Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays

Our contribution deals with a class of Optimal Control Problems (OCPs) of dynamic systems with randomly varying time delays. We study the minimax-type OCPs associated with a family of delayed differential equations. The presented minimax dynamic optimization has a natural interpretation as a robustn...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6162
Acceso en línea:
http://hdl.handle.net/11407/6162
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_1c181bfd9a734df35d25a56f15ae7f99
oai_identifier_str oai:repository.udem.edu.co:11407/6162
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
title Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
spellingShingle Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
title_short Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
title_full Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
title_fullStr Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
title_full_unstemmed Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
title_sort Robust Optimal Control of Linear-Type Dynamic Systems with Random Delays
description Our contribution deals with a class of Optimal Control Problems (OCPs) of dynamic systems with randomly varying time delays. We study the minimax-type OCPs associated with a family of delayed differential equations. The presented minimax dynamic optimization has a natural interpretation as a robustness (in optimization) with respect to the possible delays in control system under consideration. A specific structure of a delayed model makes it possible to reduce the originally given sophisticated OCP to an equivalent convex program in an Euclidean space. This analytic transformation implies a possibility to derive the necessary and sufficient optimality conditions for the original OCP. Moreover, it also allows consideration of the wide range of effective numerical procedures for the constructive treatment of the obtained convex-like OCP. The concrete computational methodology we follow in this paper involves a gradient projected algorithm. We give a rigorous formal analysis of the proposed solution approach and establish the necessary numerical consistence properties of the resulting robust optimization algorithm. © 2018
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2021-02-05T15:00:18Z
dc.date.available.none.fl_str_mv 2021-02-05T15:00:18Z
dc.date.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 24058963
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6162
dc.identifier.doi.none.fl_str_mv 10.1016/j.ifacol.2018.11.075
identifier_str_mv 24058963
10.1016/j.ifacol.2018.11.075
url http://hdl.handle.net/11407/6162
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056875837&doi=10.1016%2fj.ifacol.2018.11.075&partnerID=40&md5=01af086b50be515b647c1572a27850c1
dc.relation.citationvolume.none.fl_str_mv 51
dc.relation.citationissue.none.fl_str_mv 25
dc.relation.citationstartpage.none.fl_str_mv 18
dc.relation.citationendpage.none.fl_str_mv 23
dc.relation.references.none.fl_str_mv Ahmed, A., Verriest, E.I., Estimator design for a subsonic rocket car (soft landing) based on state-dependent delay measurement (2013), pp. 5698-5703. , Proceedings of the 52th IEEE Conference on Decision and Control, Florence, Italy
Aiello, W.G., Freedman, H.I., Wu, J., Analysis of a model representing stage-structured population growth with state-dependent time delay (1992) SIAM Journal on Applied Mathematics, 52, pp. 855-869
Aliprantis, C.D., Border, K.C., (2006) Infinite Dimensional Analysis, , Springer Berlin
Armijo, L., Minimization of functions having Lipschitz continuous first partial derivatives (1966) Pacific Journal of Mathematics, 16, p. 13
Azhmyakov, V., Raisch, J., Convex control systems and convex optimal control problems with constraints (2008) IEEE Transactions on Automatic Control, 53, pp. 993-998
Azhmyakov, V., Basin, M., Raisch, J., A Proximal point based approach to optimal control of affine switched systems (2012) Discrete Event Dynamic Systems, 22 (1), pp. 61-81
Azhmyakov, V., Basin, M., Reincke-Collon, C., Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs (2014), pp. 6976-6981. , Proceedings of the 19th IFAC World Congress, Cape Town, South Africa
Azhmyakov, V., Cabrera Martinez, J., Poznyak, A., Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals (2016) Optimal Control Applications and Methods, 37 (5), pp. 1035-1055
Azhmyakov, V., Ahmed, A., Verriest, E.I., On the optimal control of systems evolving with state suprema (2016), pp. 3617-3623. , Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, USA
Azhmyakov, V., Juarez, R., A first-order numerical approach to switched-mode systems optimization (2017) Nonlinear Analysis: Hybrid Systems, 25 (1), pp. 126-137
Azhmyakov, V., (2018) A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems, , Elsevier Massachusetts, USA to appear in
Basin, M., Optimal control for linear systems with multiple time delays in control input (2006) IEEE Transactions on Automatic Control, 51, pp. 91-97
BelloCruz, J.Y., de Oliveira, C.W., (2014), pp. 1-18. , On weak and strong convergence of the projected gradient method for convex optimization in Hilbert spaces, arXiv
Bertsekas, D., (1995) Nonlinear Programming, , Athena Scientific Belmont, USA
Betts, J., (2001) Practical Methods for Optimal Control Problems Using Nonlinear Programming, , SIAM Philadelphia, USA
Boltyanski, V., Martini, H., Soltan, V., (1999) Geometric Methods and Optimization Problems, , Kluver Academic Publishers Dordrecht
Bryson, A.E., Ho, Y.-C., Applied Optimal Control: Optimization (1975) Estimation and Control, , CRC Press New York
Diekmann, O., van, S.A., Gils, S.M., Lunel, V., Walther, H.O., (1995) Delay Equations: Functional-, Complex-, and Nonlinear Analysis, , Springer New York
Colanery, P., Middleton, R.H., Chen, Z., Caporale, D., Blanchini, F., Convexity of the cost functional in an optimal control problem for a class of positive switched systems (2014) Automatica, 50, pp. 1227-1234
Egerstedt, M., Wardi, Y., Axelsson, H., Transition-time optimization for switched-mode dynamical systems (2006) IEEE Transactions on Automatic Control, 51, pp. 110-115
Egerstedt, M., Martin, C., (2009) Control Theoretic Splines: Optimal Control, Statistics, and Path Planning, , Princeton University Press Princeton, USA
Goldstein, A.A., Convex programming in Hilbert space (1964) Bulletin of the American Mathematical Society, 70, pp. 709-710
Gomez, M.M., Sadeghpour, M., Bennett, M.R., Orosz, G., Murray, R.M., Stability of systems with stochastic delays and applications to genetic regulatory networks (2016) SIAM Journal of Applied Dynamic Systems, 15 (4). , pp 1844 – 1873
Hadeler, K.P., (1979) Delay Equations in Biology, , Springer New York
Hale, J.K., Lunel, S.M.V., (1993) Introduction to Functional Differential Equations, , Springer-Verlag New York
Hartung, F., Pituk, M., (2014) Recent Advances in Delay Differential and Difference Equations, , Springer Basel
Hiriart-Urruty, J.B., Lemarchal, C., (1996) Convex Analysis and Minimization Algorithms, , Springer Berlin, Germany vol. 305 and 306
Ioffe, A.D., Tichomirov, V.M., (1979) Theory of Extremal Problems, , North Holland Amsterdam
Malek-Zavarei, M., Jamshidi, M., (1987) Time-Delay Systems: Analysis, Optimization and Applications, , North Holland Amsterdam
Otrocol, D., Rus, I.A., Functional-differential equations with maxima via weakly Picard operators theory (2008) Bull. Math. Soc. Sci. Math., 51, pp. 253-261
Polak, E., (1997) Optimization, , Springer-Verlag New York, USA
Poznyak, A., Polyakov, A., Azhmyakov, V., (2014) Attractive Ellipsoids in Robust Control, , Birkhäuser Basel, Switzerland
Pytlak, R., (1999) Numerical Methods for Optimal Control Problems with State Constraints, , Springer Berlin, Germany
Rockafellar, T., (1970) Convex Analysis, , Princeton University Press Princeton
Teo, K.L., Goh, C.J., Wong, K.H., (1991) A Unifed Computational Approach to Optimal Control Problems, , Wiley New York
Thitsa, M., Williams, S., Verriest, E., Formal power series method for nonlinear time delay systems with analytic initial data (2015), pp. 6478-6483. , Proceedings of the 54rd IEEE Conference on Decision and Control, Kita-KuOsaka, Japan
Verriest, E.I., Pseudo-continuous multi-dimensional multi-mode systems (2012) Discrete Event Dynamic Systems, 22, pp. 27-59
Verriest, E.I., Dirr, G., Helmke, U., Mitesser, O., Explicitly solvable bilinear optimal control problems with applications in ecology (2016), Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems, Minneapolis, MN
Verriest, E.I., Dirr, G., Helmke, U., Delayed resource allocation optimization with applications in population dynamics (2016) IFAC-PapersOnline, 49 (10), pp. 1-6
Verriest, E.I., Azhmyakov, Advances in optimal control of differential systems with state suprema (2017), pp. 739-744. , Proceedings of the 56th IEEE Conference on Decision and Control, Melbourne, Australia
Walther, H.O., Linearized stability for semiflows generated by a class of neutral equations, with applications to state-dependent delays (2010) Journal of Dynamics and Differential Equations, 22, pp. 439-462
Wardi, Y., (2012), pp. 4-8. , Optimal control of switched-mode dynamical systems, in: Proceedings of the 11th International Workshop on Discrete Event Systems, Guadalajara, Mexico
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv IFAC-PapersOnLine
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159157242101760
spelling 20182021-02-05T15:00:18Z2021-02-05T15:00:18Z24058963http://hdl.handle.net/11407/616210.1016/j.ifacol.2018.11.075Our contribution deals with a class of Optimal Control Problems (OCPs) of dynamic systems with randomly varying time delays. We study the minimax-type OCPs associated with a family of delayed differential equations. The presented minimax dynamic optimization has a natural interpretation as a robustness (in optimization) with respect to the possible delays in control system under consideration. A specific structure of a delayed model makes it possible to reduce the originally given sophisticated OCP to an equivalent convex program in an Euclidean space. This analytic transformation implies a possibility to derive the necessary and sufficient optimality conditions for the original OCP. Moreover, it also allows consideration of the wide range of effective numerical procedures for the constructive treatment of the obtained convex-like OCP. The concrete computational methodology we follow in this paper involves a gradient projected algorithm. We give a rigorous formal analysis of the proposed solution approach and establish the necessary numerical consistence properties of the resulting robust optimization algorithm. © 2018engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056875837&doi=10.1016%2fj.ifacol.2018.11.075&partnerID=40&md5=01af086b50be515b647c1572a27850c151251823Ahmed, A., Verriest, E.I., Estimator design for a subsonic rocket car (soft landing) based on state-dependent delay measurement (2013), pp. 5698-5703. , Proceedings of the 52th IEEE Conference on Decision and Control, Florence, ItalyAiello, W.G., Freedman, H.I., Wu, J., Analysis of a model representing stage-structured population growth with state-dependent time delay (1992) SIAM Journal on Applied Mathematics, 52, pp. 855-869Aliprantis, C.D., Border, K.C., (2006) Infinite Dimensional Analysis, , Springer BerlinArmijo, L., Minimization of functions having Lipschitz continuous first partial derivatives (1966) Pacific Journal of Mathematics, 16, p. 13Azhmyakov, V., Raisch, J., Convex control systems and convex optimal control problems with constraints (2008) IEEE Transactions on Automatic Control, 53, pp. 993-998Azhmyakov, V., Basin, M., Raisch, J., A Proximal point based approach to optimal control of affine switched systems (2012) Discrete Event Dynamic Systems, 22 (1), pp. 61-81Azhmyakov, V., Basin, M., Reincke-Collon, C., Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs (2014), pp. 6976-6981. , Proceedings of the 19th IFAC World Congress, Cape Town, South AfricaAzhmyakov, V., Cabrera Martinez, J., Poznyak, A., Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals (2016) Optimal Control Applications and Methods, 37 (5), pp. 1035-1055Azhmyakov, V., Ahmed, A., Verriest, E.I., On the optimal control of systems evolving with state suprema (2016), pp. 3617-3623. , Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, USAAzhmyakov, V., Juarez, R., A first-order numerical approach to switched-mode systems optimization (2017) Nonlinear Analysis: Hybrid Systems, 25 (1), pp. 126-137Azhmyakov, V., (2018) A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems, , Elsevier Massachusetts, USA to appear inBasin, M., Optimal control for linear systems with multiple time delays in control input (2006) IEEE Transactions on Automatic Control, 51, pp. 91-97BelloCruz, J.Y., de Oliveira, C.W., (2014), pp. 1-18. , On weak and strong convergence of the projected gradient method for convex optimization in Hilbert spaces, arXivBertsekas, D., (1995) Nonlinear Programming, , Athena Scientific Belmont, USABetts, J., (2001) Practical Methods for Optimal Control Problems Using Nonlinear Programming, , SIAM Philadelphia, USABoltyanski, V., Martini, H., Soltan, V., (1999) Geometric Methods and Optimization Problems, , Kluver Academic Publishers DordrechtBryson, A.E., Ho, Y.-C., Applied Optimal Control: Optimization (1975) Estimation and Control, , CRC Press New YorkDiekmann, O., van, S.A., Gils, S.M., Lunel, V., Walther, H.O., (1995) Delay Equations: Functional-, Complex-, and Nonlinear Analysis, , Springer New YorkColanery, P., Middleton, R.H., Chen, Z., Caporale, D., Blanchini, F., Convexity of the cost functional in an optimal control problem for a class of positive switched systems (2014) Automatica, 50, pp. 1227-1234Egerstedt, M., Wardi, Y., Axelsson, H., Transition-time optimization for switched-mode dynamical systems (2006) IEEE Transactions on Automatic Control, 51, pp. 110-115Egerstedt, M., Martin, C., (2009) Control Theoretic Splines: Optimal Control, Statistics, and Path Planning, , Princeton University Press Princeton, USAGoldstein, A.A., Convex programming in Hilbert space (1964) Bulletin of the American Mathematical Society, 70, pp. 709-710Gomez, M.M., Sadeghpour, M., Bennett, M.R., Orosz, G., Murray, R.M., Stability of systems with stochastic delays and applications to genetic regulatory networks (2016) SIAM Journal of Applied Dynamic Systems, 15 (4). , pp 1844 – 1873Hadeler, K.P., (1979) Delay Equations in Biology, , Springer New YorkHale, J.K., Lunel, S.M.V., (1993) Introduction to Functional Differential Equations, , Springer-Verlag New YorkHartung, F., Pituk, M., (2014) Recent Advances in Delay Differential and Difference Equations, , Springer BaselHiriart-Urruty, J.B., Lemarchal, C., (1996) Convex Analysis and Minimization Algorithms, , Springer Berlin, Germany vol. 305 and 306Ioffe, A.D., Tichomirov, V.M., (1979) Theory of Extremal Problems, , North Holland AmsterdamMalek-Zavarei, M., Jamshidi, M., (1987) Time-Delay Systems: Analysis, Optimization and Applications, , North Holland AmsterdamOtrocol, D., Rus, I.A., Functional-differential equations with maxima via weakly Picard operators theory (2008) Bull. Math. Soc. Sci. Math., 51, pp. 253-261Polak, E., (1997) Optimization, , Springer-Verlag New York, USAPoznyak, A., Polyakov, A., Azhmyakov, V., (2014) Attractive Ellipsoids in Robust Control, , Birkhäuser Basel, SwitzerlandPytlak, R., (1999) Numerical Methods for Optimal Control Problems with State Constraints, , Springer Berlin, GermanyRockafellar, T., (1970) Convex Analysis, , Princeton University Press PrincetonTeo, K.L., Goh, C.J., Wong, K.H., (1991) A Unifed Computational Approach to Optimal Control Problems, , Wiley New YorkThitsa, M., Williams, S., Verriest, E., Formal power series method for nonlinear time delay systems with analytic initial data (2015), pp. 6478-6483. , Proceedings of the 54rd IEEE Conference on Decision and Control, Kita-KuOsaka, JapanVerriest, E.I., Pseudo-continuous multi-dimensional multi-mode systems (2012) Discrete Event Dynamic Systems, 22, pp. 27-59Verriest, E.I., Dirr, G., Helmke, U., Mitesser, O., Explicitly solvable bilinear optimal control problems with applications in ecology (2016), Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems, Minneapolis, MNVerriest, E.I., Dirr, G., Helmke, U., Delayed resource allocation optimization with applications in population dynamics (2016) IFAC-PapersOnline, 49 (10), pp. 1-6Verriest, E.I., Azhmyakov, Advances in optimal control of differential systems with state suprema (2017), pp. 739-744. , Proceedings of the 56th IEEE Conference on Decision and Control, Melbourne, AustraliaWalther, H.O., Linearized stability for semiflows generated by a class of neutral equations, with applications to state-dependent delays (2010) Journal of Dynamics and Differential Equations, 22, pp. 439-462Wardi, Y., (2012), pp. 4-8. , Optimal control of switched-mode dynamical systems, in: Proceedings of the 11th International Workshop on Discrete Event Systems, Guadalajara, MexicoIFAC-PapersOnLineRobust Optimal Control of Linear-Type Dynamic Systems with Random DelaysArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Azhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, ColombiaVerriest, E.I., School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United StatesGuzman Trujillo, L.A., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia, School for Engineers in Sciences and Technology, University of Angers, Angers, FranceLahaye, S., School for Engineers in Sciences and Technology, University of Angers, Angers, FranceDelanoue, N., School for Engineers in Sciences and Technology, University of Angers, Angers, Francehttp://purl.org/coar/access_right/c_16ecAzhmyakov V.Verriest E.I.Guzman Trujillo L.A.Lahaye S.Delanoue N.11407/6162oai:repository.udem.edu.co:11407/61622021-02-05 10:00:18.265Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co