Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach

The energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculatio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6070
Acceso en línea:
http://hdl.handle.net/11407/6070
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_1883957720016c950ff0b1f0d68aa059
oai_identifier_str oai:repository.udem.edu.co:11407/6070
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
title Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
spellingShingle Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
title_short Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
title_full Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
title_fullStr Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
title_full_unstemmed Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
title_sort Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
description The energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculation of the energy gaps, density of states and the interband optical response. The structures are found to be small gap semiconductors. In addition, from the calculated real and imaginary parts of the dielectric function the static index of refraction and the so-called energy loss are evaluated. The effect of the particular dot geometry on the physical quantities under study is specially discussed. It is found that the specific triangular configuration with a total of 42 atoms in the border exhibits a very small energy bandgap associated with the spin-up polarization, which leads to a significant deviation of the value of the related static index of refraction, compared with the remaining structures investigated. From the first-principles calculation it has been also possible to evaluate the spin-polarization and estimate the total magnetic moment, which ranges from ∼2μB to ~14μB, depending on the dot size and geometry. © 2019
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:06Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:06Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 13869477
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6070
dc.identifier.doi.none.fl_str_mv 10.1016/j.physe.2019.01.021
identifier_str_mv 13869477
10.1016/j.physe.2019.01.021
url http://hdl.handle.net/11407/6070
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060556382&doi=10.1016%2fj.physe.2019.01.021&partnerID=40&md5=d0955845a8e48b1a8abf5147245a9e3e
dc.relation.citationvolume.none.fl_str_mv 109
dc.relation.citationstartpage.none.fl_str_mv 201
dc.relation.citationendpage.none.fl_str_mv 208
dc.relation.references.none.fl_str_mv Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage (2015) Science, 347 (6217), p. 1246501
Novoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.H.C., 2D materials and van der Waals heterostructures (2016) Science, 353 (6298). , aac9439
Liu, Y., Weiss, N.O., Duan, X., Cheng, H.-C., Huang, Y., Duan, X., Van der Waals heterostructures and devices (2016) Nat. Rev. Mater., 1 (9), p. 16042
Zhu, Z., Cheng, Y., Schwingenschlögl, U., Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors (2011) Phys. Rev. B, 84, p. 153402
Lin, M.-W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Zhou, Z., Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte (2012) J. Phys. Appl. Phys., 45 (34), p. 345102
Larentis, S., Fallahazad, B., Tutuc, E., Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers (2012) Appl. Phys. Lett., 101 (22), p. 223104
Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., High-performance single layered WSe2 p-FETs with chemically doped contacts (2012) Nano Lett., 12 (7), pp. 3788-3792
Bao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S., High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects (2013) Appl. Phys. Lett., 102 (4), p. 42104
Du, Y., Neal, A.T., Zhou, H., Peide, D.Y., Transport studies in 2D transition metal dichalcogenides and black phosphorus (2016) J. Phys. Condens. Matter, 28 (26), p. 263002
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, H., Single-layer MoS2 phototransistors (2011) ACS Nano, 6 (1), pp. 74-80
Yoon, Y., Ganapathi, K., Salahuddin, S., How good can monolayer MoS2 transistors be? (2011) Nano Lett., 11 (9), pp. 3768-3773
Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X., Valley polarization in MoS2 monolayers by optical pumping (2012) Nat. Nanotechnol., 7, pp. 490-493
Mak, K.F., He, K., Shan, J., Heinz, T.F., Control of valley polarization in monolayer MoS2 by optical helicity (2012) Nat. Nanotechnol., 7, pp. 494-498
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., pp. 699-712
Li, X., Zhu, H., Two-dimensional MoS2: properties, preparation, and applications (2015) J. Materiomics, 1 (1), pp. 33-44
Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Zhang, H., Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2 (2013) Small, 9 (11), pp. 1974-1981
Sørensen, S.G., Füchtbauer, H.G., Tuxen, A.K., Walton, A.S., Lauritsen, J.V., Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface (2014) ACS Nano, 8 (7), pp. 6788-6796
Mahler, B., Hoepfner, V., Liao, K., Ozin, G.A., Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution (2014) J. Am. Chem. Soc., 136 (40), pp. 14121-14127
Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Jr., Pantelides, S.T., Bolotin, K.I., Bandgap engineering of strained monolayer and bilayer MoS2 (2013) Nano Lett., 13 (8), pp. 3626-3630
Nguyen, C.V., Hieu, N.N., Duque, C.A., Khoa, D.Q., Hieu, N.V., Tung, L.V., Phuc, H.V., Linear and nonlinear magneto-optical properties of monolayer phosphorene (2017) J. Appl. Phys., 121, p. 037301
Hieu, N., Ilyasov, V., Vu, T., Poklonski, N., Phuc, H., Phuong, L., Hoi, B., Nguyen, C., First principles study of optical properties of molybdenum disulfide: from bulk to monolayer (2018) Superlattice. Microst., 115, pp. 10-18
Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., Liang, X., Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping (2014) ACS Nano, 8 (5), pp. 5270-5281
Nguyen, T.P., Sohn, W., Oh, J.H., Jang, H.W., Kim, S.Y., Size-dependent properties of two-dimensional MoS2 and WS2 (2016) J. Phys. Chem. C, 120 (18), pp. 10078-10085
Park, S.J., Pak, S.W., Qiu, D., Kang, J.H., Kim, E.K., Structural and optical characterization of MoS2 quantum dots defined by thermal annealing (2017) J. Lumin., 183, pp. 62-67
Wei, G., Czaplewski, D.A., Lenferink, E.J., Stanev, T.K., Jung, I.W., Stern, N.P., Size-tunable lateral confinement in monolayer semiconductors (2017) Sci. Rep., 7 (1), p. 3324
Wang, X., Sun, G., Li, N., Chen, P., Quantum dots derived from two-dimensional materials and their applications for catalysis and energy (2016) Chem. Soc. Rev., 45 (8), pp. 2239-2262
Arul, N.S., Nithya, V.D., Molybdenum disulfide quantum dots: synthesis and applications (2016) RSC Adv., 6 (70), pp. 65670-65682
Dhanabalan, S.C., Dhanabalan, B., Ponraj, J.S., Bao, Q., Zhang, H., 2D–Materials-Based quantum dots: gateway towards next-generation optical devices (2017) Adv. Opt. Mater., 5 (19), p. 1700257
Gan, Z.X., Liu, L.Z., Wu, H.Y., Hao, Y.L., Shan, Y., Wu, X.L., Chu, P.K., Quantum confinement effects across two-dimensional planes in MoS2 quantum dots (2015) Appl. Phys. Lett., 106 (23), p. 233113
Karanikolas, V.D., Paspalakis, E., Localized exciton modes and high quantum efficiency of a quantum emitter close to a MoS2 nanodisk (2017) Phys. Rev. B, 96 (4), p. 041404
Loh, G.C., Pandey, R., Yap, Y.K., Karna, S.P., MoS2 quantum dot: effects of passivation, additional layer, and h-BN substrate on its stability and electronic properties (2015) J. Phys. Chem. C, 119 (3), pp. 1565-1574
Wang, Y., Ni, Y., Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection (2014) Anal. Chem., 86 (15), pp. 7463-7470
Zhu, X., Xiang, J., Li, J., Feng, C., Liu, P., Xiang, B., Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups (2018) J. Colloid Interface Sci., 511, pp. 209-214
Pavlović, S., Peeters, F.M., Electronic properties of triangular and hexagonal MoS2 quantum dots (2015) Phys. Rev. B, 91 (15), p. 155410
Segarra, C., Planelles, J., Ulloa, S.E., Edge states in dichalcogenide nanoribbons and triangular quantum dots (2016) Phys. Rev. B, 93 (8), p. 085312
Pei, L., Tao, S., Haibo, S., Song, X., Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles (2015) Solid State Commun., 218, pp. 25-30
Kośmider, K., González, J.W., Fernández-Rossier, J., Large spin splitting in the conduction band of transition metal dichalcogenide monolayers (2013) Phys. Rev. B, 88, p. 245436
Brooks, M., Burkard, G., Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers (2017) Phys. Rev. B, 95 (24), p. 245411
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14 (11), pp. 2745-2779
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)] (1997) Phys. Rev. Lett., 78. , 1396–1396
Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mexic. Fisica, 64 (1), pp. 94-100
Ridolfi, E., Lewenkopf, C.H., Pereira, V.M., Excitonic structure of the optical conductivity in MoS2 monolayers (2018) Phys. Rev. B, 97, p. 205409
Pan, H., Zhang, Y.-W., Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons (2012) J. Mater. Chem., 22 (15), p. 7280
Güçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88 (15), p. 155429
Gibertini, M., Marzari, N., Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures (2015) Nano Lett., 15 (9), pp. 6229-6238
Bertram, N., Cordes, J., Kim, Y.D., Ganteför, G., Gemming, S., Seifert, G., Nanoplatelets made from MoS2and WS2 (2006) Chem. Phys. Lett., 418 (1-3), pp. 36-39
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Physica E: Low-Dimensional Systems and Nanostructures
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159239265910784
spelling 20192021-02-05T14:59:06Z2021-02-05T14:59:06Z13869477http://hdl.handle.net/11407/607010.1016/j.physe.2019.01.021The energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculation of the energy gaps, density of states and the interband optical response. The structures are found to be small gap semiconductors. In addition, from the calculated real and imaginary parts of the dielectric function the static index of refraction and the so-called energy loss are evaluated. The effect of the particular dot geometry on the physical quantities under study is specially discussed. It is found that the specific triangular configuration with a total of 42 atoms in the border exhibits a very small energy bandgap associated with the spin-up polarization, which leads to a significant deviation of the value of the related static index of refraction, compared with the remaining structures investigated. From the first-principles calculation it has been also possible to evaluate the spin-polarization and estimate the total magnetic moment, which ranges from ∼2μB to ~14μB, depending on the dot size and geometry. © 2019engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060556382&doi=10.1016%2fj.physe.2019.01.021&partnerID=40&md5=d0955845a8e48b1a8abf5147245a9e3e109201208Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage (2015) Science, 347 (6217), p. 1246501Novoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.H.C., 2D materials and van der Waals heterostructures (2016) Science, 353 (6298). , aac9439Liu, Y., Weiss, N.O., Duan, X., Cheng, H.-C., Huang, Y., Duan, X., Van der Waals heterostructures and devices (2016) Nat. Rev. Mater., 1 (9), p. 16042Zhu, Z., Cheng, Y., Schwingenschlögl, U., Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors (2011) Phys. Rev. B, 84, p. 153402Lin, M.-W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Zhou, Z., Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte (2012) J. Phys. Appl. Phys., 45 (34), p. 345102Larentis, S., Fallahazad, B., Tutuc, E., Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers (2012) Appl. Phys. Lett., 101 (22), p. 223104Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., High-performance single layered WSe2 p-FETs with chemically doped contacts (2012) Nano Lett., 12 (7), pp. 3788-3792Bao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S., High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects (2013) Appl. Phys. Lett., 102 (4), p. 42104Du, Y., Neal, A.T., Zhou, H., Peide, D.Y., Transport studies in 2D transition metal dichalcogenides and black phosphorus (2016) J. Phys. Condens. Matter, 28 (26), p. 263002Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, H., Single-layer MoS2 phototransistors (2011) ACS Nano, 6 (1), pp. 74-80Yoon, Y., Ganapathi, K., Salahuddin, S., How good can monolayer MoS2 transistors be? (2011) Nano Lett., 11 (9), pp. 3768-3773Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X., Valley polarization in MoS2 monolayers by optical pumping (2012) Nat. Nanotechnol., 7, pp. 490-493Mak, K.F., He, K., Shan, J., Heinz, T.F., Control of valley polarization in monolayer MoS2 by optical helicity (2012) Nat. Nanotechnol., 7, pp. 494-498Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., pp. 699-712Li, X., Zhu, H., Two-dimensional MoS2: properties, preparation, and applications (2015) J. Materiomics, 1 (1), pp. 33-44Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Zhang, H., Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2 (2013) Small, 9 (11), pp. 1974-1981Sørensen, S.G., Füchtbauer, H.G., Tuxen, A.K., Walton, A.S., Lauritsen, J.V., Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface (2014) ACS Nano, 8 (7), pp. 6788-6796Mahler, B., Hoepfner, V., Liao, K., Ozin, G.A., Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution (2014) J. Am. Chem. Soc., 136 (40), pp. 14121-14127Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Jr., Pantelides, S.T., Bolotin, K.I., Bandgap engineering of strained monolayer and bilayer MoS2 (2013) Nano Lett., 13 (8), pp. 3626-3630Nguyen, C.V., Hieu, N.N., Duque, C.A., Khoa, D.Q., Hieu, N.V., Tung, L.V., Phuc, H.V., Linear and nonlinear magneto-optical properties of monolayer phosphorene (2017) J. Appl. Phys., 121, p. 037301Hieu, N., Ilyasov, V., Vu, T., Poklonski, N., Phuc, H., Phuong, L., Hoi, B., Nguyen, C., First principles study of optical properties of molybdenum disulfide: from bulk to monolayer (2018) Superlattice. Microst., 115, pp. 10-18Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., Liang, X., Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping (2014) ACS Nano, 8 (5), pp. 5270-5281Nguyen, T.P., Sohn, W., Oh, J.H., Jang, H.W., Kim, S.Y., Size-dependent properties of two-dimensional MoS2 and WS2 (2016) J. Phys. Chem. C, 120 (18), pp. 10078-10085Park, S.J., Pak, S.W., Qiu, D., Kang, J.H., Kim, E.K., Structural and optical characterization of MoS2 quantum dots defined by thermal annealing (2017) J. Lumin., 183, pp. 62-67Wei, G., Czaplewski, D.A., Lenferink, E.J., Stanev, T.K., Jung, I.W., Stern, N.P., Size-tunable lateral confinement in monolayer semiconductors (2017) Sci. Rep., 7 (1), p. 3324Wang, X., Sun, G., Li, N., Chen, P., Quantum dots derived from two-dimensional materials and their applications for catalysis and energy (2016) Chem. Soc. Rev., 45 (8), pp. 2239-2262Arul, N.S., Nithya, V.D., Molybdenum disulfide quantum dots: synthesis and applications (2016) RSC Adv., 6 (70), pp. 65670-65682Dhanabalan, S.C., Dhanabalan, B., Ponraj, J.S., Bao, Q., Zhang, H., 2D–Materials-Based quantum dots: gateway towards next-generation optical devices (2017) Adv. Opt. Mater., 5 (19), p. 1700257Gan, Z.X., Liu, L.Z., Wu, H.Y., Hao, Y.L., Shan, Y., Wu, X.L., Chu, P.K., Quantum confinement effects across two-dimensional planes in MoS2 quantum dots (2015) Appl. Phys. Lett., 106 (23), p. 233113Karanikolas, V.D., Paspalakis, E., Localized exciton modes and high quantum efficiency of a quantum emitter close to a MoS2 nanodisk (2017) Phys. Rev. B, 96 (4), p. 041404Loh, G.C., Pandey, R., Yap, Y.K., Karna, S.P., MoS2 quantum dot: effects of passivation, additional layer, and h-BN substrate on its stability and electronic properties (2015) J. Phys. Chem. C, 119 (3), pp. 1565-1574Wang, Y., Ni, Y., Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection (2014) Anal. Chem., 86 (15), pp. 7463-7470Zhu, X., Xiang, J., Li, J., Feng, C., Liu, P., Xiang, B., Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups (2018) J. Colloid Interface Sci., 511, pp. 209-214Pavlović, S., Peeters, F.M., Electronic properties of triangular and hexagonal MoS2 quantum dots (2015) Phys. Rev. B, 91 (15), p. 155410Segarra, C., Planelles, J., Ulloa, S.E., Edge states in dichalcogenide nanoribbons and triangular quantum dots (2016) Phys. Rev. B, 93 (8), p. 085312Pei, L., Tao, S., Haibo, S., Song, X., Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles (2015) Solid State Commun., 218, pp. 25-30Kośmider, K., González, J.W., Fernández-Rossier, J., Large spin splitting in the conduction band of transition metal dichalcogenide monolayers (2013) Phys. Rev. B, 88, p. 245436Brooks, M., Burkard, G., Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers (2017) Phys. Rev. B, 95 (24), p. 245411Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14 (11), pp. 2745-2779Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)] (1997) Phys. Rev. Lett., 78. , 1396–1396Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mexic. Fisica, 64 (1), pp. 94-100Ridolfi, E., Lewenkopf, C.H., Pereira, V.M., Excitonic structure of the optical conductivity in MoS2 monolayers (2018) Phys. Rev. B, 97, p. 205409Pan, H., Zhang, Y.-W., Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons (2012) J. Mater. Chem., 22 (15), p. 7280Güçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88 (15), p. 155429Gibertini, M., Marzari, N., Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures (2015) Nano Lett., 15 (9), pp. 6229-6238Bertram, N., Cordes, J., Kim, Y.D., Ganteför, G., Gemming, S., Seifert, G., Nanoplatelets made from MoS2and WS2 (2006) Chem. Phys. Lett., 418 (1-3), pp. 36-39Physica E: Low-Dimensional Systems and NanostructuresElectronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approachArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bertel, R., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaciones, Universidad de la Guajira, Riohacha, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, MexicoCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecBertel R.Mora-Ramos M.E.Correa J.D.11407/6070oai:repository.udem.edu.co:11407/60702021-02-05 09:59:06.659Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co