Electronic and magnetic properties of pentagonal nanoribbons
We systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal na...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5649
- Acceso en línea:
- http://hdl.handle.net/11407/5649
- Palabra clave:
- Calculations
Electric fields
Graphene
Magnetic properties
Nanoribbons
Complete classification
Electronic and magnetic properties
Electronic behaviors
External electric field
First-principles calculation
Magnetic characteristic
Magnetic configuration
Magnetic space group
Magnetism
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_191b8b5a9310275a062bf0328b95403e |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5649 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Electronic and magnetic properties of pentagonal nanoribbons |
title |
Electronic and magnetic properties of pentagonal nanoribbons |
spellingShingle |
Electronic and magnetic properties of pentagonal nanoribbons Calculations Electric fields Graphene Magnetic properties Nanoribbons Complete classification Electronic and magnetic properties Electronic behaviors External electric field First-principles calculation Magnetic characteristic Magnetic configuration Magnetic space group Magnetism |
title_short |
Electronic and magnetic properties of pentagonal nanoribbons |
title_full |
Electronic and magnetic properties of pentagonal nanoribbons |
title_fullStr |
Electronic and magnetic properties of pentagonal nanoribbons |
title_full_unstemmed |
Electronic and magnetic properties of pentagonal nanoribbons |
title_sort |
Electronic and magnetic properties of pentagonal nanoribbons |
dc.subject.none.fl_str_mv |
Calculations Electric fields Graphene Magnetic properties Nanoribbons Complete classification Electronic and magnetic properties Electronic behaviors External electric field First-principles calculation Magnetic characteristic Magnetic configuration Magnetic space group Magnetism |
topic |
Calculations Electric fields Graphene Magnetic properties Nanoribbons Complete classification Electronic and magnetic properties Electronic behaviors External electric field First-principles calculation Magnetic characteristic Magnetic configuration Magnetic space group Magnetism |
description |
We systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal nanoribbons reveal unusual electronic and magnetic characteristics. Depending on the specific pentagonal material and edge geometries, these systems can hold spin-unpolarized states or magnetic states with diverse electronic behavior. Different magnetic configurations such as bipolar semiconductors or half-metals may be tuned by the application of an external electric field. A complete classification of the pentagonal nanoribbons is developed using magnetic space group methods, giving clear selection rules of the possible magnetic phases and their relation to symmetry breaking, edge configuration and also their evolution under the action of an external electric field. Our results based on first-principles calculations are relevant for applications in spintronic devices. © 2020 Elsevier Ltd |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:34Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:34Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
86223 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5649 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.carbon.2020.02.037 |
identifier_str_mv |
86223 10.1016/j.carbon.2020.02.037 |
url |
http://hdl.handle.net/11407/5649 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079847315&doi=10.1016%2fj.carbon.2020.02.037&partnerID=40&md5=42c49b892cafb8b110d1688aa2b834f3 |
dc.relation.citationvolume.none.fl_str_mv |
162 |
dc.relation.citationstartpage.none.fl_str_mv |
209 |
dc.relation.citationendpage.none.fl_str_mv |
219 |
dc.relation.references.none.fl_str_mv |
Tang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized Dirac dispersion relations (2014) J. Appl. Phys., 115, p. 113702 Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P., Penta-graphene: a new carbon allotrope (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 2372-2377 Stauber, T., Beltrán, J.I., Schliemann, J., Tight-binding approach to penta-graphene (2016) Sci. Rep., 6, p. 22672 Bravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep., 8, p. 11070 Zhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Sci. Rep., 6, p. 29531 Liu, Z., Wang, H., Sun, J., Sun, R., Wang, Z.F., Yang, J., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177 Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Comput. Mater. Sci., 159, pp. 448-453 Cerdá, J.I., S?awi?ska, J., Le Lay, G., Marele, A.C., Gómez-Rodríguez, J., Dávila, M.E., Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nanoribbons on ag(110) (2016) Nat. Commun., 7, p. 13076 Oyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., PdSe2: pentagonal two-dimensional layers with high air stability for electronics (2017) J. Am. Chem. Soc., 139, pp. 14090-14097 Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251 Liu, L., Zhuang, H.L., ptp2: an example of exploring the hidden cairo tessellation in the pyrite structure for discovering novel two-dimensional materials (2018) Phys. Rev. Mater., 2, p. 114003 Yuan, H., Li, Z., Yang, J., Atomically thin semiconducting penta-pd2 and pdas2 with ultrahigh carrier mobility (2018) J. Mater. Chem. C, 6, pp. 9055-9059 Yuan, J.-H., Song, Y.-Q., Chen, Q., Xue, K.-H., Miao, X.-S., Single-layer planar penta-x2n4 (x = ni, pd and pt) as direct-bandgap semiconductors from first principle calculations (2019) Appl. Surf. Sci., 469, pp. 456-462 Zhang, R.-W., Liu, C.-C., Ma, D.-S., Yao, Y., From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide (2018) Phys. Rev. B, 97, p. 125312 Berdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: first-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001 Lopez Bezanilla, A., Littlewood, P.B., ? ? band inversion in a novel two-dimensional material (2015) J. Phys. Chem. C, 119, p. 19469 Bravo, S., Correa, J., Chico, L., Pacheco, M., Symmetry-protected metallic and topological phases in penta-materials (2019) Sci. Rep., 9, p. 12754 Zhang, S., Zhou, J., Wang, Q., Jena, P., Beyond graphitic carbon nitride: nitrogen-rich penta-CN2 sheet (2016) J. Phys. Chem. C, 120, pp. 3993-3998 Li, F., Tu, K., Zhang, H., Chen, Z., Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation (2015) Phys. Chem. Chem. Phys., 17, pp. 24151-24156 Yue, S.-Y., Yan, Q.-B., Zhu, Z.-G., Cui, H.-J., Zheng, Q.-R., Su, G., First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and möbius strips (2014) Carbon, 71, pp. 150-158 Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125 Yuan, P., Zhang, Z., Fan, Z., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536 He, C., Wang, X., Zhang, W., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433 Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865 Avramov, P., Demin, V., Luo, M., Choi, C.H., Sorokin, P.B., Yakobson, B., Chernozatonskii, L., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings (2015) J. Phys. Chem. Lett., 6, pp. 4525-4531 Liu, J., He, C., Jiao, N., Xiao, H., Zhang, K., Wang, R., Sun, L., Novel Two-Dimensional SiC2 Sheet with Full Pentagon Network (2013), arXiv preprint arXiv:1307.6324 Togo, A., Oba, F., Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures (2008) Phys. Rev. B, 78, p. 134106 Togo, A., Tanaka, I., First principles phonon calculations in materials science (2015) Scripta Mater., 108, pp. 1-5 Yagmurcukardes, M., Sahin, H., Kang, J., Torun, E., Peeters, F.M., Senger, R.T., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) J. Appl. Phys., 118, p. 104303 Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Group Theory - Applications to the Physics of Condensed Matter (2008), Springer Berlin Hahn, T., Shmueli, U., Wilson, A.J.C., International Union of Crystallography, International Tables for Crystallography (1984), D. Reidel Pub. Co Aroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H., Bilbao Crystallographic Server: I. Databases and crystallographic computing programs (2006) Z. Kristallogr. - Cryst. Mater., 221, pp. 15-27 Damnjanovi?, M., Milo evi?, I., Line Groups in Physics (2010), Springer Berlin Gallego, S.V., Tasci, E.S., de la Flor, G., Perez-Mato, J.M., Aroyo, M.I., IUCr, Magnetic symmetry in the Bilbao Crystallographic Server: a computer program to provide systematic absences of magnetic neutron diffraction (2012) J. Appl. Crystallogr., 45, pp. 1236-1247 Perez-Mato, J., Gallego, S., Tasci, E., Elcoro, L., de la Flor, G., Aroyo, M., Symmetry-based computational tools for magnetic crystallography (2015) Annu. Rev. Mater. Res., 45, pp. 217-248 Litvin, D.B., (2013) Magnetic Group Tables, , International Union of Crystallography Chester, England Stokes, H.T., Hatch, D.M., Campbell, B.J., Magnetic space groups (2015), https://stokes.byu.edu/iso/magneticspacegroups.php, (ISO-MAG, ISOTROPY Software Suite, iso.byu.edu) Zheng, G., Ke, S.-H., Miao, M., Kim, J., Ramesh, R., Kioussis, N., Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition (2017) Sci. Rep., 7, p. 5366 Bahuguna, B.P., Saini, L.K., Tiwari, B., Sharma, R.O., Electric field induced insulator to metal transition in a buckled GaAs monolayer (2016) RSC Adv., 6, pp. 52920-52924 Wu, J., Yang, Y., Gao, H., Qi, Y., Zhang, J., Qiao, Z., Ren, W., Electric field effect of GaAs monolayer from first principles (2017) AIP Adv., 7 Liu, L., Ren, X., Xie, J., Cheng, B., Hu, J., Modulation of Magnetism via Electric Field in Mgonanoribbons (2019), arXiv preprint arXiv:1905.02328 Li, X., Wu, X., Li, Z., Yang, J., Hou, J., Bipolar magnetic semiconductors: a new class of spintronics materials (2012) Nanoscale, 4, pp. 5680-5685 Son, Y., Cohen, M.L., Louie, S.G., Half-metallic graphene nanoribbons (2006) Nature, 444, p. 347 Vanderbilt, D., Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (2018), Cambridge University Press Cambridge Resta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach (1994) Rev. Mod. Phys., 66, pp. 899-915 Powell, R.C., Symmetry, Group Theory, and the Physical Properties of Crystals (2010), Springer New York Vanderbilt, D., First-principles theory of polarization and electric fields in ferroelectrics (2004) Ferroelectrics, 301, pp. 9-14 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Carbon |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159245771276288 |
spelling |
20202020-04-29T14:53:34Z2020-04-29T14:53:34Z86223http://hdl.handle.net/11407/564910.1016/j.carbon.2020.02.037We systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal nanoribbons reveal unusual electronic and magnetic characteristics. Depending on the specific pentagonal material and edge geometries, these systems can hold spin-unpolarized states or magnetic states with diverse electronic behavior. Different magnetic configurations such as bipolar semiconductors or half-metals may be tuned by the application of an external electric field. A complete classification of the pentagonal nanoribbons is developed using magnetic space group methods, giving clear selection rules of the possible magnetic phases and their relation to symmetry breaking, edge configuration and also their evolution under the action of an external electric field. Our results based on first-principles calculations are relevant for applications in spintronic devices. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079847315&doi=10.1016%2fj.carbon.2020.02.037&partnerID=40&md5=42c49b892cafb8b110d1688aa2b834f3162209219Tang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized Dirac dispersion relations (2014) J. Appl. Phys., 115, p. 113702Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P., Penta-graphene: a new carbon allotrope (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 2372-2377Stauber, T., Beltrán, J.I., Schliemann, J., Tight-binding approach to penta-graphene (2016) Sci. Rep., 6, p. 22672Bravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep., 8, p. 11070Zhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Sci. Rep., 6, p. 29531Liu, Z., Wang, H., Sun, J., Sun, R., Wang, Z.F., Yang, J., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Comput. Mater. Sci., 159, pp. 448-453Cerdá, J.I., S?awi?ska, J., Le Lay, G., Marele, A.C., Gómez-Rodríguez, J., Dávila, M.E., Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nanoribbons on ag(110) (2016) Nat. Commun., 7, p. 13076Oyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., PdSe2: pentagonal two-dimensional layers with high air stability for electronics (2017) J. Am. Chem. Soc., 139, pp. 14090-14097Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251Liu, L., Zhuang, H.L., ptp2: an example of exploring the hidden cairo tessellation in the pyrite structure for discovering novel two-dimensional materials (2018) Phys. Rev. Mater., 2, p. 114003Yuan, H., Li, Z., Yang, J., Atomically thin semiconducting penta-pd2 and pdas2 with ultrahigh carrier mobility (2018) J. Mater. Chem. C, 6, pp. 9055-9059Yuan, J.-H., Song, Y.-Q., Chen, Q., Xue, K.-H., Miao, X.-S., Single-layer planar penta-x2n4 (x = ni, pd and pt) as direct-bandgap semiconductors from first principle calculations (2019) Appl. Surf. Sci., 469, pp. 456-462Zhang, R.-W., Liu, C.-C., Ma, D.-S., Yao, Y., From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide (2018) Phys. Rev. B, 97, p. 125312Berdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: first-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001Lopez Bezanilla, A., Littlewood, P.B., ? ? band inversion in a novel two-dimensional material (2015) J. Phys. Chem. C, 119, p. 19469Bravo, S., Correa, J., Chico, L., Pacheco, M., Symmetry-protected metallic and topological phases in penta-materials (2019) Sci. Rep., 9, p. 12754Zhang, S., Zhou, J., Wang, Q., Jena, P., Beyond graphitic carbon nitride: nitrogen-rich penta-CN2 sheet (2016) J. Phys. Chem. C, 120, pp. 3993-3998Li, F., Tu, K., Zhang, H., Chen, Z., Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation (2015) Phys. Chem. Chem. Phys., 17, pp. 24151-24156Yue, S.-Y., Yan, Q.-B., Zhu, Z.-G., Cui, H.-J., Zheng, Q.-R., Su, G., First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and möbius strips (2014) Carbon, 71, pp. 150-158Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125Yuan, P., Zhang, Z., Fan, Z., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536He, C., Wang, X., Zhang, W., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865Avramov, P., Demin, V., Luo, M., Choi, C.H., Sorokin, P.B., Yakobson, B., Chernozatonskii, L., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings (2015) J. Phys. Chem. Lett., 6, pp. 4525-4531Liu, J., He, C., Jiao, N., Xiao, H., Zhang, K., Wang, R., Sun, L., Novel Two-Dimensional SiC2 Sheet with Full Pentagon Network (2013), arXiv preprint arXiv:1307.6324Togo, A., Oba, F., Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures (2008) Phys. Rev. B, 78, p. 134106Togo, A., Tanaka, I., First principles phonon calculations in materials science (2015) Scripta Mater., 108, pp. 1-5Yagmurcukardes, M., Sahin, H., Kang, J., Torun, E., Peeters, F.M., Senger, R.T., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) J. Appl. Phys., 118, p. 104303Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Group Theory - Applications to the Physics of Condensed Matter (2008), Springer BerlinHahn, T., Shmueli, U., Wilson, A.J.C., International Union of Crystallography, International Tables for Crystallography (1984), D. Reidel Pub. CoAroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H., Bilbao Crystallographic Server: I. Databases and crystallographic computing programs (2006) Z. Kristallogr. - Cryst. Mater., 221, pp. 15-27Damnjanovi?, M., Milo evi?, I., Line Groups in Physics (2010), Springer BerlinGallego, S.V., Tasci, E.S., de la Flor, G., Perez-Mato, J.M., Aroyo, M.I., IUCr, Magnetic symmetry in the Bilbao Crystallographic Server: a computer program to provide systematic absences of magnetic neutron diffraction (2012) J. Appl. Crystallogr., 45, pp. 1236-1247Perez-Mato, J., Gallego, S., Tasci, E., Elcoro, L., de la Flor, G., Aroyo, M., Symmetry-based computational tools for magnetic crystallography (2015) Annu. Rev. Mater. Res., 45, pp. 217-248Litvin, D.B., (2013) Magnetic Group Tables, , International Union of Crystallography Chester, EnglandStokes, H.T., Hatch, D.M., Campbell, B.J., Magnetic space groups (2015), https://stokes.byu.edu/iso/magneticspacegroups.php, (ISO-MAG, ISOTROPY Software Suite, iso.byu.edu)Zheng, G., Ke, S.-H., Miao, M., Kim, J., Ramesh, R., Kioussis, N., Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition (2017) Sci. Rep., 7, p. 5366Bahuguna, B.P., Saini, L.K., Tiwari, B., Sharma, R.O., Electric field induced insulator to metal transition in a buckled GaAs monolayer (2016) RSC Adv., 6, pp. 52920-52924Wu, J., Yang, Y., Gao, H., Qi, Y., Zhang, J., Qiao, Z., Ren, W., Electric field effect of GaAs monolayer from first principles (2017) AIP Adv., 7Liu, L., Ren, X., Xie, J., Cheng, B., Hu, J., Modulation of Magnetism via Electric Field in Mgonanoribbons (2019), arXiv preprint arXiv:1905.02328Li, X., Wu, X., Li, Z., Yang, J., Hou, J., Bipolar magnetic semiconductors: a new class of spintronics materials (2012) Nanoscale, 4, pp. 5680-5685Son, Y., Cohen, M.L., Louie, S.G., Half-metallic graphene nanoribbons (2006) Nature, 444, p. 347Vanderbilt, D., Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (2018), Cambridge University Press CambridgeResta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach (1994) Rev. Mod. Phys., 66, pp. 899-915Powell, R.C., Symmetry, Group Theory, and the Physical Properties of Crystals (2010), Springer New YorkVanderbilt, D., First-principles theory of polarization and electric fields in ferroelectrics (2004) Ferroelectrics, 301, pp. 9-14CarbonCalculationsElectric fieldsGrapheneMagnetic propertiesNanoribbonsComplete classificationElectronic and magnetic propertiesElectronic behaviorsExternal electric fieldFirst-principles calculationMagnetic characteristicMagnetic configurationMagnetic space groupMagnetismElectronic and magnetic properties of pentagonal nanoribbonsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Pacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; Bravo, S., Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; Chico, L., Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/ Sor Juana Inés de La Cruz 3, Madrid, 28049, Spainhttp://purl.org/coar/access_right/c_16ecCorrea J.D.Pacheco M.Bravo S.Chico L.11407/5649oai:repository.udem.edu.co:11407/56492020-05-27 19:08:55.938Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |