Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
We investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5813
- Acceso en línea:
- http://hdl.handle.net/11407/5813
- Palabra clave:
- blue-phosphorene
DFT
nanotubes
Density functional theory
Energy gap
Nanotubes
Spin polarization
blue-phosphorene
Electron volt
First principle calculations
Gap state
Localized state
Single vacancies
Electronic properties
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_1e246b8e865aaefbd6441f8c5d1d215e |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5813 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
title |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
spellingShingle |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes blue-phosphorene DFT nanotubes Density functional theory Energy gap Nanotubes Spin polarization blue-phosphorene Electron volt First principle calculations Gap state Localized state Single vacancies Electronic properties |
title_short |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
title_full |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
title_fullStr |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
title_full_unstemmed |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
title_sort |
Effects of single vacancy on electronic properties of blue-phosphorene nanotubes |
dc.subject.none.fl_str_mv |
blue-phosphorene DFT nanotubes Density functional theory Energy gap Nanotubes Spin polarization blue-phosphorene Electron volt First principle calculations Gap state Localized state Single vacancies Electronic properties |
topic |
blue-phosphorene DFT nanotubes Density functional theory Energy gap Nanotubes Spin polarization blue-phosphorene Electron volt First principle calculations Gap state Localized state Single vacancies Electronic properties |
description |
We investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on the structure and the electron energy states of the nanostructure. Compared to pristine blue-phosphorene nanotubes, which exhibit values of the fundamental bandgap between one and two electron-volts. For atomic single vacancies, the incorporation of spin-polarization helps to identify the induction of localized mid-gap states in the blue phosphorene nanotubes. The difference of energy between the highest near-valence and lower near-conduction localized states is, approximately, of 0.5 eV. Also the increase of the single vacancies concentration leads to the formation of additional bands that change the energy gap of the system. © 2020 The Author(s). Published by IOP Publishing Ltd. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:08Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:08Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20531591 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5813 |
dc.identifier.doi.none.fl_str_mv |
10.1088/2053-1591/ab66a6 |
identifier_str_mv |
20531591 10.1088/2053-1591/ab66a6 |
url |
http://hdl.handle.net/11407/5813 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081734484&doi=10.1088%2f2053-1591%2fab66a6&partnerID=40&md5=f8025905d4276e85e0a0f3446d0effbb |
dc.relation.citationvolume.none.fl_str_mv |
7 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Pokropivny, V.V., (2001) Powder Metall. Met. Ceram., 40, pp. 582-594 Ivanovskii, A.L., (2002) Russ. Chem. Rev., 71 (3), pp. 175-194 Endo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., (2006) Jap. J. Appl. Phys., 45, pp. 4883-4892 Govindaraju, N., Singh, R., Synthesis and properties of boron nitride nanotubes (2014) Nanotube Superfiber Materials, pp. 243-265. , ed Schulz M.J., Shanov V.N.and Yin Z Bardhan, N.M., (2017) J. Mater. Res., 32, pp. 107-127 He, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., (2018) ChemElectroChem, 5, pp. 2464-2474 Kianfar, E., (2019) Microchem. J., 145, pp. 966-978 Goda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., (2019) Microchem. J., 147, pp. 1083-1096 Dvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., MacAk, J.M., (2019) Applied Materials Today, 14, pp. 1-20 Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G., (2019) C-Journal of Carbon Research, 5, pp. 1-31 Seifert, G., Hernnández, E., (2000) Chem. Phys. Lett., 318, pp. 355-360 Cabria, I., Mintmire, J.W., (2004) Europhys. Lett., 65 (1), pp. 82-88 Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., (2014) The Journal of Physical Chemistry, 118, pp. 14051-14059 Hu, T., Hashmi, A., Hong, J., (2015) Nanotechnology, 26 (41) Yu, S., Zhu, H., Eshun, K., Arab, A., Badwan, A., Li, Q., (2015) J. Appl. Phys., 118, p. 164306 Allec, S.I., Wong, B.M., (2016) J. Phys. Chem. Lett., 7, pp. 4340-4345 Liao, X., Hao, F., Xiao, H., Chen, X., (2016) Nanotechnology, 27 (21), pp. 215701-215708 Fernández-Escamilla, H.N., Quijano-Briones, J.J., Tlahuice-Flores, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 12414-12418 Sorkin, V., Zhang, Y.W., (2016) Nanotechnology, 27 (39) Ansari, R., Shahnazari, A., Rouhi, S., (2017) Physica E, 88, pp. 272-278 Hao, J., Wang, Z., Peng, Y., Wang, Y., (2019) Scientific Reports, 9, pp. 3-10 Pan, D., Wang, T.C., Wang, C., Guo, W., Yao, Y., (2017) RSC Adv., 7, pp. 24647-24651 Liu, P., Pei, Q.X., Huang, W., Zhang, Y.W., (2018) J. Mater. Sci., 53, pp. 8355-8363 Sorkin, V., Zhang, Y.W., (2018) Nanotechnology, 29 (23) Dai, X., Zhang, L., Wang, Z., Li, J., Li, H., (2019) Comput. Mater. Sci., 156, pp. 292-300 Fernández-Escamilla, H.N., Guerrero-Sánchez, J., Martínez-Guerra, E., Takeuchi, N., (2019) J. Phys. Chem., 123, pp. 7217-7224 Aierken, Y., Leenaerts, O., Peeters, F.M., (2015) Phys. Rev., 92, pp. 104104-104110 Montes, E., Schwingenschlögl, U., (2016) Phys. Rev., 94, pp. 1-5 Xiao, J., Long, M., Deng, C.S., He, J., Cui, L.L., Xu, H., (2016) J. Phys. Chem., 120, pp. 4638-4646 Montes, E., Schwingenschlögl, U., (2017) J. Mater. Chem., 5, pp. 5365-5371 Ju, L., Dai, Y., Wei, W., Liang, Y., Huang, B., (2018) J. Mater. Chem., 6, pp. 21087-21097 Hao, J., Wang, Z., Jin, Q., (2019) Sci. Rep., 9, pp. 3-10 Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112 Hu, W., Yang, J., (2015) The Journal of Physical Chemistry, 119, pp. 20474-20480 Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Condens. Matter, 14 (11), p. 2745 Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865 Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., (2006) Phys. Rev. Lett., 97 Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., (1998) Nature, 391, pp. 62-64 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Materials Research Express |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159224685461504 |
spelling |
20202020-04-29T14:54:08Z2020-04-29T14:54:08Z20531591http://hdl.handle.net/11407/581310.1088/2053-1591/ab66a6We investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on the structure and the electron energy states of the nanostructure. Compared to pristine blue-phosphorene nanotubes, which exhibit values of the fundamental bandgap between one and two electron-volts. For atomic single vacancies, the incorporation of spin-polarization helps to identify the induction of localized mid-gap states in the blue phosphorene nanotubes. The difference of energy between the highest near-valence and lower near-conduction localized states is, approximately, of 0.5 eV. Also the increase of the single vacancies concentration leads to the formation of additional bands that change the energy gap of the system. © 2020 The Author(s). Published by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081734484&doi=10.1088%2f2053-1591%2fab66a6&partnerID=40&md5=f8025905d4276e85e0a0f3446d0effbb71Pokropivny, V.V., (2001) Powder Metall. Met. Ceram., 40, pp. 582-594Ivanovskii, A.L., (2002) Russ. Chem. Rev., 71 (3), pp. 175-194Endo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., (2006) Jap. J. Appl. Phys., 45, pp. 4883-4892Govindaraju, N., Singh, R., Synthesis and properties of boron nitride nanotubes (2014) Nanotube Superfiber Materials, pp. 243-265. , ed Schulz M.J., Shanov V.N.and Yin ZBardhan, N.M., (2017) J. Mater. Res., 32, pp. 107-127He, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., (2018) ChemElectroChem, 5, pp. 2464-2474Kianfar, E., (2019) Microchem. J., 145, pp. 966-978Goda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., (2019) Microchem. J., 147, pp. 1083-1096Dvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., MacAk, J.M., (2019) Applied Materials Today, 14, pp. 1-20Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G., (2019) C-Journal of Carbon Research, 5, pp. 1-31Seifert, G., Hernnández, E., (2000) Chem. Phys. Lett., 318, pp. 355-360Cabria, I., Mintmire, J.W., (2004) Europhys. Lett., 65 (1), pp. 82-88Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., (2014) The Journal of Physical Chemistry, 118, pp. 14051-14059Hu, T., Hashmi, A., Hong, J., (2015) Nanotechnology, 26 (41)Yu, S., Zhu, H., Eshun, K., Arab, A., Badwan, A., Li, Q., (2015) J. Appl. Phys., 118, p. 164306Allec, S.I., Wong, B.M., (2016) J. Phys. Chem. Lett., 7, pp. 4340-4345Liao, X., Hao, F., Xiao, H., Chen, X., (2016) Nanotechnology, 27 (21), pp. 215701-215708Fernández-Escamilla, H.N., Quijano-Briones, J.J., Tlahuice-Flores, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 12414-12418Sorkin, V., Zhang, Y.W., (2016) Nanotechnology, 27 (39)Ansari, R., Shahnazari, A., Rouhi, S., (2017) Physica E, 88, pp. 272-278Hao, J., Wang, Z., Peng, Y., Wang, Y., (2019) Scientific Reports, 9, pp. 3-10Pan, D., Wang, T.C., Wang, C., Guo, W., Yao, Y., (2017) RSC Adv., 7, pp. 24647-24651Liu, P., Pei, Q.X., Huang, W., Zhang, Y.W., (2018) J. Mater. Sci., 53, pp. 8355-8363Sorkin, V., Zhang, Y.W., (2018) Nanotechnology, 29 (23)Dai, X., Zhang, L., Wang, Z., Li, J., Li, H., (2019) Comput. Mater. Sci., 156, pp. 292-300Fernández-Escamilla, H.N., Guerrero-Sánchez, J., Martínez-Guerra, E., Takeuchi, N., (2019) J. Phys. Chem., 123, pp. 7217-7224Aierken, Y., Leenaerts, O., Peeters, F.M., (2015) Phys. Rev., 92, pp. 104104-104110Montes, E., Schwingenschlögl, U., (2016) Phys. Rev., 94, pp. 1-5Xiao, J., Long, M., Deng, C.S., He, J., Cui, L.L., Xu, H., (2016) J. Phys. Chem., 120, pp. 4638-4646Montes, E., Schwingenschlögl, U., (2017) J. Mater. Chem., 5, pp. 5365-5371Ju, L., Dai, Y., Wei, W., Liang, Y., Huang, B., (2018) J. Mater. Chem., 6, pp. 21087-21097Hao, J., Wang, Z., Jin, Q., (2019) Sci. Rep., 9, pp. 3-10Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112Hu, W., Yang, J., (2015) The Journal of Physical Chemistry, 119, pp. 20474-20480Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Condens. Matter, 14 (11), p. 2745Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., (2006) Phys. Rev. Lett., 97Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., (1998) Nature, 391, pp. 62-64Materials Research Expressblue-phosphoreneDFTnanotubesDensity functional theoryEnergy gapNanotubesSpin polarizationblue-phosphoreneElectron voltFirst principle calculationsGap stateLocalized stateSingle vacanciesElectronic propertiesEffects of single vacancy on electronic properties of blue-phosphorene nanotubesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vergara, J.M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Ctro. de Invest. en Ciencias-IICBA. Universidad Autonoma Del Estado de Morelos. Av. Universidad 1001, CP 62209, Morelos, Cuernavaca, Mexico; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecVergara J.M.Flórez E.Mora-Ramos M.E.Correa J.D.11407/5813oai:repository.udem.edu.co:11407/58132020-05-27 18:31:57.136Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |