Electronic and magnetic properties of pentagonal nanoribbons

We systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal na...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5649
Acceso en línea:
http://hdl.handle.net/11407/5649
Palabra clave:
Calculations
Electric fields
Graphene
Magnetic properties
Nanoribbons
Complete classification
Electronic and magnetic properties
Electronic behaviors
External electric field
First-principles calculation
Magnetic characteristic
Magnetic configuration
Magnetic space group
Magnetism
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_191b8b5a9310275a062bf0328b95403e
oai_identifier_str oai:repository.udem.edu.co:11407/5649
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Electronic and magnetic properties of pentagonal nanoribbons
title Electronic and magnetic properties of pentagonal nanoribbons
spellingShingle Electronic and magnetic properties of pentagonal nanoribbons
Calculations
Electric fields
Graphene
Magnetic properties
Nanoribbons
Complete classification
Electronic and magnetic properties
Electronic behaviors
External electric field
First-principles calculation
Magnetic characteristic
Magnetic configuration
Magnetic space group
Magnetism
title_short Electronic and magnetic properties of pentagonal nanoribbons
title_full Electronic and magnetic properties of pentagonal nanoribbons
title_fullStr Electronic and magnetic properties of pentagonal nanoribbons
title_full_unstemmed Electronic and magnetic properties of pentagonal nanoribbons
title_sort Electronic and magnetic properties of pentagonal nanoribbons
dc.subject.none.fl_str_mv Calculations
Electric fields
Graphene
Magnetic properties
Nanoribbons
Complete classification
Electronic and magnetic properties
Electronic behaviors
External electric field
First-principles calculation
Magnetic characteristic
Magnetic configuration
Magnetic space group
Magnetism
topic Calculations
Electric fields
Graphene
Magnetic properties
Nanoribbons
Complete classification
Electronic and magnetic properties
Electronic behaviors
External electric field
First-principles calculation
Magnetic characteristic
Magnetic configuration
Magnetic space group
Magnetism
description We systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal nanoribbons reveal unusual electronic and magnetic characteristics. Depending on the specific pentagonal material and edge geometries, these systems can hold spin-unpolarized states or magnetic states with diverse electronic behavior. Different magnetic configurations such as bipolar semiconductors or half-metals may be tuned by the application of an external electric field. A complete classification of the pentagonal nanoribbons is developed using magnetic space group methods, giving clear selection rules of the possible magnetic phases and their relation to symmetry breaking, edge configuration and also their evolution under the action of an external electric field. Our results based on first-principles calculations are relevant for applications in spintronic devices. © 2020 Elsevier Ltd
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:34Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:34Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 86223
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5649
dc.identifier.doi.none.fl_str_mv 10.1016/j.carbon.2020.02.037
identifier_str_mv 86223
10.1016/j.carbon.2020.02.037
url http://hdl.handle.net/11407/5649
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079847315&doi=10.1016%2fj.carbon.2020.02.037&partnerID=40&md5=42c49b892cafb8b110d1688aa2b834f3
dc.relation.citationvolume.none.fl_str_mv 162
dc.relation.citationstartpage.none.fl_str_mv 209
dc.relation.citationendpage.none.fl_str_mv 219
dc.relation.references.none.fl_str_mv Tang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized Dirac dispersion relations (2014) J. Appl. Phys., 115, p. 113702
Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P., Penta-graphene: a new carbon allotrope (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 2372-2377
Stauber, T., Beltrán, J.I., Schliemann, J., Tight-binding approach to penta-graphene (2016) Sci. Rep., 6, p. 22672
Bravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep., 8, p. 11070
Zhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Sci. Rep., 6, p. 29531
Liu, Z., Wang, H., Sun, J., Sun, R., Wang, Z.F., Yang, J., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177
Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Comput. Mater. Sci., 159, pp. 448-453
Cerdá, J.I., S?awi?ska, J., Le Lay, G., Marele, A.C., Gómez-Rodríguez, J., Dávila, M.E., Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nanoribbons on ag(110) (2016) Nat. Commun., 7, p. 13076
Oyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., PdSe2: pentagonal two-dimensional layers with high air stability for electronics (2017) J. Am. Chem. Soc., 139, pp. 14090-14097
Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251
Liu, L., Zhuang, H.L., ptp2: an example of exploring the hidden cairo tessellation in the pyrite structure for discovering novel two-dimensional materials (2018) Phys. Rev. Mater., 2, p. 114003
Yuan, H., Li, Z., Yang, J., Atomically thin semiconducting penta-pd2 and pdas2 with ultrahigh carrier mobility (2018) J. Mater. Chem. C, 6, pp. 9055-9059
Yuan, J.-H., Song, Y.-Q., Chen, Q., Xue, K.-H., Miao, X.-S., Single-layer planar penta-x2n4 (x = ni, pd and pt) as direct-bandgap semiconductors from first principle calculations (2019) Appl. Surf. Sci., 469, pp. 456-462
Zhang, R.-W., Liu, C.-C., Ma, D.-S., Yao, Y., From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide (2018) Phys. Rev. B, 97, p. 125312
Berdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: first-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001
Lopez Bezanilla, A., Littlewood, P.B., ? ? band inversion in a novel two-dimensional material (2015) J. Phys. Chem. C, 119, p. 19469
Bravo, S., Correa, J., Chico, L., Pacheco, M., Symmetry-protected metallic and topological phases in penta-materials (2019) Sci. Rep., 9, p. 12754
Zhang, S., Zhou, J., Wang, Q., Jena, P., Beyond graphitic carbon nitride: nitrogen-rich penta-CN2 sheet (2016) J. Phys. Chem. C, 120, pp. 3993-3998
Li, F., Tu, K., Zhang, H., Chen, Z., Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation (2015) Phys. Chem. Chem. Phys., 17, pp. 24151-24156
Yue, S.-Y., Yan, Q.-B., Zhu, Z.-G., Cui, H.-J., Zheng, Q.-R., Su, G., First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and möbius strips (2014) Carbon, 71, pp. 150-158
Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125
Yuan, P., Zhang, Z., Fan, Z., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536
He, C., Wang, X., Zhang, W., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865
Avramov, P., Demin, V., Luo, M., Choi, C.H., Sorokin, P.B., Yakobson, B., Chernozatonskii, L., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings (2015) J. Phys. Chem. Lett., 6, pp. 4525-4531
Liu, J., He, C., Jiao, N., Xiao, H., Zhang, K., Wang, R., Sun, L., Novel Two-Dimensional SiC2 Sheet with Full Pentagon Network (2013), arXiv preprint arXiv:1307.6324
Togo, A., Oba, F., Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures (2008) Phys. Rev. B, 78, p. 134106
Togo, A., Tanaka, I., First principles phonon calculations in materials science (2015) Scripta Mater., 108, pp. 1-5
Yagmurcukardes, M., Sahin, H., Kang, J., Torun, E., Peeters, F.M., Senger, R.T., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) J. Appl. Phys., 118, p. 104303
Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Group Theory - Applications to the Physics of Condensed Matter (2008), Springer Berlin
Hahn, T., Shmueli, U., Wilson, A.J.C., International Union of Crystallography, International Tables for Crystallography (1984), D. Reidel Pub. Co
Aroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H., Bilbao Crystallographic Server: I. Databases and crystallographic computing programs (2006) Z. Kristallogr. - Cryst. Mater., 221, pp. 15-27
Damnjanovi?, M., Milo evi?, I., Line Groups in Physics (2010), Springer Berlin
Gallego, S.V., Tasci, E.S., de la Flor, G., Perez-Mato, J.M., Aroyo, M.I., IUCr, Magnetic symmetry in the Bilbao Crystallographic Server: a computer program to provide systematic absences of magnetic neutron diffraction (2012) J. Appl. Crystallogr., 45, pp. 1236-1247
Perez-Mato, J., Gallego, S., Tasci, E., Elcoro, L., de la Flor, G., Aroyo, M., Symmetry-based computational tools for magnetic crystallography (2015) Annu. Rev. Mater. Res., 45, pp. 217-248
Litvin, D.B., (2013) Magnetic Group Tables, , International Union of Crystallography Chester, England
Stokes, H.T., Hatch, D.M., Campbell, B.J., Magnetic space groups (2015), https://stokes.byu.edu/iso/magneticspacegroups.php, (ISO-MAG, ISOTROPY Software Suite, iso.byu.edu)
Zheng, G., Ke, S.-H., Miao, M., Kim, J., Ramesh, R., Kioussis, N., Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition (2017) Sci. Rep., 7, p. 5366
Bahuguna, B.P., Saini, L.K., Tiwari, B., Sharma, R.O., Electric field induced insulator to metal transition in a buckled GaAs monolayer (2016) RSC Adv., 6, pp. 52920-52924
Wu, J., Yang, Y., Gao, H., Qi, Y., Zhang, J., Qiao, Z., Ren, W., Electric field effect of GaAs monolayer from first principles (2017) AIP Adv., 7
Liu, L., Ren, X., Xie, J., Cheng, B., Hu, J., Modulation of Magnetism via Electric Field in Mgonanoribbons (2019), arXiv preprint arXiv:1905.02328
Li, X., Wu, X., Li, Z., Yang, J., Hou, J., Bipolar magnetic semiconductors: a new class of spintronics materials (2012) Nanoscale, 4, pp. 5680-5685
Son, Y., Cohen, M.L., Louie, S.G., Half-metallic graphene nanoribbons (2006) Nature, 444, p. 347
Vanderbilt, D., Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (2018), Cambridge University Press Cambridge
Resta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach (1994) Rev. Mod. Phys., 66, pp. 899-915
Powell, R.C., Symmetry, Group Theory, and the Physical Properties of Crystals (2010), Springer New York
Vanderbilt, D., First-principles theory of polarization and electric fields in ferroelectrics (2004) Ferroelectrics, 301, pp. 9-14
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Carbon
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159245771276288
spelling 20202020-04-29T14:53:34Z2020-04-29T14:53:34Z86223http://hdl.handle.net/11407/564910.1016/j.carbon.2020.02.037We systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal nanoribbons reveal unusual electronic and magnetic characteristics. Depending on the specific pentagonal material and edge geometries, these systems can hold spin-unpolarized states or magnetic states with diverse electronic behavior. Different magnetic configurations such as bipolar semiconductors or half-metals may be tuned by the application of an external electric field. A complete classification of the pentagonal nanoribbons is developed using magnetic space group methods, giving clear selection rules of the possible magnetic phases and their relation to symmetry breaking, edge configuration and also their evolution under the action of an external electric field. Our results based on first-principles calculations are relevant for applications in spintronic devices. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079847315&doi=10.1016%2fj.carbon.2020.02.037&partnerID=40&md5=42c49b892cafb8b110d1688aa2b834f3162209219Tang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized Dirac dispersion relations (2014) J. Appl. Phys., 115, p. 113702Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P., Penta-graphene: a new carbon allotrope (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 2372-2377Stauber, T., Beltrán, J.I., Schliemann, J., Tight-binding approach to penta-graphene (2016) Sci. Rep., 6, p. 22672Bravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep., 8, p. 11070Zhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Sci. Rep., 6, p. 29531Liu, Z., Wang, H., Sun, J., Sun, R., Wang, Z.F., Yang, J., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Comput. Mater. Sci., 159, pp. 448-453Cerdá, J.I., S?awi?ska, J., Le Lay, G., Marele, A.C., Gómez-Rodríguez, J., Dávila, M.E., Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nanoribbons on ag(110) (2016) Nat. Commun., 7, p. 13076Oyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., PdSe2: pentagonal two-dimensional layers with high air stability for electronics (2017) J. Am. Chem. Soc., 139, pp. 14090-14097Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251Liu, L., Zhuang, H.L., ptp2: an example of exploring the hidden cairo tessellation in the pyrite structure for discovering novel two-dimensional materials (2018) Phys. Rev. Mater., 2, p. 114003Yuan, H., Li, Z., Yang, J., Atomically thin semiconducting penta-pd2 and pdas2 with ultrahigh carrier mobility (2018) J. Mater. Chem. C, 6, pp. 9055-9059Yuan, J.-H., Song, Y.-Q., Chen, Q., Xue, K.-H., Miao, X.-S., Single-layer planar penta-x2n4 (x = ni, pd and pt) as direct-bandgap semiconductors from first principle calculations (2019) Appl. Surf. Sci., 469, pp. 456-462Zhang, R.-W., Liu, C.-C., Ma, D.-S., Yao, Y., From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide (2018) Phys. Rev. B, 97, p. 125312Berdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: first-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001Lopez Bezanilla, A., Littlewood, P.B., ? ? band inversion in a novel two-dimensional material (2015) J. Phys. Chem. C, 119, p. 19469Bravo, S., Correa, J., Chico, L., Pacheco, M., Symmetry-protected metallic and topological phases in penta-materials (2019) Sci. Rep., 9, p. 12754Zhang, S., Zhou, J., Wang, Q., Jena, P., Beyond graphitic carbon nitride: nitrogen-rich penta-CN2 sheet (2016) J. Phys. Chem. C, 120, pp. 3993-3998Li, F., Tu, K., Zhang, H., Chen, Z., Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation (2015) Phys. Chem. Chem. Phys., 17, pp. 24151-24156Yue, S.-Y., Yan, Q.-B., Zhu, Z.-G., Cui, H.-J., Zheng, Q.-R., Su, G., First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and möbius strips (2014) Carbon, 71, pp. 150-158Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125Yuan, P., Zhang, Z., Fan, Z., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536He, C., Wang, X., Zhang, W., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865Avramov, P., Demin, V., Luo, M., Choi, C.H., Sorokin, P.B., Yakobson, B., Chernozatonskii, L., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings (2015) J. Phys. Chem. Lett., 6, pp. 4525-4531Liu, J., He, C., Jiao, N., Xiao, H., Zhang, K., Wang, R., Sun, L., Novel Two-Dimensional SiC2 Sheet with Full Pentagon Network (2013), arXiv preprint arXiv:1307.6324Togo, A., Oba, F., Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures (2008) Phys. Rev. B, 78, p. 134106Togo, A., Tanaka, I., First principles phonon calculations in materials science (2015) Scripta Mater., 108, pp. 1-5Yagmurcukardes, M., Sahin, H., Kang, J., Torun, E., Peeters, F.M., Senger, R.T., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) J. Appl. Phys., 118, p. 104303Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Group Theory - Applications to the Physics of Condensed Matter (2008), Springer BerlinHahn, T., Shmueli, U., Wilson, A.J.C., International Union of Crystallography, International Tables for Crystallography (1984), D. Reidel Pub. CoAroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H., Bilbao Crystallographic Server: I. Databases and crystallographic computing programs (2006) Z. Kristallogr. - Cryst. Mater., 221, pp. 15-27Damnjanovi?, M., Milo evi?, I., Line Groups in Physics (2010), Springer BerlinGallego, S.V., Tasci, E.S., de la Flor, G., Perez-Mato, J.M., Aroyo, M.I., IUCr, Magnetic symmetry in the Bilbao Crystallographic Server: a computer program to provide systematic absences of magnetic neutron diffraction (2012) J. Appl. Crystallogr., 45, pp. 1236-1247Perez-Mato, J., Gallego, S., Tasci, E., Elcoro, L., de la Flor, G., Aroyo, M., Symmetry-based computational tools for magnetic crystallography (2015) Annu. Rev. Mater. Res., 45, pp. 217-248Litvin, D.B., (2013) Magnetic Group Tables, , International Union of Crystallography Chester, EnglandStokes, H.T., Hatch, D.M., Campbell, B.J., Magnetic space groups (2015), https://stokes.byu.edu/iso/magneticspacegroups.php, (ISO-MAG, ISOTROPY Software Suite, iso.byu.edu)Zheng, G., Ke, S.-H., Miao, M., Kim, J., Ramesh, R., Kioussis, N., Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition (2017) Sci. Rep., 7, p. 5366Bahuguna, B.P., Saini, L.K., Tiwari, B., Sharma, R.O., Electric field induced insulator to metal transition in a buckled GaAs monolayer (2016) RSC Adv., 6, pp. 52920-52924Wu, J., Yang, Y., Gao, H., Qi, Y., Zhang, J., Qiao, Z., Ren, W., Electric field effect of GaAs monolayer from first principles (2017) AIP Adv., 7Liu, L., Ren, X., Xie, J., Cheng, B., Hu, J., Modulation of Magnetism via Electric Field in Mgonanoribbons (2019), arXiv preprint arXiv:1905.02328Li, X., Wu, X., Li, Z., Yang, J., Hou, J., Bipolar magnetic semiconductors: a new class of spintronics materials (2012) Nanoscale, 4, pp. 5680-5685Son, Y., Cohen, M.L., Louie, S.G., Half-metallic graphene nanoribbons (2006) Nature, 444, p. 347Vanderbilt, D., Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (2018), Cambridge University Press CambridgeResta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach (1994) Rev. Mod. Phys., 66, pp. 899-915Powell, R.C., Symmetry, Group Theory, and the Physical Properties of Crystals (2010), Springer New YorkVanderbilt, D., First-principles theory of polarization and electric fields in ferroelectrics (2004) Ferroelectrics, 301, pp. 9-14CarbonCalculationsElectric fieldsGrapheneMagnetic propertiesNanoribbonsComplete classificationElectronic and magnetic propertiesElectronic behaviorsExternal electric fieldFirst-principles calculationMagnetic characteristicMagnetic configurationMagnetic space groupMagnetismElectronic and magnetic properties of pentagonal nanoribbonsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Pacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; Bravo, S., Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; Chico, L., Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/ Sor Juana Inés de La Cruz 3, Madrid, 28049, Spainhttp://purl.org/coar/access_right/c_16ecCorrea J.D.Pacheco M.Bravo S.Chico L.11407/5649oai:repository.udem.edu.co:11407/56492020-05-27 19:08:55.938Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co