Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
TiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped T...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6067
- Acceso en línea:
- http://hdl.handle.net/11407/6067
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_21ca3d845c1042ff4d956de53869591c |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6067 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
title |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
spellingShingle |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
title_short |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
title_full |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
title_fullStr |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
title_full_unstemmed |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
title_sort |
Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications |
description |
TiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped TiO2 materials were improved by a dry-co-grinding process with a short grinding time and low rotational speed (30 min at 200 rpm) to obtain N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 catalysts. The materials were characterized by XRD, Raman, BET surface area and porosity, XRF, SEM, TEM, FTIR-ATR, and UV/vis-DRS analyses. The photocatalytic activity of these materials was evaluated by the degradation of phenol under UV/visible and visible light irradiation. The integrated sol-gel and solvothermal methods with short time of crystallization (2 h) and low temperature (225 °C), and the dry-co-grinding process during 30 min at 200 rpm led to materials (N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2) with higher specific surface area, a reduction in the band gap value, and an enhancement of the absorption in the visible light spectrum. Moreover, N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 exhibited higher photocatalytic activities for degradation of phenol under UV/visible and visible light irradiation than those obtained with the doped TiO2, synthesized TiO2 or TiO2 P25. © 2018 Elsevier Ltd |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:04Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:04Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
13698001 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6067 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.mssp.2018.10.032 |
identifier_str_mv |
13698001 10.1016/j.mssp.2018.10.032 |
url |
http://hdl.handle.net/11407/6067 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056447917&doi=10.1016%2fj.mssp.2018.10.032&partnerID=40&md5=6f1257beec245a025044bbf8ddc0b7c3 |
dc.relation.citationvolume.none.fl_str_mv |
91 |
dc.relation.citationstartpage.none.fl_str_mv |
47 |
dc.relation.citationendpage.none.fl_str_mv |
57 |
dc.relation.references.none.fl_str_mv |
Akpan, U., Hameed, B.H., The advances in sol-gel method of doped-TiO2 photocatalyst (2017) Appl. Catal. A: Gen., 375, pp. 1-11 Ali, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Ceram. Process. Res., 15, pp. 290-293 Aman, N., Das, N.N., Mishra, T., Effect of N-doping on visible light activity of TiO2-SiO2 mixed oxide photocatalyst (2016) J. Environ. Chem. Eng., 4, pp. 191-196 Appavu, B., Thiripuranthagan, S., Visible active N, S codoped TiO2/graphite photocatalyst for the degradation of hazardous dyes (2017) J. Photochem. Photobiol. A: Chem., 340, pp. 146-156 Asiah, M.N., Mamat, M.H., Khusaimi, Z., Abdullah, S., Rusop, M., Qurashi, Z., Structural and optical properties of hydrothermally synthesized mesoporous Si/TiO2 nanowire composites (2015) Microelectron. Eng., 136, pp. 31-35 Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P.P., Bondioli, F., Enhanced self-cleaning properties of N-doped TiO2 coating for cultural heritage (2017) Microchem. J., 133, pp. 1-12 Bui, D., Kang, S., Li, X., Mu, J., Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles (2011) Catal. Commun., 13, pp. 14-17 Cheng, X., Yu, X., Xing, Z., Wan, J., Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particles under simulated sunlight irradiation (2012) Energy Procedia, 16, pp. 598-605 Chi, B., Zhao, L., Jin, T., One-step template-free route for synthesis of mesoporous N-doped titania spheres (2007) J. Phys. Chem. C, 11, pp. 6189-6193 Chong, M., Jin, B., Chow, C., Saint, C., Recent development in photocatalytic water treatment technology: a review (2010) Water Res., 44, pp. 2997-3027 Choi, H., Jung, Y., Kim, S., Size effects in the raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38 Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures (2015) Water Res., 79, pp. 128-146 Du, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., High hydrophilic Si-doped nanowires by chemical vapor deposition (2016) J. Alloy. Compd., 687, pp. 893-897 Du, J., Zhao, G., Shi, Y., Yang, H., Li, Y., Zhu, G., Mao, Y., Wang, W., A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity (2013) Appl. Surf. Sci., 273, pp. 278-286 Estruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333 Fang, W., Xing, M., Zhang, J., Modifications on reduced titanium dioxide photocatalysts: a review (2017) J. Photochem. Photobiol. C: Photochem. Rev., 32, pp. 21-29 Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S., Photochemical decomposition of endocrine disrupting compounds - a review (2017) Chem. Eng. J., 310, pp. 437-456 Gurkan, Y., Kasapbasi, E., Cinar, Z., Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of surface (2013) Chem. Eng. J., 214, pp. 33-44 Hernández, J.M., Cortez, L.A., García, R., San Martín, E., García, P., Brent, E., Cárdenas, G., García, L.A., Synthesis of solid acid catalysts base on TiO2-SiO4 2- and Pt/TiO2-SO4 2- applied in n-Hexane isomerization (2013) O. J. Metal., 3, pp. 34-44 Hidalgo, M.C., Colón, G., Navio, J., Modification of physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol. A: Chem., 148, pp. 341-348 Hu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188 Jia, T., Fu, F., Yu, D., Cao, J., Sun, G., Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible–light photocatalytic performance (2018) Appl. Surf. Sci., 438, pp. 438-447 Jin, R., Wu, Z., Liu, Y., Jiang, B., Wong, H., Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method (2009) J. Hazard. Mater., 161, pp. 42-48 Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol. A: Chem., 189, pp. 232-238 Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photcatalyst with its grinding in solvent (2008) Appl. Catal. B: Environ., 84, pp. 570-576 Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment (2008) Appl. Catal. B: Environ., 80, pp. 81-87 Khaki, M., Shafeeyan, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutants degradation – a review (2017) J. Environ. Manag., 198, pp. 78-94 Khan, H., Berk, D., Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies (2015) Appl. Catal. A: Gen., 505, pp. 285-301 Khataee, R., Kasiri, M.B., Photocatalytic degradation of organic dyes in presence of nanostructured titanium dioxide: influence of the chemical structured of dyes (2010) J. Mol. Catal. A: Chem., 328, pp. 8-26 Khomane, R.B., Kulkarni, B.D., Paraskar, A., Sainkar, S.R., Synthesis, characterization and catalytic performance of titanium silicate prepared in micellar media (2002) Mater. Chem. Phys., 76, pp. 99-103 Lu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720 Mazinani, B., Masron, A., Beitollani, A., Luque, R., Photocatalytic activity, surface area and phase modifications of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure (2014) Ceram. Int., 40, pp. 1125-11532 Mekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous rhodamine B (2012) Mater. Res. Bull., 47, pp. 3114-3119 Mekprasart, W., Jarernboon, W., Pecharapa, W., nanocomposites prepared by low-energy ball Milling for dye-sensitized solar cell application (2010) Mater. Sci. Eng. B, 172, pp. 231-236 Miao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114 Mills, A., O´Rourke, C., Moore, K., Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol. A: Chem., 310, pp. 66-105 Mosquera-Pretelt, J., Mejía, M., Marín, J.M., Synthesis and characterization of photoactive S-TiO2 from TiOSO4 precursor using an integrated sol-gel and solvothermal method at low temperatures (2018) J. Adv. Oxid. Technol., 21 Nagaveni, K., Hagde, M.S., Madras, G., Structure and photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method (2004) J. Phys. Chem. B, 108, pp. 20204-20212 Palmas, S., Polcaro, A.M., Rodriguez, J., Da, A., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrog. Energy, 34, pp. 9662-9670 Pan, X., Ma, X., Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres (2004) J. Solid State Chem., 177, pp. 4098-4103 Park, E., Jeong, B., Jeong, M., Kim, Y., Synergetic effects on hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2 (2014) Curr. Appl. Phys., 14, pp. 300-305 Phattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to band gap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catal. B. Environ., 200, pp. 1-9 Rahimi, N., Pax, R., Gray, E., Review of functional titanium oxide. I: TiO2 and its modifications (2016) Prog. Solid State Chem., 4, pp. 86-105 Rockafellow, E., Haywood, J., Witte, T., Houk, R., Jenks, W., Selenium modified TiO2 and its impact on photocatalysis (2010) Langmuir, 26, pp. 19052-19059 Sahni, S., Reddy, S., Murty, B., Influence of process parameters on the synthesis of nano-titania by sol-gel route (2007) Mater. Sci. Eng. A, 452-453, pp. 758-762 Saito, F., Baron, M., Dodds, J., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, pp. 1-24. , Y. Waseda A. Muramatsu Springer Series in Materials Science Berlin, Heidelberg Sano, T., Mera, N., Kanai, Y., Nishimoto, C., Tsutsui, S., Hirakawa, T., Negishi, N., Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-dopping process (2012) Appl. Catal. B: Environ., 128, pp. 77-87 Shi, W., Chen, Q., Xu, Y., Wu, D., Huo, C.F., Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation (2011) J. Solid Chem., 184, pp. 1983-1988 Shifu, C., Lei, C., Shen, G., Gengyu, C., The preparation of coupled SnO2/TiO2 photocatalyst by ball milling (2006) Mater. Chem. Phys., 98, pp. 116-120 Si, P., Wang, H., Li, Z., Liu, J., Lee, J., Choi, C., Large scale synthesis of nitrogen doped TiO2 nanoparticles by reactive plasma (2012) Mater. Lett., 161, pp. 161-163 Thommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem. Tran, V., Truong, T., Phan, T., Nguyen, T., Huynh, T., Agresti, A., Pescetelli, S., Di Carlo, A., Application of nitrogen-doped TiO2 nano-tubes in dye sensitized solar cells (2017) Appl. Surf. Sci., 399, pp. 515-522 Truong, Q., Dien, L., Vo, D., Le, T., Controlled synthesis of titanium using water-soluble titanium complexes: a review (2017) J. Solid State Chem., 251, pp. 143-163 Valencia, S., Marin, J., Restrepo, G., Frimmel, F.H., Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process (2014) Water Res., 51, pp. 124-133 Valencia, S., Vargas, X., Rios, L., Restrepo, G., Marín, J., Sol-gel and low-temperature solvothermal synthesis of photoactive nanotitanium dioxide (2013) J. Photochem. Photobiol. A: Chem., 251, pp. 175-181 Valencia, S., Marín, J., Restrepo, G., Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment (2010) Open Mater. Sci. J., 4, pp. 9-14 Vargas, X., Tauchertb, E., Marín, J.M., Restrepo, G., Dillert, R., Bahnemann, D., Fe-doped titanium dioxide synthesized: photocatalytic activity and mineralization study for azo dye (2012) J. Photochem. Photobiol. A: Chem., 243, pp. 17-22 Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu, Y., Photocatalysis fundamentals and surface modification of TiO2 nanomaterials (2015) Chin. J. Catal., 36, pp. 2019-2070 Xiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes (2017) Mater. Lett., 188, pp. 66-68 Yan, X., He, J., Evans, D., Duan, X., Zhu, Y., Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors (2005) Appl. Catal. B: Environ., 55, pp. 243-252 Yin, S., Aita, Y., Komatsu, M., Sato, T., Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system (2006) J. Eur. Ceram. Soc., 26, pp. 2735-2742 Yin, S., Zhang, Q., Saito, F., Saito, T., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , M. Sopicka-Lizer CRC Press L.L.C. Boca Raton, Florida Yu, J., Yu, H., Cheng, B., Zhou, M., Zho, X., Enhanced photocatalytic of TiO2 powder (P-25) by hydrothermal treatment (2006) J. Mol. Catal. A: Chem., 253, pp. 112-118 Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36 Zhang, Q., Wang, J., Yin, S., Sato, T., Saito, F., Synthesis of visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping (2004) J. Am. Ceram. Soc., 87, pp. 1161-1163 Zheng, Z., Wang, X., Liu, J., Xiao, J., Hu, Z., Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion (2014) Appl. Surf. Sci., 309, pp. 144-152 Zhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Sci. China Technol. Sci., 60, pp. 1447-1457 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Materials Science in Semiconductor Processing |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159157066989568 |
spelling |
20192021-02-05T14:59:04Z2021-02-05T14:59:04Z13698001http://hdl.handle.net/11407/606710.1016/j.mssp.2018.10.032TiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped TiO2 materials were improved by a dry-co-grinding process with a short grinding time and low rotational speed (30 min at 200 rpm) to obtain N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 catalysts. The materials were characterized by XRD, Raman, BET surface area and porosity, XRF, SEM, TEM, FTIR-ATR, and UV/vis-DRS analyses. The photocatalytic activity of these materials was evaluated by the degradation of phenol under UV/visible and visible light irradiation. The integrated sol-gel and solvothermal methods with short time of crystallization (2 h) and low temperature (225 °C), and the dry-co-grinding process during 30 min at 200 rpm led to materials (N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2) with higher specific surface area, a reduction in the band gap value, and an enhancement of the absorption in the visible light spectrum. Moreover, N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 exhibited higher photocatalytic activities for degradation of phenol under UV/visible and visible light irradiation than those obtained with the doped TiO2, synthesized TiO2 or TiO2 P25. © 2018 Elsevier LtdengElsevier LtdIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056447917&doi=10.1016%2fj.mssp.2018.10.032&partnerID=40&md5=6f1257beec245a025044bbf8ddc0b7c3914757Akpan, U., Hameed, B.H., The advances in sol-gel method of doped-TiO2 photocatalyst (2017) Appl. Catal. A: Gen., 375, pp. 1-11Ali, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Ceram. Process. Res., 15, pp. 290-293Aman, N., Das, N.N., Mishra, T., Effect of N-doping on visible light activity of TiO2-SiO2 mixed oxide photocatalyst (2016) J. Environ. Chem. Eng., 4, pp. 191-196Appavu, B., Thiripuranthagan, S., Visible active N, S codoped TiO2/graphite photocatalyst for the degradation of hazardous dyes (2017) J. Photochem. Photobiol. A: Chem., 340, pp. 146-156Asiah, M.N., Mamat, M.H., Khusaimi, Z., Abdullah, S., Rusop, M., Qurashi, Z., Structural and optical properties of hydrothermally synthesized mesoporous Si/TiO2 nanowire composites (2015) Microelectron. Eng., 136, pp. 31-35Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P.P., Bondioli, F., Enhanced self-cleaning properties of N-doped TiO2 coating for cultural heritage (2017) Microchem. J., 133, pp. 1-12Bui, D., Kang, S., Li, X., Mu, J., Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles (2011) Catal. Commun., 13, pp. 14-17Cheng, X., Yu, X., Xing, Z., Wan, J., Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particles under simulated sunlight irradiation (2012) Energy Procedia, 16, pp. 598-605Chi, B., Zhao, L., Jin, T., One-step template-free route for synthesis of mesoporous N-doped titania spheres (2007) J. Phys. Chem. C, 11, pp. 6189-6193Chong, M., Jin, B., Chow, C., Saint, C., Recent development in photocatalytic water treatment technology: a review (2010) Water Res., 44, pp. 2997-3027Choi, H., Jung, Y., Kim, S., Size effects in the raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures (2015) Water Res., 79, pp. 128-146Du, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., High hydrophilic Si-doped nanowires by chemical vapor deposition (2016) J. Alloy. Compd., 687, pp. 893-897Du, J., Zhao, G., Shi, Y., Yang, H., Li, Y., Zhu, G., Mao, Y., Wang, W., A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity (2013) Appl. Surf. Sci., 273, pp. 278-286Estruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333Fang, W., Xing, M., Zhang, J., Modifications on reduced titanium dioxide photocatalysts: a review (2017) J. Photochem. Photobiol. C: Photochem. Rev., 32, pp. 21-29Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S., Photochemical decomposition of endocrine disrupting compounds - a review (2017) Chem. Eng. J., 310, pp. 437-456Gurkan, Y., Kasapbasi, E., Cinar, Z., Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of surface (2013) Chem. Eng. J., 214, pp. 33-44Hernández, J.M., Cortez, L.A., García, R., San Martín, E., García, P., Brent, E., Cárdenas, G., García, L.A., Synthesis of solid acid catalysts base on TiO2-SiO4 2- and Pt/TiO2-SO4 2- applied in n-Hexane isomerization (2013) O. J. Metal., 3, pp. 34-44Hidalgo, M.C., Colón, G., Navio, J., Modification of physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol. A: Chem., 148, pp. 341-348Hu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188Jia, T., Fu, F., Yu, D., Cao, J., Sun, G., Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible–light photocatalytic performance (2018) Appl. Surf. Sci., 438, pp. 438-447Jin, R., Wu, Z., Liu, Y., Jiang, B., Wong, H., Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method (2009) J. Hazard. Mater., 161, pp. 42-48Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol. A: Chem., 189, pp. 232-238Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photcatalyst with its grinding in solvent (2008) Appl. Catal. B: Environ., 84, pp. 570-576Kang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment (2008) Appl. Catal. B: Environ., 80, pp. 81-87Khaki, M., Shafeeyan, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutants degradation – a review (2017) J. Environ. Manag., 198, pp. 78-94Khan, H., Berk, D., Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies (2015) Appl. Catal. A: Gen., 505, pp. 285-301Khataee, R., Kasiri, M.B., Photocatalytic degradation of organic dyes in presence of nanostructured titanium dioxide: influence of the chemical structured of dyes (2010) J. Mol. Catal. A: Chem., 328, pp. 8-26Khomane, R.B., Kulkarni, B.D., Paraskar, A., Sainkar, S.R., Synthesis, characterization and catalytic performance of titanium silicate prepared in micellar media (2002) Mater. Chem. Phys., 76, pp. 99-103Lu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720Mazinani, B., Masron, A., Beitollani, A., Luque, R., Photocatalytic activity, surface area and phase modifications of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure (2014) Ceram. Int., 40, pp. 1125-11532Mekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous rhodamine B (2012) Mater. Res. Bull., 47, pp. 3114-3119Mekprasart, W., Jarernboon, W., Pecharapa, W., nanocomposites prepared by low-energy ball Milling for dye-sensitized solar cell application (2010) Mater. Sci. Eng. B, 172, pp. 231-236Miao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114Mills, A., O´Rourke, C., Moore, K., Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol. A: Chem., 310, pp. 66-105Mosquera-Pretelt, J., Mejía, M., Marín, J.M., Synthesis and characterization of photoactive S-TiO2 from TiOSO4 precursor using an integrated sol-gel and solvothermal method at low temperatures (2018) J. Adv. Oxid. Technol., 21Nagaveni, K., Hagde, M.S., Madras, G., Structure and photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method (2004) J. Phys. Chem. B, 108, pp. 20204-20212Palmas, S., Polcaro, A.M., Rodriguez, J., Da, A., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrog. Energy, 34, pp. 9662-9670Pan, X., Ma, X., Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres (2004) J. Solid State Chem., 177, pp. 4098-4103Park, E., Jeong, B., Jeong, M., Kim, Y., Synergetic effects on hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2 (2014) Curr. Appl. Phys., 14, pp. 300-305Phattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to band gap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catal. B. Environ., 200, pp. 1-9Rahimi, N., Pax, R., Gray, E., Review of functional titanium oxide. I: TiO2 and its modifications (2016) Prog. Solid State Chem., 4, pp. 86-105Rockafellow, E., Haywood, J., Witte, T., Houk, R., Jenks, W., Selenium modified TiO2 and its impact on photocatalysis (2010) Langmuir, 26, pp. 19052-19059Sahni, S., Reddy, S., Murty, B., Influence of process parameters on the synthesis of nano-titania by sol-gel route (2007) Mater. Sci. Eng. A, 452-453, pp. 758-762Saito, F., Baron, M., Dodds, J., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, pp. 1-24. , Y. Waseda A. Muramatsu Springer Series in Materials Science Berlin, HeidelbergSano, T., Mera, N., Kanai, Y., Nishimoto, C., Tsutsui, S., Hirakawa, T., Negishi, N., Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-dopping process (2012) Appl. Catal. B: Environ., 128, pp. 77-87Shi, W., Chen, Q., Xu, Y., Wu, D., Huo, C.F., Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation (2011) J. Solid Chem., 184, pp. 1983-1988Shifu, C., Lei, C., Shen, G., Gengyu, C., The preparation of coupled SnO2/TiO2 photocatalyst by ball milling (2006) Mater. Chem. Phys., 98, pp. 116-120Si, P., Wang, H., Li, Z., Liu, J., Lee, J., Choi, C., Large scale synthesis of nitrogen doped TiO2 nanoparticles by reactive plasma (2012) Mater. Lett., 161, pp. 161-163Thommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.Tran, V., Truong, T., Phan, T., Nguyen, T., Huynh, T., Agresti, A., Pescetelli, S., Di Carlo, A., Application of nitrogen-doped TiO2 nano-tubes in dye sensitized solar cells (2017) Appl. Surf. Sci., 399, pp. 515-522Truong, Q., Dien, L., Vo, D., Le, T., Controlled synthesis of titanium using water-soluble titanium complexes: a review (2017) J. Solid State Chem., 251, pp. 143-163Valencia, S., Marin, J., Restrepo, G., Frimmel, F.H., Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process (2014) Water Res., 51, pp. 124-133Valencia, S., Vargas, X., Rios, L., Restrepo, G., Marín, J., Sol-gel and low-temperature solvothermal synthesis of photoactive nanotitanium dioxide (2013) J. Photochem. Photobiol. A: Chem., 251, pp. 175-181Valencia, S., Marín, J., Restrepo, G., Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment (2010) Open Mater. Sci. J., 4, pp. 9-14Vargas, X., Tauchertb, E., Marín, J.M., Restrepo, G., Dillert, R., Bahnemann, D., Fe-doped titanium dioxide synthesized: photocatalytic activity and mineralization study for azo dye (2012) J. Photochem. Photobiol. A: Chem., 243, pp. 17-22Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu, Y., Photocatalysis fundamentals and surface modification of TiO2 nanomaterials (2015) Chin. J. Catal., 36, pp. 2019-2070Xiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes (2017) Mater. Lett., 188, pp. 66-68Yan, X., He, J., Evans, D., Duan, X., Zhu, Y., Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors (2005) Appl. Catal. B: Environ., 55, pp. 243-252Yin, S., Aita, Y., Komatsu, M., Sato, T., Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system (2006) J. Eur. Ceram. Soc., 26, pp. 2735-2742Yin, S., Zhang, Q., Saito, F., Saito, T., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , M. Sopicka-Lizer CRC Press L.L.C. Boca Raton, FloridaYu, J., Yu, H., Cheng, B., Zhou, M., Zho, X., Enhanced photocatalytic of TiO2 powder (P-25) by hydrothermal treatment (2006) J. Mol. Catal. A: Chem., 253, pp. 112-118Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36Zhang, Q., Wang, J., Yin, S., Sato, T., Saito, F., Synthesis of visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping (2004) J. Am. Ceram. Soc., 87, pp. 1161-1163Zheng, Z., Wang, X., Liu, J., Xiao, J., Hu, Z., Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion (2014) Appl. Surf. Sci., 309, pp. 144-152Zhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Sci. China Technol. Sci., 60, pp. 1447-1457Materials Science in Semiconductor ProcessingDry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applicationsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Galeano, L., Grupo de Investigaciones y Mediciones Ambientales (GEMA), Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaValencia, S., Grupo de investigación Integra, Tecnológico de Antioquia, Calle 78B No 72A-220, Medellín, Colombia, Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaRestrepo, G., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaMarín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecGaleano L.Valencia S.Restrepo G.Marín J.M.11407/6067oai:repository.udem.edu.co:11407/60672021-02-05 09:59:04.972Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |