Effects of single vacancy on electronic properties of blue-phosphorene nanotubes

We investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5813
Acceso en línea:
http://hdl.handle.net/11407/5813
Palabra clave:
blue-phosphorene
DFT
nanotubes
Density functional theory
Energy gap
Nanotubes
Spin polarization
blue-phosphorene
Electron volt
First principle calculations
Gap state
Localized state
Single vacancies
Electronic properties
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_1e246b8e865aaefbd6441f8c5d1d215e
oai_identifier_str oai:repository.udem.edu.co:11407/5813
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
title Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
spellingShingle Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
blue-phosphorene
DFT
nanotubes
Density functional theory
Energy gap
Nanotubes
Spin polarization
blue-phosphorene
Electron volt
First principle calculations
Gap state
Localized state
Single vacancies
Electronic properties
title_short Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
title_full Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
title_fullStr Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
title_full_unstemmed Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
title_sort Effects of single vacancy on electronic properties of blue-phosphorene nanotubes
dc.subject.none.fl_str_mv blue-phosphorene
DFT
nanotubes
Density functional theory
Energy gap
Nanotubes
Spin polarization
blue-phosphorene
Electron volt
First principle calculations
Gap state
Localized state
Single vacancies
Electronic properties
topic blue-phosphorene
DFT
nanotubes
Density functional theory
Energy gap
Nanotubes
Spin polarization
blue-phosphorene
Electron volt
First principle calculations
Gap state
Localized state
Single vacancies
Electronic properties
description We investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on the structure and the electron energy states of the nanostructure. Compared to pristine blue-phosphorene nanotubes, which exhibit values of the fundamental bandgap between one and two electron-volts. For atomic single vacancies, the incorporation of spin-polarization helps to identify the induction of localized mid-gap states in the blue phosphorene nanotubes. The difference of energy between the highest near-valence and lower near-conduction localized states is, approximately, of 0.5 eV. Also the increase of the single vacancies concentration leads to the formation of additional bands that change the energy gap of the system. © 2020 The Author(s). Published by IOP Publishing Ltd.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:08Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:08Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20531591
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5813
dc.identifier.doi.none.fl_str_mv 10.1088/2053-1591/ab66a6
identifier_str_mv 20531591
10.1088/2053-1591/ab66a6
url http://hdl.handle.net/11407/5813
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081734484&doi=10.1088%2f2053-1591%2fab66a6&partnerID=40&md5=f8025905d4276e85e0a0f3446d0effbb
dc.relation.citationvolume.none.fl_str_mv 7
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Pokropivny, V.V., (2001) Powder Metall. Met. Ceram., 40, pp. 582-594
Ivanovskii, A.L., (2002) Russ. Chem. Rev., 71 (3), pp. 175-194
Endo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., (2006) Jap. J. Appl. Phys., 45, pp. 4883-4892
Govindaraju, N., Singh, R., Synthesis and properties of boron nitride nanotubes (2014) Nanotube Superfiber Materials, pp. 243-265. , ed Schulz M.J., Shanov V.N.and Yin Z
Bardhan, N.M., (2017) J. Mater. Res., 32, pp. 107-127
He, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., (2018) ChemElectroChem, 5, pp. 2464-2474
Kianfar, E., (2019) Microchem. J., 145, pp. 966-978
Goda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., (2019) Microchem. J., 147, pp. 1083-1096
Dvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., MacAk, J.M., (2019) Applied Materials Today, 14, pp. 1-20
Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G., (2019) C-Journal of Carbon Research, 5, pp. 1-31
Seifert, G., Hernnández, E., (2000) Chem. Phys. Lett., 318, pp. 355-360
Cabria, I., Mintmire, J.W., (2004) Europhys. Lett., 65 (1), pp. 82-88
Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., (2014) The Journal of Physical Chemistry, 118, pp. 14051-14059
Hu, T., Hashmi, A., Hong, J., (2015) Nanotechnology, 26 (41)
Yu, S., Zhu, H., Eshun, K., Arab, A., Badwan, A., Li, Q., (2015) J. Appl. Phys., 118, p. 164306
Allec, S.I., Wong, B.M., (2016) J. Phys. Chem. Lett., 7, pp. 4340-4345
Liao, X., Hao, F., Xiao, H., Chen, X., (2016) Nanotechnology, 27 (21), pp. 215701-215708
Fernández-Escamilla, H.N., Quijano-Briones, J.J., Tlahuice-Flores, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 12414-12418
Sorkin, V., Zhang, Y.W., (2016) Nanotechnology, 27 (39)
Ansari, R., Shahnazari, A., Rouhi, S., (2017) Physica E, 88, pp. 272-278
Hao, J., Wang, Z., Peng, Y., Wang, Y., (2019) Scientific Reports, 9, pp. 3-10
Pan, D., Wang, T.C., Wang, C., Guo, W., Yao, Y., (2017) RSC Adv., 7, pp. 24647-24651
Liu, P., Pei, Q.X., Huang, W., Zhang, Y.W., (2018) J. Mater. Sci., 53, pp. 8355-8363
Sorkin, V., Zhang, Y.W., (2018) Nanotechnology, 29 (23)
Dai, X., Zhang, L., Wang, Z., Li, J., Li, H., (2019) Comput. Mater. Sci., 156, pp. 292-300
Fernández-Escamilla, H.N., Guerrero-Sánchez, J., Martínez-Guerra, E., Takeuchi, N., (2019) J. Phys. Chem., 123, pp. 7217-7224
Aierken, Y., Leenaerts, O., Peeters, F.M., (2015) Phys. Rev., 92, pp. 104104-104110
Montes, E., Schwingenschlögl, U., (2016) Phys. Rev., 94, pp. 1-5
Xiao, J., Long, M., Deng, C.S., He, J., Cui, L.L., Xu, H., (2016) J. Phys. Chem., 120, pp. 4638-4646
Montes, E., Schwingenschlögl, U., (2017) J. Mater. Chem., 5, pp. 5365-5371
Ju, L., Dai, Y., Wei, W., Liang, Y., Huang, B., (2018) J. Mater. Chem., 6, pp. 21087-21097
Hao, J., Wang, Z., Jin, Q., (2019) Sci. Rep., 9, pp. 3-10
Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112
Hu, W., Yang, J., (2015) The Journal of Physical Chemistry, 119, pp. 20474-20480
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Condens. Matter, 14 (11), p. 2745
Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., (2006) Phys. Rev. Lett., 97
Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., (1998) Nature, 391, pp. 62-64
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Materials Research Express
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159224685461504
spelling 20202020-04-29T14:54:08Z2020-04-29T14:54:08Z20531591http://hdl.handle.net/11407/581310.1088/2053-1591/ab66a6We investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on the structure and the electron energy states of the nanostructure. Compared to pristine blue-phosphorene nanotubes, which exhibit values of the fundamental bandgap between one and two electron-volts. For atomic single vacancies, the incorporation of spin-polarization helps to identify the induction of localized mid-gap states in the blue phosphorene nanotubes. The difference of energy between the highest near-valence and lower near-conduction localized states is, approximately, of 0.5 eV. Also the increase of the single vacancies concentration leads to the formation of additional bands that change the energy gap of the system. © 2020 The Author(s). Published by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081734484&doi=10.1088%2f2053-1591%2fab66a6&partnerID=40&md5=f8025905d4276e85e0a0f3446d0effbb71Pokropivny, V.V., (2001) Powder Metall. Met. Ceram., 40, pp. 582-594Ivanovskii, A.L., (2002) Russ. Chem. Rev., 71 (3), pp. 175-194Endo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., (2006) Jap. J. Appl. Phys., 45, pp. 4883-4892Govindaraju, N., Singh, R., Synthesis and properties of boron nitride nanotubes (2014) Nanotube Superfiber Materials, pp. 243-265. , ed Schulz M.J., Shanov V.N.and Yin ZBardhan, N.M., (2017) J. Mater. Res., 32, pp. 107-127He, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., (2018) ChemElectroChem, 5, pp. 2464-2474Kianfar, E., (2019) Microchem. J., 145, pp. 966-978Goda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., (2019) Microchem. J., 147, pp. 1083-1096Dvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., MacAk, J.M., (2019) Applied Materials Today, 14, pp. 1-20Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G., (2019) C-Journal of Carbon Research, 5, pp. 1-31Seifert, G., Hernnández, E., (2000) Chem. Phys. Lett., 318, pp. 355-360Cabria, I., Mintmire, J.W., (2004) Europhys. Lett., 65 (1), pp. 82-88Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., (2014) The Journal of Physical Chemistry, 118, pp. 14051-14059Hu, T., Hashmi, A., Hong, J., (2015) Nanotechnology, 26 (41)Yu, S., Zhu, H., Eshun, K., Arab, A., Badwan, A., Li, Q., (2015) J. Appl. Phys., 118, p. 164306Allec, S.I., Wong, B.M., (2016) J. Phys. Chem. Lett., 7, pp. 4340-4345Liao, X., Hao, F., Xiao, H., Chen, X., (2016) Nanotechnology, 27 (21), pp. 215701-215708Fernández-Escamilla, H.N., Quijano-Briones, J.J., Tlahuice-Flores, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 12414-12418Sorkin, V., Zhang, Y.W., (2016) Nanotechnology, 27 (39)Ansari, R., Shahnazari, A., Rouhi, S., (2017) Physica E, 88, pp. 272-278Hao, J., Wang, Z., Peng, Y., Wang, Y., (2019) Scientific Reports, 9, pp. 3-10Pan, D., Wang, T.C., Wang, C., Guo, W., Yao, Y., (2017) RSC Adv., 7, pp. 24647-24651Liu, P., Pei, Q.X., Huang, W., Zhang, Y.W., (2018) J. Mater. Sci., 53, pp. 8355-8363Sorkin, V., Zhang, Y.W., (2018) Nanotechnology, 29 (23)Dai, X., Zhang, L., Wang, Z., Li, J., Li, H., (2019) Comput. Mater. Sci., 156, pp. 292-300Fernández-Escamilla, H.N., Guerrero-Sánchez, J., Martínez-Guerra, E., Takeuchi, N., (2019) J. Phys. Chem., 123, pp. 7217-7224Aierken, Y., Leenaerts, O., Peeters, F.M., (2015) Phys. Rev., 92, pp. 104104-104110Montes, E., Schwingenschlögl, U., (2016) Phys. Rev., 94, pp. 1-5Xiao, J., Long, M., Deng, C.S., He, J., Cui, L.L., Xu, H., (2016) J. Phys. Chem., 120, pp. 4638-4646Montes, E., Schwingenschlögl, U., (2017) J. Mater. Chem., 5, pp. 5365-5371Ju, L., Dai, Y., Wei, W., Liang, Y., Huang, B., (2018) J. Mater. Chem., 6, pp. 21087-21097Hao, J., Wang, Z., Jin, Q., (2019) Sci. Rep., 9, pp. 3-10Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112Hu, W., Yang, J., (2015) The Journal of Physical Chemistry, 119, pp. 20474-20480Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Condens. Matter, 14 (11), p. 2745Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., (2006) Phys. Rev. Lett., 97Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., (1998) Nature, 391, pp. 62-64Materials Research Expressblue-phosphoreneDFTnanotubesDensity functional theoryEnergy gapNanotubesSpin polarizationblue-phosphoreneElectron voltFirst principle calculationsGap stateLocalized stateSingle vacanciesElectronic propertiesEffects of single vacancy on electronic properties of blue-phosphorene nanotubesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vergara, J.M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Ctro. de Invest. en Ciencias-IICBA. Universidad Autonoma Del Estado de Morelos. Av. Universidad 1001, CP 62209, Morelos, Cuernavaca, Mexico; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecVergara J.M.Flórez E.Mora-Ramos M.E.Correa J.D.11407/5813oai:repository.udem.edu.co:11407/58132020-05-27 18:31:57.136Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co