Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications

TiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped T...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6067
Acceso en línea:
http://hdl.handle.net/11407/6067
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_21ca3d845c1042ff4d956de53869591c
oai_identifier_str oai:repository.udem.edu.co:11407/6067
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
title Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
spellingShingle Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
title_short Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
title_full Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
title_fullStr Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
title_full_unstemmed Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
title_sort Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
description TiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped TiO2 materials were improved by a dry-co-grinding process with a short grinding time and low rotational speed (30 min at 200 rpm) to obtain N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 catalysts. The materials were characterized by XRD, Raman, BET surface area and porosity, XRF, SEM, TEM, FTIR-ATR, and UV/vis-DRS analyses. The photocatalytic activity of these materials was evaluated by the degradation of phenol under UV/visible and visible light irradiation. The integrated sol-gel and solvothermal methods with short time of crystallization (2 h) and low temperature (225 °C), and the dry-co-grinding process during 30 min at 200 rpm led to materials (N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2) with higher specific surface area, a reduction in the band gap value, and an enhancement of the absorption in the visible light spectrum. Moreover, N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 exhibited higher photocatalytic activities for degradation of phenol under UV/visible and visible light irradiation than those obtained with the doped TiO2, synthesized TiO2 or TiO2 P25. © 2018 Elsevier Ltd
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:04Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:04Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 13698001
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6067
dc.identifier.doi.none.fl_str_mv 10.1016/j.mssp.2018.10.032
identifier_str_mv 13698001
10.1016/j.mssp.2018.10.032
url http://hdl.handle.net/11407/6067
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056447917&doi=10.1016%2fj.mssp.2018.10.032&partnerID=40&md5=6f1257beec245a025044bbf8ddc0b7c3
dc.relation.citationvolume.none.fl_str_mv 91
dc.relation.citationstartpage.none.fl_str_mv 47
dc.relation.citationendpage.none.fl_str_mv 57
dc.relation.references.none.fl_str_mv Akpan, U., Hameed, B.H., The advances in sol-gel method of doped-TiO2 photocatalyst (2017) Appl. Catal. A: Gen., 375, pp. 1-11
Ali, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Ceram. Process. Res., 15, pp. 290-293
Aman, N., Das, N.N., Mishra, T., Effect of N-doping on visible light activity of TiO2-SiO2 mixed oxide photocatalyst (2016) J. Environ. Chem. Eng., 4, pp. 191-196
Appavu, B., Thiripuranthagan, S., Visible active N, S codoped TiO2/graphite photocatalyst for the degradation of hazardous dyes (2017) J. Photochem. Photobiol. A: Chem., 340, pp. 146-156
Asiah, M.N., Mamat, M.H., Khusaimi, Z., Abdullah, S., Rusop, M., Qurashi, Z., Structural and optical properties of hydrothermally synthesized mesoporous Si/TiO2 nanowire composites (2015) Microelectron. Eng., 136, pp. 31-35
Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P.P., Bondioli, F., Enhanced self-cleaning properties of N-doped TiO2 coating for cultural heritage (2017) Microchem. J., 133, pp. 1-12
Bui, D., Kang, S., Li, X., Mu, J., Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles (2011) Catal. Commun., 13, pp. 14-17
Cheng, X., Yu, X., Xing, Z., Wan, J., Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particles under simulated sunlight irradiation (2012) Energy Procedia, 16, pp. 598-605
Chi, B., Zhao, L., Jin, T., One-step template-free route for synthesis of mesoporous N-doped titania spheres (2007) J. Phys. Chem. C, 11, pp. 6189-6193
Chong, M., Jin, B., Chow, C., Saint, C., Recent development in photocatalytic water treatment technology: a review (2010) Water Res., 44, pp. 2997-3027
Choi, H., Jung, Y., Kim, S., Size effects in the raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38
Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures (2015) Water Res., 79, pp. 128-146
Du, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., High hydrophilic Si-doped nanowires by chemical vapor deposition (2016) J. Alloy. Compd., 687, pp. 893-897
Du, J., Zhao, G., Shi, Y., Yang, H., Li, Y., Zhu, G., Mao, Y., Wang, W., A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity (2013) Appl. Surf. Sci., 273, pp. 278-286
Estruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333
Fang, W., Xing, M., Zhang, J., Modifications on reduced titanium dioxide photocatalysts: a review (2017) J. Photochem. Photobiol. C: Photochem. Rev., 32, pp. 21-29
Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S., Photochemical decomposition of endocrine disrupting compounds - a review (2017) Chem. Eng. J., 310, pp. 437-456
Gurkan, Y., Kasapbasi, E., Cinar, Z., Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of surface (2013) Chem. Eng. J., 214, pp. 33-44
Hernández, J.M., Cortez, L.A., García, R., San Martín, E., García, P., Brent, E., Cárdenas, G., García, L.A., Synthesis of solid acid catalysts base on TiO2-SiO4 2- and Pt/TiO2-SO4 2- applied in n-Hexane isomerization (2013) O. J. Metal., 3, pp. 34-44
Hidalgo, M.C., Colón, G., Navio, J., Modification of physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol. A: Chem., 148, pp. 341-348
Hu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188
Jia, T., Fu, F., Yu, D., Cao, J., Sun, G., Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible–light photocatalytic performance (2018) Appl. Surf. Sci., 438, pp. 438-447
Jin, R., Wu, Z., Liu, Y., Jiang, B., Wong, H., Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method (2009) J. Hazard. Mater., 161, pp. 42-48
Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol. A: Chem., 189, pp. 232-238
Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photcatalyst with its grinding in solvent (2008) Appl. Catal. B: Environ., 84, pp. 570-576
Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment (2008) Appl. Catal. B: Environ., 80, pp. 81-87
Khaki, M., Shafeeyan, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutants degradation – a review (2017) J. Environ. Manag., 198, pp. 78-94
Khan, H., Berk, D., Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies (2015) Appl. Catal. A: Gen., 505, pp. 285-301
Khataee, R., Kasiri, M.B., Photocatalytic degradation of organic dyes in presence of nanostructured titanium dioxide: influence of the chemical structured of dyes (2010) J. Mol. Catal. A: Chem., 328, pp. 8-26
Khomane, R.B., Kulkarni, B.D., Paraskar, A., Sainkar, S.R., Synthesis, characterization and catalytic performance of titanium silicate prepared in micellar media (2002) Mater. Chem. Phys., 76, pp. 99-103
Lu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720
Mazinani, B., Masron, A., Beitollani, A., Luque, R., Photocatalytic activity, surface area and phase modifications of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure (2014) Ceram. Int., 40, pp. 1125-11532
Mekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous rhodamine B (2012) Mater. Res. Bull., 47, pp. 3114-3119
Mekprasart, W., Jarernboon, W., Pecharapa, W., nanocomposites prepared by low-energy ball Milling for dye-sensitized solar cell application (2010) Mater. Sci. Eng. B, 172, pp. 231-236
Miao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114
Mills, A., O´Rourke, C., Moore, K., Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol. A: Chem., 310, pp. 66-105
Mosquera-Pretelt, J., Mejía, M., Marín, J.M., Synthesis and characterization of photoactive S-TiO2 from TiOSO4 precursor using an integrated sol-gel and solvothermal method at low temperatures (2018) J. Adv. Oxid. Technol., 21
Nagaveni, K., Hagde, M.S., Madras, G., Structure and photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method (2004) J. Phys. Chem. B, 108, pp. 20204-20212
Palmas, S., Polcaro, A.M., Rodriguez, J., Da, A., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrog. Energy, 34, pp. 9662-9670
Pan, X., Ma, X., Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres (2004) J. Solid State Chem., 177, pp. 4098-4103
Park, E., Jeong, B., Jeong, M., Kim, Y., Synergetic effects on hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2 (2014) Curr. Appl. Phys., 14, pp. 300-305
Phattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to band gap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catal. B. Environ., 200, pp. 1-9
Rahimi, N., Pax, R., Gray, E., Review of functional titanium oxide. I: TiO2 and its modifications (2016) Prog. Solid State Chem., 4, pp. 86-105
Rockafellow, E., Haywood, J., Witte, T., Houk, R., Jenks, W., Selenium modified TiO2 and its impact on photocatalysis (2010) Langmuir, 26, pp. 19052-19059
Sahni, S., Reddy, S., Murty, B., Influence of process parameters on the synthesis of nano-titania by sol-gel route (2007) Mater. Sci. Eng. A, 452-453, pp. 758-762
Saito, F., Baron, M., Dodds, J., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, pp. 1-24. , Y. Waseda A. Muramatsu Springer Series in Materials Science Berlin, Heidelberg
Sano, T., Mera, N., Kanai, Y., Nishimoto, C., Tsutsui, S., Hirakawa, T., Negishi, N., Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-dopping process (2012) Appl. Catal. B: Environ., 128, pp. 77-87
Shi, W., Chen, Q., Xu, Y., Wu, D., Huo, C.F., Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation (2011) J. Solid Chem., 184, pp. 1983-1988
Shifu, C., Lei, C., Shen, G., Gengyu, C., The preparation of coupled SnO2/TiO2 photocatalyst by ball milling (2006) Mater. Chem. Phys., 98, pp. 116-120
Si, P., Wang, H., Li, Z., Liu, J., Lee, J., Choi, C., Large scale synthesis of nitrogen doped TiO2 nanoparticles by reactive plasma (2012) Mater. Lett., 161, pp. 161-163
Thommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.
Tran, V., Truong, T., Phan, T., Nguyen, T., Huynh, T., Agresti, A., Pescetelli, S., Di Carlo, A., Application of nitrogen-doped TiO2 nano-tubes in dye sensitized solar cells (2017) Appl. Surf. Sci., 399, pp. 515-522
Truong, Q., Dien, L., Vo, D., Le, T., Controlled synthesis of titanium using water-soluble titanium complexes: a review (2017) J. Solid State Chem., 251, pp. 143-163
Valencia, S., Marin, J., Restrepo, G., Frimmel, F.H., Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process (2014) Water Res., 51, pp. 124-133
Valencia, S., Vargas, X., Rios, L., Restrepo, G., Marín, J., Sol-gel and low-temperature solvothermal synthesis of photoactive nanotitanium dioxide (2013) J. Photochem. Photobiol. A: Chem., 251, pp. 175-181
Valencia, S., Marín, J., Restrepo, G., Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment (2010) Open Mater. Sci. J., 4, pp. 9-14
Vargas, X., Tauchertb, E., Marín, J.M., Restrepo, G., Dillert, R., Bahnemann, D., Fe-doped titanium dioxide synthesized: photocatalytic activity and mineralization study for azo dye (2012) J. Photochem. Photobiol. A: Chem., 243, pp. 17-22
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu, Y., Photocatalysis fundamentals and surface modification of TiO2 nanomaterials (2015) Chin. J. Catal., 36, pp. 2019-2070
Xiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes (2017) Mater. Lett., 188, pp. 66-68
Yan, X., He, J., Evans, D., Duan, X., Zhu, Y., Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors (2005) Appl. Catal. B: Environ., 55, pp. 243-252
Yin, S., Aita, Y., Komatsu, M., Sato, T., Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system (2006) J. Eur. Ceram. Soc., 26, pp. 2735-2742
Yin, S., Zhang, Q., Saito, F., Saito, T., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , M. Sopicka-Lizer CRC Press L.L.C. Boca Raton, Florida
Yu, J., Yu, H., Cheng, B., Zhou, M., Zho, X., Enhanced photocatalytic of TiO2 powder (P-25) by hydrothermal treatment (2006) J. Mol. Catal. A: Chem., 253, pp. 112-118
Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36
Zhang, Q., Wang, J., Yin, S., Sato, T., Saito, F., Synthesis of visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping (2004) J. Am. Ceram. Soc., 87, pp. 1161-1163
Zheng, Z., Wang, X., Liu, J., Xiao, J., Hu, Z., Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion (2014) Appl. Surf. Sci., 309, pp. 144-152
Zhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Sci. China Technol. Sci., 60, pp. 1447-1457
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Materials Science in Semiconductor Processing
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159157066989568
spelling 20192021-02-05T14:59:04Z2021-02-05T14:59:04Z13698001http://hdl.handle.net/11407/606710.1016/j.mssp.2018.10.032TiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped TiO2 materials were improved by a dry-co-grinding process with a short grinding time and low rotational speed (30 min at 200 rpm) to obtain N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 catalysts. The materials were characterized by XRD, Raman, BET surface area and porosity, XRF, SEM, TEM, FTIR-ATR, and UV/vis-DRS analyses. The photocatalytic activity of these materials was evaluated by the degradation of phenol under UV/visible and visible light irradiation. The integrated sol-gel and solvothermal methods with short time of crystallization (2 h) and low temperature (225 °C), and the dry-co-grinding process during 30 min at 200 rpm led to materials (N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2) with higher specific surface area, a reduction in the band gap value, and an enhancement of the absorption in the visible light spectrum. Moreover, N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 exhibited higher photocatalytic activities for degradation of phenol under UV/visible and visible light irradiation than those obtained with the doped TiO2, synthesized TiO2 or TiO2 P25. © 2018 Elsevier LtdengElsevier LtdIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056447917&doi=10.1016%2fj.mssp.2018.10.032&partnerID=40&md5=6f1257beec245a025044bbf8ddc0b7c3914757Akpan, U., Hameed, B.H., The advances in sol-gel method of doped-TiO2 photocatalyst (2017) Appl. Catal. A: Gen., 375, pp. 1-11Ali, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Ceram. Process. Res., 15, pp. 290-293Aman, N., Das, N.N., Mishra, T., Effect of N-doping on visible light activity of TiO2-SiO2 mixed oxide photocatalyst (2016) J. Environ. Chem. Eng., 4, pp. 191-196Appavu, B., Thiripuranthagan, S., Visible active N, S codoped TiO2/graphite photocatalyst for the degradation of hazardous dyes (2017) J. Photochem. Photobiol. A: Chem., 340, pp. 146-156Asiah, M.N., Mamat, M.H., Khusaimi, Z., Abdullah, S., Rusop, M., Qurashi, Z., Structural and optical properties of hydrothermally synthesized mesoporous Si/TiO2 nanowire composites (2015) Microelectron. Eng., 136, pp. 31-35Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P.P., Bondioli, F., Enhanced self-cleaning properties of N-doped TiO2 coating for cultural heritage (2017) Microchem. J., 133, pp. 1-12Bui, D., Kang, S., Li, X., Mu, J., Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles (2011) Catal. Commun., 13, pp. 14-17Cheng, X., Yu, X., Xing, Z., Wan, J., Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particles under simulated sunlight irradiation (2012) Energy Procedia, 16, pp. 598-605Chi, B., Zhao, L., Jin, T., One-step template-free route for synthesis of mesoporous N-doped titania spheres (2007) J. Phys. Chem. C, 11, pp. 6189-6193Chong, M., Jin, B., Chow, C., Saint, C., Recent development in photocatalytic water treatment technology: a review (2010) Water Res., 44, pp. 2997-3027Choi, H., Jung, Y., Kim, S., Size effects in the raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures (2015) Water Res., 79, pp. 128-146Du, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., High hydrophilic Si-doped nanowires by chemical vapor deposition (2016) J. Alloy. Compd., 687, pp. 893-897Du, J., Zhao, G., Shi, Y., Yang, H., Li, Y., Zhu, G., Mao, Y., Wang, W., A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity (2013) Appl. Surf. Sci., 273, pp. 278-286Estruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333Fang, W., Xing, M., Zhang, J., Modifications on reduced titanium dioxide photocatalysts: a review (2017) J. Photochem. Photobiol. C: Photochem. Rev., 32, pp. 21-29Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S., Photochemical decomposition of endocrine disrupting compounds - a review (2017) Chem. Eng. J., 310, pp. 437-456Gurkan, Y., Kasapbasi, E., Cinar, Z., Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of surface (2013) Chem. Eng. J., 214, pp. 33-44Hernández, J.M., Cortez, L.A., García, R., San Martín, E., García, P., Brent, E., Cárdenas, G., García, L.A., Synthesis of solid acid catalysts base on TiO2-SiO4 2- and Pt/TiO2-SO4 2- applied in n-Hexane isomerization (2013) O. J. Metal., 3, pp. 34-44Hidalgo, M.C., Colón, G., Navio, J., Modification of physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol. A: Chem., 148, pp. 341-348Hu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188Jia, T., Fu, F., Yu, D., Cao, J., Sun, G., Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible–light photocatalytic performance (2018) Appl. Surf. Sci., 438, pp. 438-447Jin, R., Wu, Z., Liu, Y., Jiang, B., Wong, H., Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method (2009) J. Hazard. Mater., 161, pp. 42-48Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol. A: Chem., 189, pp. 232-238Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photcatalyst with its grinding in solvent (2008) Appl. Catal. B: Environ., 84, pp. 570-576Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment (2008) Appl. Catal. B: Environ., 80, pp. 81-87Khaki, M., Shafeeyan, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutants degradation – a review (2017) J. Environ. Manag., 198, pp. 78-94Khan, H., Berk, D., Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies (2015) Appl. Catal. A: Gen., 505, pp. 285-301Khataee, R., Kasiri, M.B., Photocatalytic degradation of organic dyes in presence of nanostructured titanium dioxide: influence of the chemical structured of dyes (2010) J. Mol. Catal. A: Chem., 328, pp. 8-26Khomane, R.B., Kulkarni, B.D., Paraskar, A., Sainkar, S.R., Synthesis, characterization and catalytic performance of titanium silicate prepared in micellar media (2002) Mater. Chem. Phys., 76, pp. 99-103Lu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720Mazinani, B., Masron, A., Beitollani, A., Luque, R., Photocatalytic activity, surface area and phase modifications of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure (2014) Ceram. Int., 40, pp. 1125-11532Mekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous rhodamine B (2012) Mater. Res. Bull., 47, pp. 3114-3119Mekprasart, W., Jarernboon, W., Pecharapa, W., nanocomposites prepared by low-energy ball Milling for dye-sensitized solar cell application (2010) Mater. Sci. Eng. B, 172, pp. 231-236Miao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114Mills, A., O´Rourke, C., Moore, K., Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol. A: Chem., 310, pp. 66-105Mosquera-Pretelt, J., Mejía, M., Marín, J.M., Synthesis and characterization of photoactive S-TiO2 from TiOSO4 precursor using an integrated sol-gel and solvothermal method at low temperatures (2018) J. Adv. Oxid. Technol., 21Nagaveni, K., Hagde, M.S., Madras, G., Structure and photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method (2004) J. Phys. Chem. B, 108, pp. 20204-20212Palmas, S., Polcaro, A.M., Rodriguez, J., Da, A., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrog. Energy, 34, pp. 9662-9670Pan, X., Ma, X., Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres (2004) J. Solid State Chem., 177, pp. 4098-4103Park, E., Jeong, B., Jeong, M., Kim, Y., Synergetic effects on hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2 (2014) Curr. Appl. Phys., 14, pp. 300-305Phattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to band gap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catal. B. Environ., 200, pp. 1-9Rahimi, N., Pax, R., Gray, E., Review of functional titanium oxide. I: TiO2 and its modifications (2016) Prog. Solid State Chem., 4, pp. 86-105Rockafellow, E., Haywood, J., Witte, T., Houk, R., Jenks, W., Selenium modified TiO2 and its impact on photocatalysis (2010) Langmuir, 26, pp. 19052-19059Sahni, S., Reddy, S., Murty, B., Influence of process parameters on the synthesis of nano-titania by sol-gel route (2007) Mater. Sci. Eng. A, 452-453, pp. 758-762Saito, F., Baron, M., Dodds, J., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, pp. 1-24. , Y. Waseda A. Muramatsu Springer Series in Materials Science Berlin, HeidelbergSano, T., Mera, N., Kanai, Y., Nishimoto, C., Tsutsui, S., Hirakawa, T., Negishi, N., Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-dopping process (2012) Appl. Catal. B: Environ., 128, pp. 77-87Shi, W., Chen, Q., Xu, Y., Wu, D., Huo, C.F., Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation (2011) J. Solid Chem., 184, pp. 1983-1988Shifu, C., Lei, C., Shen, G., Gengyu, C., The preparation of coupled SnO2/TiO2 photocatalyst by ball milling (2006) Mater. Chem. Phys., 98, pp. 116-120Si, P., Wang, H., Li, Z., Liu, J., Lee, J., Choi, C., Large scale synthesis of nitrogen doped TiO2 nanoparticles by reactive plasma (2012) Mater. Lett., 161, pp. 161-163Thommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.Tran, V., Truong, T., Phan, T., Nguyen, T., Huynh, T., Agresti, A., Pescetelli, S., Di Carlo, A., Application of nitrogen-doped TiO2 nano-tubes in dye sensitized solar cells (2017) Appl. Surf. Sci., 399, pp. 515-522Truong, Q., Dien, L., Vo, D., Le, T., Controlled synthesis of titanium using water-soluble titanium complexes: a review (2017) J. Solid State Chem., 251, pp. 143-163Valencia, S., Marin, J., Restrepo, G., Frimmel, F.H., Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process (2014) Water Res., 51, pp. 124-133Valencia, S., Vargas, X., Rios, L., Restrepo, G., Marín, J., Sol-gel and low-temperature solvothermal synthesis of photoactive nanotitanium dioxide (2013) J. Photochem. Photobiol. A: Chem., 251, pp. 175-181Valencia, S., Marín, J., Restrepo, G., Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment (2010) Open Mater. Sci. J., 4, pp. 9-14Vargas, X., Tauchertb, E., Marín, J.M., Restrepo, G., Dillert, R., Bahnemann, D., Fe-doped titanium dioxide synthesized: photocatalytic activity and mineralization study for azo dye (2012) J. Photochem. Photobiol. A: Chem., 243, pp. 17-22Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu, Y., Photocatalysis fundamentals and surface modification of TiO2 nanomaterials (2015) Chin. J. Catal., 36, pp. 2019-2070Xiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes (2017) Mater. Lett., 188, pp. 66-68Yan, X., He, J., Evans, D., Duan, X., Zhu, Y., Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors (2005) Appl. Catal. B: Environ., 55, pp. 243-252Yin, S., Aita, Y., Komatsu, M., Sato, T., Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system (2006) J. Eur. Ceram. Soc., 26, pp. 2735-2742Yin, S., Zhang, Q., Saito, F., Saito, T., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , M. Sopicka-Lizer CRC Press L.L.C. Boca Raton, FloridaYu, J., Yu, H., Cheng, B., Zhou, M., Zho, X., Enhanced photocatalytic of TiO2 powder (P-25) by hydrothermal treatment (2006) J. Mol. Catal. A: Chem., 253, pp. 112-118Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36Zhang, Q., Wang, J., Yin, S., Sato, T., Saito, F., Synthesis of visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping (2004) J. Am. Ceram. Soc., 87, pp. 1161-1163Zheng, Z., Wang, X., Liu, J., Xiao, J., Hu, Z., Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion (2014) Appl. Surf. Sci., 309, pp. 144-152Zhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Sci. China Technol. Sci., 60, pp. 1447-1457Materials Science in Semiconductor ProcessingDry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applicationsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Galeano, L., Grupo de Investigaciones y Mediciones Ambientales (GEMA), Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaValencia, S., Grupo de investigación Integra, Tecnológico de Antioquia, Calle 78B No 72A-220, Medellín, Colombia, Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaRestrepo, G., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaMarín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecGaleano L.Valencia S.Restrepo G.Marín J.M.11407/6067oai:repository.udem.edu.co:11407/60672021-02-05 09:59:04.972Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co