Power Quality Analysis in an Industrial System from Multipoint Measurements

This paper proposes a methodology for the analysis of power quality in industrial electrical installations. Initially, a multipoint measurement is performed, then the phenomena that most affect the industry are identified and analyzed, then the system is modelled and adjusted to the real behavior, a...

Full description

Autores:
Vera, J. Jeffer
Santamaria, Francisco
Jaramillo Matta, Adolfo Andres
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5505
Acceso en línea:
http://hdl.handle.net/11407/5505
https://doi.org/10.22395/rium.v17n32a9
Palabra clave:
Harmonics
Power quality
Voltage sags
Multipoint measu-rement
Modelling
Simulation
Harmônicos
Qualidade de potência
Afundamento de tensão
Medição multiponto
Modelado
Simulação
Armónicos
Calidad de potencia
Hundimientos de tensión
Medición multipunto
Modelado
Simulación
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_1d12adc1a16faf126c1fc97edca0538a
oai_identifier_str oai:repository.udem.edu.co:11407/5505
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.eng.fl_str_mv Power Quality Analysis in an Industrial System from Multipoint Measurements
dc.title.por.fl_str_mv Análise de qualidade de potência num sistema industrial a partir de medições multipontos
dc.title.spa.fl_str_mv Análisis de calidad de potencia en un sistema industrial a partir de mediciones multipunto
title Power Quality Analysis in an Industrial System from Multipoint Measurements
spellingShingle Power Quality Analysis in an Industrial System from Multipoint Measurements
Harmonics
Power quality
Voltage sags
Multipoint measu-rement
Modelling
Simulation
Harmônicos
Qualidade de potência
Afundamento de tensão
Medição multiponto
Modelado
Simulação
Armónicos
Calidad de potencia
Hundimientos de tensión
Medición multipunto
Modelado
Simulación
title_short Power Quality Analysis in an Industrial System from Multipoint Measurements
title_full Power Quality Analysis in an Industrial System from Multipoint Measurements
title_fullStr Power Quality Analysis in an Industrial System from Multipoint Measurements
title_full_unstemmed Power Quality Analysis in an Industrial System from Multipoint Measurements
title_sort Power Quality Analysis in an Industrial System from Multipoint Measurements
dc.creator.fl_str_mv Vera, J. Jeffer
Santamaria, Francisco
Jaramillo Matta, Adolfo Andres
dc.contributor.author.none.fl_str_mv Vera, J. Jeffer
Santamaria, Francisco
Jaramillo Matta, Adolfo Andres
dc.subject.eng.fl_str_mv Harmonics
Power quality
Voltage sags
Multipoint measu-rement
Modelling
Simulation
topic Harmonics
Power quality
Voltage sags
Multipoint measu-rement
Modelling
Simulation
Harmônicos
Qualidade de potência
Afundamento de tensão
Medição multiponto
Modelado
Simulação
Armónicos
Calidad de potencia
Hundimientos de tensión
Medición multipunto
Modelado
Simulación
dc.subject.por.fl_str_mv Harmônicos
Qualidade de potência
Afundamento de tensão
Medição multiponto
Modelado
Simulação
dc.subject.spa.fl_str_mv Armónicos
Calidad de potencia
Hundimientos de tensión
Medición multipunto
Modelado
Simulación
description This paper proposes a methodology for the analysis of power quality in industrial electrical installations. Initially, a multipoint measurement is performed, then the phenomena that most affect the industry are identified and analyzed, then the system is modelled and adjusted to the real behavior, and some solutions are proposed and simulated. Subsequently, a case study is selected and the power quality study is carried out on the basis of the proposed methodology and according to the parameters of the NTC 5001 standard. Finally, the advantages of using multipoint measurement and modeling in power quality studies are established.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-07-04
dc.date.accessioned.none.fl_str_mv 2019-11-07T15:00:32Z
dc.date.available.none.fl_str_mv 2019-11-07T15:00:32Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5505
dc.identifier.doi.none.fl_str_mv https://doi.org/10.22395/rium.v17n32a9
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/5505
https://doi.org/10.22395/rium.v17n32a9
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv https://revistas.udem.edu.co/index.php/ingenierias/article/view/1831
dc.relation.citationvolume.none.fl_str_mv 17
dc.relation.citationissue.none.fl_str_mv 32
dc.relation.citationstartpage.none.fl_str_mv 199
dc.relation.citationendpage.none.fl_str_mv 212
dc.relation.references.spa.fl_str_mv [1] D. Castaldo, A. Ferrero, S. Salicone, and A. Testa, “A power-quality index based on multipoint measurements”, in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 4, pp. 722-726.
[2] D. Castaldo, D. Gallo, C. Landi, R. Langella, and A. Testa, “Power quality analysis: a distributed measurement system”, in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 3, pp. 487-492.
[3] C. Sankaran, Power Quality (Electric Power Engineering Series). Boca Ratón, Florida, 2002.
[4] Instituto Colombiano de Normas Técnicas, NTC 5001. Calidad de la potencia eléctrica, límites y metodología de evaluación en punto de conexión común. Colombia, 2008.
[5] Z. Klaic, K. Fekete, S. Nikolovski, and Z. Prekratic, “Propagation of the voltage sags through different winding connections of the transformers”, 11th International Conference on Electrical Power Quality and Utilisation. pp. 1-5, 2011.
[6] R. F. Mustapa, M. S. Serwan, N. Hamzah, and Z. Zakaria, “Effect of impedances line length to voltage sag propagation”, 2010 IEEE International Conference on Power and Energy. pp. 700-705, 2010.
[7] T. Sikorski and B. Solak, “Application of voltage and current transformations of different transformer winding connections in analysis of voltage dips propagation”, 2016 Electric Power Networks (EPNet). pp. 1-6, 2016.
[8] A. Baggini, Handbook of Power Quality. Bergamo, Italy: John Wiley & Sons, Ltd., 2008.
[9] S. Kamble and C. Thorat, “Classification of voltage sags in distribution systems due to short circuit faults”, 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). pp. 257-264, 2012.
[10] A. S. Poste, B. T. Deshmukh, and B. E. Kushare, “Detection, classification & characterisation of voltage sag”, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). pp. 232-237, 2016.
[11] J. Caicedo, L. Navarro, E. Rivas, and F. Santamaria, “Voltage Sag Immunity Testing for Single-phase Electrical and Electronic Equipment”, in VII Simposio Internacional sobre Calidad de la Energía Eléctrica (SICEL), 2013, pp. 1-6.
[12] L. F. Navarro, J. E. Caicedo, E. Rivas, and F. Santamaría, “Evaluación de la inmunidad de un motor de inducción monofásico frente a huecos de tensión”, Inf. tecnológica, vol. 25, no. 1, pp. 97-108, 2014.
[13] A. Ohtake, F. Zhang, T. Fujimoto, and N. Nakayama, “Development of 200-Mvar class thyristor switched capacitor supporting fault ride-through”, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 – ECCE ASIA). pp. 3857-3863, 2014.
[14] W. H. Ko and J. C. Gu, “Design and application of a thyristor switched capacitor bank for a high harmonic distortion and fast changing single-phase electric welding machine”, IET Power Electronics, vol. 9, n.° 15. pp. 2751-2759, 2016.
[15] M. Alonso Martínez, “Gestión óptima de potencia reactiva en sistemas eléctricos con generación eólica (tesis doctoral)”, Universidad Carlos III de Madrid, España, 2010.
[16] S. Ghosh and M. H. Ali, “Power quality enhancement by coordinated operation of thyristor switched capacitor and optimal reclosing of circuit breakers”, IET Generation, Transmission & Distribution, vol. 9, n.° 12. pp. 1301-1307, 2015.
[17] I. of E. and E. Engineers, IEEE Std 399-1997. IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis. USA, 1997, p. 488.
[18] I. of E. and E. Engineers, IEEE Std 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. USA, 1992, p. 112.
[19] M. D. Kusljevic, “A Simple Method for Design of Adaptive Filters for Sinusoidal Signals”, IEEE Trans. Instrum. Meas., vol. 57, no. 10, pp. 2242-2249, Oct. 2008.
[20] T. Adrikowski, D. Buła, and M. Pasko, “Selection of method for reactive power compensation and harmonic filtering in industrial plant”, 2017 Progress in Applied Electrical Engineering (PAEE). pp. 1-5, 2017.
[21] J. Cheng, D. Chen, Y. Hu, and G. Chen, “An improved SHE algorithm and filter design method for high power grid-connected converter under unbalanced and harmonic distorted grid”, 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). pp. 594-599, 2017.
[22] J. Wang, M. Zhang, S. Li, T. Zhou, and H. Du, “Passive filter design with considering characteristic harmonics and harmonic resonance of electrified railway,” 2017 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). pp. 174-178, 2017.
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv p. 199-212
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Lat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 17 Núm. 32 (2018): Enero-Junio; 199-212
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481163971395584
spelling Vera, J. JefferSantamaria, FranciscoJaramillo Matta, Adolfo AndresVera, J. Jeffer; Universidad Distrital Francisco José de CaldasSantamaria, Francisco; Universidad Distrital Francisco José de CaldasJaramillo Matta, Adolfo Andres; Universidad Distrital Francisco José de Caldas2019-11-07T15:00:32Z2019-11-07T15:00:32Z2018-07-041692-3324http://hdl.handle.net/11407/5505https://doi.org/10.22395/rium.v17n32a92248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínThis paper proposes a methodology for the analysis of power quality in industrial electrical installations. Initially, a multipoint measurement is performed, then the phenomena that most affect the industry are identified and analyzed, then the system is modelled and adjusted to the real behavior, and some solutions are proposed and simulated. Subsequently, a case study is selected and the power quality study is carried out on the basis of the proposed methodology and according to the parameters of the NTC 5001 standard. Finally, the advantages of using multipoint measurement and modeling in power quality studies are established.Este artigo propõe uma metodologia para a análise de qualidade de potência em instalações elétricas industriais. Inicialmente, realiza-se uma medição multiponto; logo, são identificados e analisados os fenômenos que mais afetam a indústria; em seguida, o sistema é modelado e ajustado ao comportamento real, e algumas soluções são propostas e simuladas. Posteriormente, seleciona-se um caso de estudo e realiza-se o estudo de qualidade de potência a partir da metodologia proposta e segundo os parâmetros da norma NTC 5001. Finalmente, estabelecem-se as vantagens do uso da medição multiponto e o modelado em estudos de qualidade de potência.Este artículo propone una metodología para el análisis de calidad de potencia en instalaciones eléctricas industriales. Inicialmente se realiza una medición multipunto, después se identifican y analizan los fenómenos que más afectan a la industria, luego se modela y ajusta el sistema al comportamiento real, y se proponen y simulan algunas soluciones. Posteriormente, se selecciona un caso de estudio y se realiza el estudio de calidad de potencia a partir de la metodología propuesta y según los parámetros de la norma NTC 5001. Finalmente, se establecen las ventajas del uso de la medición multipunto y el modelado en estudios de calidad de potencia.p. 199-212Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/18311732199212[1] D. Castaldo, A. Ferrero, S. Salicone, and A. Testa, “A power-quality index based on multipoint measurements”, in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 4, pp. 722-726.[2] D. Castaldo, D. Gallo, C. Landi, R. Langella, and A. Testa, “Power quality analysis: a distributed measurement system”, in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 3, pp. 487-492.[3] C. Sankaran, Power Quality (Electric Power Engineering Series). Boca Ratón, Florida, 2002.[4] Instituto Colombiano de Normas Técnicas, NTC 5001. Calidad de la potencia eléctrica, límites y metodología de evaluación en punto de conexión común. Colombia, 2008.[5] Z. Klaic, K. Fekete, S. Nikolovski, and Z. Prekratic, “Propagation of the voltage sags through different winding connections of the transformers”, 11th International Conference on Electrical Power Quality and Utilisation. pp. 1-5, 2011.[6] R. F. Mustapa, M. S. Serwan, N. Hamzah, and Z. Zakaria, “Effect of impedances line length to voltage sag propagation”, 2010 IEEE International Conference on Power and Energy. pp. 700-705, 2010.[7] T. Sikorski and B. Solak, “Application of voltage and current transformations of different transformer winding connections in analysis of voltage dips propagation”, 2016 Electric Power Networks (EPNet). pp. 1-6, 2016.[8] A. Baggini, Handbook of Power Quality. Bergamo, Italy: John Wiley & Sons, Ltd., 2008.[9] S. Kamble and C. Thorat, “Classification of voltage sags in distribution systems due to short circuit faults”, 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). pp. 257-264, 2012.[10] A. S. Poste, B. T. Deshmukh, and B. E. Kushare, “Detection, classification & characterisation of voltage sag”, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). pp. 232-237, 2016.[11] J. Caicedo, L. Navarro, E. Rivas, and F. Santamaria, “Voltage Sag Immunity Testing for Single-phase Electrical and Electronic Equipment”, in VII Simposio Internacional sobre Calidad de la Energía Eléctrica (SICEL), 2013, pp. 1-6.[12] L. F. Navarro, J. E. Caicedo, E. Rivas, and F. Santamaría, “Evaluación de la inmunidad de un motor de inducción monofásico frente a huecos de tensión”, Inf. tecnológica, vol. 25, no. 1, pp. 97-108, 2014.[13] A. Ohtake, F. Zhang, T. Fujimoto, and N. Nakayama, “Development of 200-Mvar class thyristor switched capacitor supporting fault ride-through”, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 – ECCE ASIA). pp. 3857-3863, 2014.[14] W. H. Ko and J. C. Gu, “Design and application of a thyristor switched capacitor bank for a high harmonic distortion and fast changing single-phase electric welding machine”, IET Power Electronics, vol. 9, n.° 15. pp. 2751-2759, 2016.[15] M. Alonso Martínez, “Gestión óptima de potencia reactiva en sistemas eléctricos con generación eólica (tesis doctoral)”, Universidad Carlos III de Madrid, España, 2010.[16] S. Ghosh and M. H. Ali, “Power quality enhancement by coordinated operation of thyristor switched capacitor and optimal reclosing of circuit breakers”, IET Generation, Transmission & Distribution, vol. 9, n.° 12. pp. 1301-1307, 2015.[17] I. of E. and E. Engineers, IEEE Std 399-1997. IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis. USA, 1997, p. 488.[18] I. of E. and E. Engineers, IEEE Std 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. USA, 1992, p. 112.[19] M. D. Kusljevic, “A Simple Method for Design of Adaptive Filters for Sinusoidal Signals”, IEEE Trans. Instrum. Meas., vol. 57, no. 10, pp. 2242-2249, Oct. 2008.[20] T. Adrikowski, D. Buła, and M. Pasko, “Selection of method for reactive power compensation and harmonic filtering in industrial plant”, 2017 Progress in Applied Electrical Engineering (PAEE). pp. 1-5, 2017.[21] J. Cheng, D. Chen, Y. Hu, and G. Chen, “An improved SHE algorithm and filter design method for high power grid-connected converter under unbalanced and harmonic distorted grid”, 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). pp. 594-599, 2017.[22] J. Wang, M. Zhang, S. Li, T. Zhou, and H. Du, “Passive filter design with considering characteristic harmonics and harmonic resonance of electrified railway,” 2017 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). pp. 174-178, 2017.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 17 Núm. 32 (2018): Enero-Junio; 199-212HarmonicsPower qualityVoltage sagsMultipoint measu-rementModellingSimulationHarmônicosQualidade de potênciaAfundamento de tensãoMedição multipontoModeladoSimulaçãoArmónicosCalidad de potenciaHundimientos de tensiónMedición multipuntoModeladoSimulaciónPower Quality Analysis in an Industrial System from Multipoint MeasurementsAnálise de qualidade de potência num sistema industrial a partir de medições multipontosAnálisis de calidad de potencia en un sistema industrial a partir de mediciones multipuntoArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees11407/5505oai:repository.udem.edu.co:11407/55052021-05-14 14:29:36.377Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co