8(12), 12763-12768. doi:10.1021/nn5059248 Guo, H., Lu, N., Dai, J., Wu, X., & Zeng, X. C. (2014). Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. Journal of Physical Chemistry C, 118(25), 14051-14059. doi:10.1021/jp505257g Han, X., Morgan Stewart, H., Shevlin, S. A., Catlow, C. R. A., & Guo, Z. X. (2014). Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Letters, 14(8), 4607-4614. doi:10.1021/nl501658d Hu, T., & Hong, J. (2015). Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons. Journal of Applied Physics, 118(5) doi:10.1063/1.4927848 Kou, L., Chen, C., & Smith, S. C. (2015). Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 6(14), 2794-2805. doi:10.1021/acs.jpclett.5b01094 Kou, L., Frauenheim, T., & Chen, C. (2014). Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response. Journal of Physical Chemistry Letters, 5(15), 2675-2681. doi:10.1021/jz501188k Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., . . . Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372-377. doi:10.1038/nnano.2014.35 Lin, J. -., Zhang, H., & Cheng, X. -. (2015). First-principle study on the optical response of phosphorene. Frontiers of Physics, 10(4) doi:10.1007/s11467-015-0468-y Ling, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4523-4530. doi:10.1073/pnas.1416581112 Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., & Ye, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4), 4033-4041. doi:10.1021/nn501226z Nourbakhsh, Z., & Asgari, R. (2016). Excitons and optical spectra of phosphorene nanoribbons. Physical Review B, 94(3) doi:10.1103/PhysRevB.94.035437 Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865 Ramasubramaniam, A., & Muniz, A. R. (2014). Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 90(8) doi:10.1103/PhysRevB.90.085424 Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302 Sorkin, V., & Zhang, Y. W. (2015). The deformation and failure behaviour of phosphorene nanoribbons under uniaxial tensile strain. 2D Materials, 2(3) doi:10.1088/2053-1583/2/3/035007 Sun, M., Tang, W., Ren, Q., Wang, S. -., Yu, J., & Du, Y. (2015). A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 356, 110-114. doi:10.1016/j.apsusc.2015.08.009 Sun, M., Wang, S., Yu, J., & Tang, W. (2017). Hydrogenated and halogenated blue phosphorene as dirac materials: A first principles study. Applied Surface Science, 392, 46-50. doi:10.1016/j.apsusc.2016.08.094 Swaroop, R., Ahluwalia, P. K., Tankeshwar, K., & Kumar, A. (2017). Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 7(5), 2992-3002. doi:10.1039/c6ra26253h Taghizadeh Sisakht, E., Zare, M. H., & Fazileh, F. (2015). Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Physical Review B - Condensed Matter and Materials Physics, 91(8) doi:10.1103/PhysRevB.91.085409 Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 89(23) doi:10.1103/PhysRevB.89.235319 Tran, V., & Yang, L. (2014). Scaling law|s for the band gap and optical response of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 89(24) doi:10.1103/PhysRevB.89.245407 Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., & Feng, Y. P. (2015). Electronic and transport properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 92(3) doi:10.1103/PhysRevB.92.035436 Xiao, J., Long, M., Deng, C. -., He, J., Cui, L. -., & Xu, H. (2016). Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: A first-principles study. Journal of Physical Chemistry C, 120(8), 4638-4646. doi:10.1021/acs.jpcc.5b12112 Xie, F., Fan, Z. -., Zhang, X. -., Liu, J. -., Wang, H. -., Liu, K., . . . Long, M. -. (2017). Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Organic Electronics: Physics, Materials, Applications, 42, 21-27. doi:10.1016/j.orgel.2016.12.020 Xie, J., Si, M. S., Yang, D. Z., Zhang, Z. Y., & Xue, D. S. (2014). A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. Journal of Applied Physics, 116(7) doi:10.1063/1.4893589 Xu, L. -., Song, X. -., Yang, Z., Cao, L., Liu, R. -., & Li, X. -. (2015). Phosphorene nanoribbons: Passivation effect on bandgap and effective mass. Applied Surface Science, 324, 640-644. doi:10.1016/j.apsusc.2014.10.166 Yang, G., Xu, S., Zhang, W., Ma, T., & Wu, C. (2016). Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Physical Review B, 94(7) doi:10.1103/PhysRevB.94.075106 Yao, Q., Huang, C., Yuan, Y., Liu, Y., Liu, S., Deng, K., & Kan, E. (2015). Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. Journal of Physical Chemistry C, 119(12), 6923-6928. doi:10.1021/acs.jpcc.5b02130 Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., . . . Zhang, Q. J. (2014). Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 4 doi:10.1038/srep06452 Zhang, X., Li, Q., Xu, B., Wan, B., Yin, J., & Wan, X. G. (2016). Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 380(4), 614-620. doi:10.1016/j.physleta.2015.11.019 Zhang, Z., & Guo, W. (2008). Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 77(7) doi:10.1103/PhysRevB.77.075403 Zhu, Z., Li, C., Yu, W., Chang, D., Sun, Q., & Jia, Y. (2014). Magnetism of zigzag edge phosphorene nanoribbons. Applied Physics Letters, 105(11) doi:10.1063/1.4895924 Zhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17) doi:10.1103/PhysRevLett.112.176802 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159195767832576 |
spelling |
2017-12-19T19:36:43Z2017-12-19T19:36:43Z20179270256http://hdl.handle.net/11407/427410.1016/j.commatsci.2017.03.048reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínUsing first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017564283&doi=10.1016%2fj.commatsci.2017.03.048&partnerID=40&md5=afadd141c7c2adf51634b63d1727703bComputational Materials ScienceComputational Materials Science Volume 135, 1 July 2017, Pages 43-53Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408Aierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 92(16) doi:10.1103/PhysRevB.92.165406Carvalho, A., Rodin, A. S., & Castro Neto, A. H. (2014). Phosphorene nanoribbons. EPL, 108(4) doi:10.1209/0295-5075/108/47005Dai, J., & Zeng, X. C. (2014). Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 5(7), 1289-1293. doi:10.1021/jz500409mDing, Y., & Wang, Y. (2015). Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene:A first-principles study. Journal of Physical Chemistry C, 119(19), 10610-10622. doi:10.1021/jp5114152Du, Y., Liu, H., Xu, B., Sheng, L., Yin, J., Duan, C. -., & Wan, X. (2015). Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Scientific Reports, 5 doi:10.1038/srep08921Fan, Z. -., Sun, W. -., Jiang, X. -., Luo, J. -., & Li, S. -. (2017). Two dimensional schottky contact structure based on in-plane zigzag phosphorene nanoribbon. Organic Electronics: Physics, Materials, Applications, 44, 20-24. doi:10.1016/j.orgel.2017.02.002Gomes Da Rocha, C., Clayborne, P. A., Koskinen, P., & Häkkinen, H. (2014). Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16(8), 3558-3565. doi:10.1039/c3cp53780cGuan, J., Zhu, Z., & Tománek, D. (2014). Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Physical Review Letters, 113(4) doi:10.1103/PhysRevLett.113.046804Guan, J., Zhu, Z., & Tománek, D. (2014). Tiling phosphorene. ACS Nano, 8(12), 12763-12768. doi:10.1021/nn5059248Guo, H., Lu, N., Dai, J., Wu, X., & Zeng, X. C. (2014). Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. Journal of Physical Chemistry C, 118(25), 14051-14059. doi:10.1021/jp505257gHan, X., Morgan Stewart, H., Shevlin, S. A., Catlow, C. R. A., & Guo, Z. X. (2014). Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Letters, 14(8), 4607-4614. doi:10.1021/nl501658dHu, T., & Hong, J. (2015). Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons. Journal of Applied Physics, 118(5) doi:10.1063/1.4927848Kou, L., Chen, C., & Smith, S. C. (2015). Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 6(14), 2794-2805. doi:10.1021/acs.jpclett.5b01094Kou, L., Frauenheim, T., & Chen, C. (2014). Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response. Journal of Physical Chemistry Letters, 5(15), 2675-2681. doi:10.1021/jz501188kLi, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., . . . Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372-377. doi:10.1038/nnano.2014.35Lin, J. -., Zhang, H., & Cheng, X. -. (2015). First-principle study on the optical response of phosphorene. Frontiers of Physics, 10(4) doi:10.1007/s11467-015-0468-yLing, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4523-4530. doi:10.1073/pnas.1416581112Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., & Ye, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4), 4033-4041. doi:10.1021/nn501226zNourbakhsh, Z., & Asgari, R. (2016). Excitons and optical spectra of phosphorene nanoribbons. Physical Review B, 94(3) doi:10.1103/PhysRevB.94.035437Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Ramasubramaniam, A., & Muniz, A. R. (2014). Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 90(8) doi:10.1103/PhysRevB.90.085424Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302Sorkin, V., & Zhang, Y. W. (2015). The deformation and failure behaviour of phosphorene nanoribbons under uniaxial tensile strain. 2D Materials, 2(3) doi:10.1088/2053-1583/2/3/035007Sun, M., Tang, W., Ren, Q., Wang, S. -., Yu, J., & Du, Y. (2015). A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 356, 110-114. doi:10.1016/j.apsusc.2015.08.009Sun, M., Wang, S., Yu, J., & Tang, W. (2017). Hydrogenated and halogenated blue phosphorene as dirac materials: A first principles study. Applied Surface Science, 392, 46-50. doi:10.1016/j.apsusc.2016.08.094Swaroop, R., Ahluwalia, P. K., Tankeshwar, K., & Kumar, A. (2017). Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 7(5), 2992-3002. doi:10.1039/c6ra26253hTaghizadeh Sisakht, E., Zare, M. H., & Fazileh, F. (2015). Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Physical Review B - Condensed Matter and Materials Physics, 91(8) doi:10.1103/PhysRevB.91.085409Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 89(23) doi:10.1103/PhysRevB.89.235319Tran, V., & Yang, L. (2014). Scaling law|s for the band gap and optical response of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 89(24) doi:10.1103/PhysRevB.89.245407Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., & Feng, Y. P. (2015). Electronic and transport properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 92(3) doi:10.1103/PhysRevB.92.035436Xiao, J., Long, M., Deng, C. -., He, J., Cui, L. -., & Xu, H. (2016). Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: A first-principles study. Journal of Physical Chemistry C, 120(8), 4638-4646. doi:10.1021/acs.jpcc.5b12112Xie, F., Fan, Z. -., Zhang, X. -., Liu, J. -., Wang, H. -., Liu, K., . . . Long, M. -. (2017). Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Organic Electronics: Physics, Materials, Applications, 42, 21-27. doi:10.1016/j.orgel.2016.12.020Xie, J., Si, M. S., Yang, D. Z., Zhang, Z. Y., & Xue, D. S. (2014). A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. Journal of Applied Physics, 116(7) doi:10.1063/1.4893589Xu, L. -., Song, X. -., Yang, Z., Cao, L., Liu, R. -., & Li, X. -. (2015). Phosphorene nanoribbons: Passivation effect on bandgap and effective mass. Applied Surface Science, 324, 640-644. doi:10.1016/j.apsusc.2014.10.166Yang, G., Xu, S., Zhang, W., Ma, T., & Wu, C. (2016). Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Physical Review B, 94(7) doi:10.1103/PhysRevB.94.075106Yao, Q., Huang, C., Yuan, Y., Liu, Y., Liu, S., Deng, K., & Kan, E. (2015). Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. Journal of Physical Chemistry C, 119(12), 6923-6928. doi:10.1021/acs.jpcc.5b02130Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., . . . Zhang, Q. J. (2014). Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 4 doi:10.1038/srep06452Zhang, X., Li, Q., Xu, B., Wan, B., Yin, J., & Wan, X. G. (2016). Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 380(4), 614-620. doi:10.1016/j.physleta.2015.11.019Zhang, Z., & Guo, W. (2008). Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 77(7) doi:10.1103/PhysRevB.77.075403Zhu, Z., Li, C., Yu, W., Chang, D., Sun, Q., & Jia, Y. (2014). Magnetism of zigzag edge phosphorene nanoribbons. Applied Physics Letters, 105(11) doi:10.1063/1.4895924Zhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17) doi:10.1103/PhysRevLett.112.176802ScopusEffects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ospina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, MexicoCorrea, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOspina D.A.Duque C.A.Mora-Ramos M.E.Correa J.D.Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaCentro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, MexicoDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaDFTNanoribbonsOpticalPhosphoreneCalculationsElectric fieldsElectronic propertiesEnergy gapNanoribbonsDFT studyDielectric functionsExternal electric fieldFirst-principles calculationImaginary partsOpticalOptical and electronic propertiesPhosphoreneOptical propertiesUsing first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.http://purl.org/coar/access_right/c_16ec11407/4274oai:repository.udem.edu.co:11407/42742020-05-27 18:14:10.128Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |