A discrete particle swarm optimization to solve the put-away routing problem in distribution centres

Put-away operations typically consist of moving products from depots to allocated storage locations using either operators or Material Handling Equipment (MHE), accounting for important operative costs in warehouses and impacting operations efficiency. Therefore, this paper aims to formulate and sol...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5907
Acceso en línea:
http://hdl.handle.net/11407/5907
Palabra clave:
Discrete particle swarm optimization
Distribution centre
Order picking
Put-away routing
Warehouse management
Rights
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:Put-away operations typically consist of moving products from depots to allocated storage locations using either operators or Material Handling Equipment (MHE), accounting for important operative costs in warehouses and impacting operations efficiency. Therefore, this paper aims to formulate and solve a Put-away Routing Problem (PRP) in distribution centres (DCs). This PRP formulation represents a novel approach due to the consideration of a fleet of homogeneous Material Handling Equipment (MHE), heterogeneous products linked to a put-away list size, depot location and multi-parallel aisles in a distribution centre. It should be noted that the slotting problem, rather than the PRP, has usually been studied in the literature, whereas the PRP is addressed in this paper. The PRP is solved using a discrete particle swarm optimization (PSO) algorithm that is compared to tabu search approaches (Classical Tabu Search (CTS), Tabu Search (TS) 2-Opt) and an empirical rule. As a result, it was found that a discrete PSO generates the best solutions, as the time savings range from 2 to 13% relative to CTS and TS 2-Opt for different combinations of factor levels evaluated in the experimentation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.