Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide

The overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were use...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4380
Acceso en línea:
http://hdl.handle.net/11407/4380
Palabra clave:
Adsorption
Al-(hydr)oxide
DFT
Gibbs free energy
IR
PH
Phosphate
Wastewater
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_211ec89ecead232dfca8d85cabbce1ff
oai_identifier_str oai:repository.udem.edu.co:11407/4380
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
title Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
spellingShingle Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
Adsorption
Al-(hydr)oxide
DFT
Gibbs free energy
IR
PH
Phosphate
Wastewater
title_short Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
title_full Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
title_fullStr Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
title_full_unstemmed Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
title_sort Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide
dc.contributor.affiliation.spa.fl_str_mv Acelas, N.Y., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombia
Flórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Adsorption
Al-(hydr)oxide
DFT
Gibbs free energy
IR
PH
Phosphate
Wastewater
topic Adsorption
Al-(hydr)oxide
DFT
Gibbs free energy
IR
PH
Phosphate
Wastewater
description The overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:52Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:52Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19443994
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4380
dc.identifier.doi.none.fl_str_mv 10.5004/dwt.2017.0287
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 19443994
10.5004/dwt.2017.0287
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4380
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017169971&doi=10.5004%2fdwt.2017.0287&partnerID=40&md5=fb55be8bc0d23854fb7136155d17f322
dc.relation.ispartofes.spa.fl_str_mv Desalination and Water Treatment
Desalination and Water Treatment Volume 60, 1 January 2017, Pages 88-105
dc.relation.references.spa.fl_str_mv Acelas, N. Y., Flórez, E., & López, D. (2015). Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions. Desalination and Water Treatment, 54(9), 2468-2479. doi:10.1080/19443994.2014.902337
Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024
Acelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002
Awual, M. R., & Jyo, A. (2011). Assessing of phosphorus removal by polymeric anion exchangers. Desalination, 281(1), 111-117. doi:10.1016/j.desal.2011.07.047
Awual, M. R., Jyo, A., El-Safty, S. A., Tamada, M., & Seko, N. (2011). A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. Journal of Hazardous Materials, 188(1-3), 164-171. doi:10.1016/j.jhazmat.2011.01.092
Awual, M. R., Jyo, A., Ihara, T., Seko, N., Tamada, M., & Lim, K. T. (2011). Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Research, 45(15), 4592-4600. doi:10.1016/j.watres.2011.06.009
Babatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108-115. doi:10.1016/j.cej.2007.03.013
Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium.Bioresource Technology, 99(18), 8685-8690. doi:10.1016/j.biortech.2008.04.015
Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008
Chen, Y. S. R., Butler, J. N., & Stumm, W. (1973). Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environmental Science and Technology, 7(4), 327-332. doi:10.1021/es60076a007
Chubar, N. I., Kanibolotskyy, V. A., Strelko, V. V., Gallios, G. G., Samanidou, V. F., Shaposhnikova, T. O., . . . Zhuravlev, I. Z. (2005). Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1-3), 55-63. doi:10.1016/j.colsurfa.2004.12.015
Cumbal, L., & Sengupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of donnan membrane effect. Environmental Science and Technology, 39(17), 6508-6515. doi:10.1021/es050175e
Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275. doi:10.1016/j.jcis.2004.06.015
Genz, A., Kornmüller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38(16), 3523-3530. doi:10.1016/j.watres.2004.06.006
He, G., Pan, G., & Zhang, M. (2011). Studies on the reaction pathway of arsenate adsorption at water-TiO2 interfaces using density functional theory. Journal of Colloid and Interface Science, 364(2), 476-481. doi:10.1016/j.jcis.2011.08.040
He, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019e
Jaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36(7), 1834-1842. doi:10.1016/S0043-1354(01)00391-8
Keith, T. A., & Frisch, M. J. (1994). Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation, modeling the hydrogen bond. American Chemical Society, 22-35.
Kney, A. D., & Zhao, D. (2004). A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process. Environmental Technology, 25(5), 533-542.
Kubicki, J. D. (1998). Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces. American Mineralogist, 83(9-10), 1054-1066.
Kuzawa, K., Jung, Y. -., Kiso, Y., Yamada, T., Nagai, M., & Lee, T. -. (2006). Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere, 62(1), 45-52. doi:10.1016/j.chemosphere.2005.04.015
Ladeira, A. C. Q., Ciminelli, V. S. T., Duarte, H. A., Alves, M. C. M., & Ramos, A. Y. (2001). Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite.Geochimica Et Cosmochimica Acta, 65(8), 1211-1217. doi:10.1016/S0016-7037(00)00581-0
Lee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51(4), 265-271. doi:10.1016/S0045-6535(02)00807-X
Luengo, C. V., Castellani, N. J., & Ferullo, R. M. (2015). Quantum chemical study on surface complex structures of phosphate on gibbsite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 147, 193-199. doi:10.1016/j.saa.2015.03.013
Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic (III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32(16), 2383-2388. doi:10.1021/es9802201
Midorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbentdoi:10.2166/wst.2008.537
Paul, K. W., Borda, M. J., Kubicki, J. D., & Sparks, D. L. (2005). Effect of dehydration on sulfate coordination and speciation at the fe-(hydr)oxide-water interface: A molecular orbital/density functional theory and fourier transform infrared spectroscopic investigation. Langmuir, 21(24), 11071-11078. doi:10.1021/la050648v
Paul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139y
Paul, K. W., Kubicki, J. D., & Sparks, D. L. (2007). Sulphate adsorption at the fe (hydr)oxide-H2O interface: Comparison of cluster and periodic slab DFT predictions. European Journal of Soil Science, 58(4), 978-988. doi:10.1111/j.1365-2389.2007.00936.x
Persson, P., Nilsson, N., & Sjöberg, S. (1996). Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. Journal of Colloid and Interface Science, 177(1), 263-275. doi:10.1006/jcis.1996.0030
Regelink, I. C., Weng, L., Lair, G. J., & Comans, R. N. J. (2015). Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: A mechanistic modelling study. European Journal of Soil Science, 66(5), 867-875. doi:10.1111/ejss.12285
Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976r
Sengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318-3330. doi:10.1016/j.watres.2011.03.044
Sherman, D. M., & Randall, S. R. (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 67(22), 4223-4230. doi:10.1016/S0016-7037(03)00237-0
Shin, E. W., Han, J. S., Jang, M., Min, S. -., Park, J. K., & Rowell, R. M. (2004). Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents.Environmental Science and Technology, 38(3), 912-917. doi:10.1021/es030488e
Suzuki, T. M., Bomani, J. O., Matsunaga, H., & Yokoyama, T. (2000). Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. Reactive and Functional Polymers, 43(1), 165-172. doi:10.1016/S1381-5148(99)00038-3
Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., & Tamura, T. (2003). Removal of phosphate by aluminum oxide hydroxide. Journal of Colloid and Interface Science, 257(1), 135-140. doi:10.1016/S0021-9797(02)00008-5
Tejedor-Tejedor, M. I., & Anderson, M. A. (1990). Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6(3), 602-611. doi:10.1021/la00093a015
Van Riemsdijk, W., & Lyklema, J. (1980). Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum. Journal of Colloid and Interface Science, 76(1), 55-66. doi:10.1016/0021-9797(80)90270-2
Wu, R. S. S., Lam, K. H., Lee, J. M. N., & Lau, T. C. (2007). Removal of phosphate from water by a highly selective la(III)-chelex resin. Chemosphere, 69(2), 289-294. doi:10.1016/j.chemosphere.2007.04.022
Xu, Y. -., Ohki, A., & Maeda, S. (2000). Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded shirasu-zeolite. Toxicological and Environmental Chemistry, 76(1-2), 111-124. doi:10.1080/02772240009358921
Yang, X., Wang, D., Sun, Z., & Tang, H. (2007). Adsorption of phosphate at the aluminum (hydr)oxides-water interface: Role of the surface acid-base properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3), 84-90. doi:10.1016/j.colsurfa.2006.10.028
Zhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0
Zhu, X., & Jyo, A. (2005). Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 39(11), 2301-2308. doi:10.1016/j.watres.2005.04.033
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Taylor and Francis Inc.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159125904359424
spelling 2017-12-19T19:36:52Z2017-12-19T19:36:52Z201719443994http://hdl.handle.net/11407/438010.5004/dwt.2017.0287reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved.engTaylor and Francis Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017169971&doi=10.5004%2fdwt.2017.0287&partnerID=40&md5=fb55be8bc0d23854fb7136155d17f322Desalination and Water TreatmentDesalination and Water Treatment Volume 60, 1 January 2017, Pages 88-105Acelas, N. Y., Flórez, E., & López, D. (2015). Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions. Desalination and Water Treatment, 54(9), 2468-2479. doi:10.1080/19443994.2014.902337Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024Acelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002Awual, M. R., & Jyo, A. (2011). Assessing of phosphorus removal by polymeric anion exchangers. Desalination, 281(1), 111-117. doi:10.1016/j.desal.2011.07.047Awual, M. R., Jyo, A., El-Safty, S. A., Tamada, M., & Seko, N. (2011). A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. Journal of Hazardous Materials, 188(1-3), 164-171. doi:10.1016/j.jhazmat.2011.01.092Awual, M. R., Jyo, A., Ihara, T., Seko, N., Tamada, M., & Lim, K. T. (2011). Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Research, 45(15), 4592-4600. doi:10.1016/j.watres.2011.06.009Babatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108-115. doi:10.1016/j.cej.2007.03.013Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium.Bioresource Technology, 99(18), 8685-8690. doi:10.1016/j.biortech.2008.04.015Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008Chen, Y. S. R., Butler, J. N., & Stumm, W. (1973). Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environmental Science and Technology, 7(4), 327-332. doi:10.1021/es60076a007Chubar, N. I., Kanibolotskyy, V. A., Strelko, V. V., Gallios, G. G., Samanidou, V. F., Shaposhnikova, T. O., . . . Zhuravlev, I. Z. (2005). Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1-3), 55-63. doi:10.1016/j.colsurfa.2004.12.015Cumbal, L., & Sengupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of donnan membrane effect. Environmental Science and Technology, 39(17), 6508-6515. doi:10.1021/es050175eDutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275. doi:10.1016/j.jcis.2004.06.015Genz, A., Kornmüller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38(16), 3523-3530. doi:10.1016/j.watres.2004.06.006He, G., Pan, G., & Zhang, M. (2011). Studies on the reaction pathway of arsenate adsorption at water-TiO2 interfaces using density functional theory. Journal of Colloid and Interface Science, 364(2), 476-481. doi:10.1016/j.jcis.2011.08.040He, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019eJaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36(7), 1834-1842. doi:10.1016/S0043-1354(01)00391-8Keith, T. A., & Frisch, M. J. (1994). Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation, modeling the hydrogen bond. American Chemical Society, 22-35.Kney, A. D., & Zhao, D. (2004). A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process. Environmental Technology, 25(5), 533-542.Kubicki, J. D. (1998). Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces. American Mineralogist, 83(9-10), 1054-1066.Kuzawa, K., Jung, Y. -., Kiso, Y., Yamada, T., Nagai, M., & Lee, T. -. (2006). Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere, 62(1), 45-52. doi:10.1016/j.chemosphere.2005.04.015Ladeira, A. C. Q., Ciminelli, V. S. T., Duarte, H. A., Alves, M. C. M., & Ramos, A. Y. (2001). Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite.Geochimica Et Cosmochimica Acta, 65(8), 1211-1217. doi:10.1016/S0016-7037(00)00581-0Lee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51(4), 265-271. doi:10.1016/S0045-6535(02)00807-XLuengo, C. V., Castellani, N. J., & Ferullo, R. M. (2015). Quantum chemical study on surface complex structures of phosphate on gibbsite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 147, 193-199. doi:10.1016/j.saa.2015.03.013Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic (III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32(16), 2383-2388. doi:10.1021/es9802201Midorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbentdoi:10.2166/wst.2008.537Paul, K. W., Borda, M. J., Kubicki, J. D., & Sparks, D. L. (2005). Effect of dehydration on sulfate coordination and speciation at the fe-(hydr)oxide-water interface: A molecular orbital/density functional theory and fourier transform infrared spectroscopic investigation. Langmuir, 21(24), 11071-11078. doi:10.1021/la050648vPaul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139yPaul, K. W., Kubicki, J. D., & Sparks, D. L. (2007). Sulphate adsorption at the fe (hydr)oxide-H2O interface: Comparison of cluster and periodic slab DFT predictions. European Journal of Soil Science, 58(4), 978-988. doi:10.1111/j.1365-2389.2007.00936.xPersson, P., Nilsson, N., & Sjöberg, S. (1996). Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. Journal of Colloid and Interface Science, 177(1), 263-275. doi:10.1006/jcis.1996.0030Regelink, I. C., Weng, L., Lair, G. J., & Comans, R. N. J. (2015). Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: A mechanistic modelling study. European Journal of Soil Science, 66(5), 867-875. doi:10.1111/ejss.12285Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976rSengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318-3330. doi:10.1016/j.watres.2011.03.044Sherman, D. M., & Randall, S. R. (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 67(22), 4223-4230. doi:10.1016/S0016-7037(03)00237-0Shin, E. W., Han, J. S., Jang, M., Min, S. -., Park, J. K., & Rowell, R. M. (2004). Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents.Environmental Science and Technology, 38(3), 912-917. doi:10.1021/es030488eSuzuki, T. M., Bomani, J. O., Matsunaga, H., & Yokoyama, T. (2000). Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. Reactive and Functional Polymers, 43(1), 165-172. doi:10.1016/S1381-5148(99)00038-3Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., & Tamura, T. (2003). Removal of phosphate by aluminum oxide hydroxide. Journal of Colloid and Interface Science, 257(1), 135-140. doi:10.1016/S0021-9797(02)00008-5Tejedor-Tejedor, M. I., & Anderson, M. A. (1990). Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6(3), 602-611. doi:10.1021/la00093a015Van Riemsdijk, W., & Lyklema, J. (1980). Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum. Journal of Colloid and Interface Science, 76(1), 55-66. doi:10.1016/0021-9797(80)90270-2Wu, R. S. S., Lam, K. H., Lee, J. M. N., & Lau, T. C. (2007). Removal of phosphate from water by a highly selective la(III)-chelex resin. Chemosphere, 69(2), 289-294. doi:10.1016/j.chemosphere.2007.04.022Xu, Y. -., Ohki, A., & Maeda, S. (2000). Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded shirasu-zeolite. Toxicological and Environmental Chemistry, 76(1-2), 111-124. doi:10.1080/02772240009358921Yang, X., Wang, D., Sun, Z., & Tang, H. (2007). Adsorption of phosphate at the aluminum (hydr)oxides-water interface: Role of the surface acid-base properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3), 84-90. doi:10.1016/j.colsurfa.2006.10.028Zhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0Zhu, X., & Jyo, A. (2005). Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 39(11), 2301-2308. doi:10.1016/j.watres.2005.04.033ScopusTheoretical study of phosphate adsorption from wastewater using Al-(hydr)oxideArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acelas, N.Y., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, ColombiaFlórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, ColombiaAcelas N.Y.Flórez E.Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, ColombiaAdsorptionAl-(hydr)oxideDFTGibbs free energyIRPHPhosphateWastewaterThe overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved.http://purl.org/coar/access_right/c_16ec11407/4380oai:repository.udem.edu.co:11407/43802020-05-27 15:57:17.155Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co