Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
The energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculatio...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6070
- Acceso en línea:
- http://hdl.handle.net/11407/6070
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_1883957720016c950ff0b1f0d68aa059 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6070 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
title |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
spellingShingle |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
title_short |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
title_full |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
title_fullStr |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
title_full_unstemmed |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
title_sort |
Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach |
description |
The energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculation of the energy gaps, density of states and the interband optical response. The structures are found to be small gap semiconductors. In addition, from the calculated real and imaginary parts of the dielectric function the static index of refraction and the so-called energy loss are evaluated. The effect of the particular dot geometry on the physical quantities under study is specially discussed. It is found that the specific triangular configuration with a total of 42 atoms in the border exhibits a very small energy bandgap associated with the spin-up polarization, which leads to a significant deviation of the value of the related static index of refraction, compared with the remaining structures investigated. From the first-principles calculation it has been also possible to evaluate the spin-polarization and estimate the total magnetic moment, which ranges from ∼2μB to ~14μB, depending on the dot size and geometry. © 2019 |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:06Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:06Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
13869477 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6070 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.physe.2019.01.021 |
identifier_str_mv |
13869477 10.1016/j.physe.2019.01.021 |
url |
http://hdl.handle.net/11407/6070 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060556382&doi=10.1016%2fj.physe.2019.01.021&partnerID=40&md5=d0955845a8e48b1a8abf5147245a9e3e |
dc.relation.citationvolume.none.fl_str_mv |
109 |
dc.relation.citationstartpage.none.fl_str_mv |
201 |
dc.relation.citationendpage.none.fl_str_mv |
208 |
dc.relation.references.none.fl_str_mv |
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage (2015) Science, 347 (6217), p. 1246501 Novoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.H.C., 2D materials and van der Waals heterostructures (2016) Science, 353 (6298). , aac9439 Liu, Y., Weiss, N.O., Duan, X., Cheng, H.-C., Huang, Y., Duan, X., Van der Waals heterostructures and devices (2016) Nat. Rev. Mater., 1 (9), p. 16042 Zhu, Z., Cheng, Y., Schwingenschlögl, U., Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors (2011) Phys. Rev. B, 84, p. 153402 Lin, M.-W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Zhou, Z., Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte (2012) J. Phys. Appl. Phys., 45 (34), p. 345102 Larentis, S., Fallahazad, B., Tutuc, E., Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers (2012) Appl. Phys. Lett., 101 (22), p. 223104 Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., High-performance single layered WSe2 p-FETs with chemically doped contacts (2012) Nano Lett., 12 (7), pp. 3788-3792 Bao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S., High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects (2013) Appl. Phys. Lett., 102 (4), p. 42104 Du, Y., Neal, A.T., Zhou, H., Peide, D.Y., Transport studies in 2D transition metal dichalcogenides and black phosphorus (2016) J. Phys. Condens. Matter, 28 (26), p. 263002 Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, H., Single-layer MoS2 phototransistors (2011) ACS Nano, 6 (1), pp. 74-80 Yoon, Y., Ganapathi, K., Salahuddin, S., How good can monolayer MoS2 transistors be? (2011) Nano Lett., 11 (9), pp. 3768-3773 Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X., Valley polarization in MoS2 monolayers by optical pumping (2012) Nat. Nanotechnol., 7, pp. 490-493 Mak, K.F., He, K., Shan, J., Heinz, T.F., Control of valley polarization in monolayer MoS2 by optical helicity (2012) Nat. Nanotechnol., 7, pp. 494-498 Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., pp. 699-712 Li, X., Zhu, H., Two-dimensional MoS2: properties, preparation, and applications (2015) J. Materiomics, 1 (1), pp. 33-44 Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Zhang, H., Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2 (2013) Small, 9 (11), pp. 1974-1981 Sørensen, S.G., Füchtbauer, H.G., Tuxen, A.K., Walton, A.S., Lauritsen, J.V., Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface (2014) ACS Nano, 8 (7), pp. 6788-6796 Mahler, B., Hoepfner, V., Liao, K., Ozin, G.A., Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution (2014) J. Am. Chem. Soc., 136 (40), pp. 14121-14127 Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Jr., Pantelides, S.T., Bolotin, K.I., Bandgap engineering of strained monolayer and bilayer MoS2 (2013) Nano Lett., 13 (8), pp. 3626-3630 Nguyen, C.V., Hieu, N.N., Duque, C.A., Khoa, D.Q., Hieu, N.V., Tung, L.V., Phuc, H.V., Linear and nonlinear magneto-optical properties of monolayer phosphorene (2017) J. Appl. Phys., 121, p. 037301 Hieu, N., Ilyasov, V., Vu, T., Poklonski, N., Phuc, H., Phuong, L., Hoi, B., Nguyen, C., First principles study of optical properties of molybdenum disulfide: from bulk to monolayer (2018) Superlattice. Microst., 115, pp. 10-18 Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., Liang, X., Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping (2014) ACS Nano, 8 (5), pp. 5270-5281 Nguyen, T.P., Sohn, W., Oh, J.H., Jang, H.W., Kim, S.Y., Size-dependent properties of two-dimensional MoS2 and WS2 (2016) J. Phys. Chem. C, 120 (18), pp. 10078-10085 Park, S.J., Pak, S.W., Qiu, D., Kang, J.H., Kim, E.K., Structural and optical characterization of MoS2 quantum dots defined by thermal annealing (2017) J. Lumin., 183, pp. 62-67 Wei, G., Czaplewski, D.A., Lenferink, E.J., Stanev, T.K., Jung, I.W., Stern, N.P., Size-tunable lateral confinement in monolayer semiconductors (2017) Sci. Rep., 7 (1), p. 3324 Wang, X., Sun, G., Li, N., Chen, P., Quantum dots derived from two-dimensional materials and their applications for catalysis and energy (2016) Chem. Soc. Rev., 45 (8), pp. 2239-2262 Arul, N.S., Nithya, V.D., Molybdenum disulfide quantum dots: synthesis and applications (2016) RSC Adv., 6 (70), pp. 65670-65682 Dhanabalan, S.C., Dhanabalan, B., Ponraj, J.S., Bao, Q., Zhang, H., 2D–Materials-Based quantum dots: gateway towards next-generation optical devices (2017) Adv. Opt. Mater., 5 (19), p. 1700257 Gan, Z.X., Liu, L.Z., Wu, H.Y., Hao, Y.L., Shan, Y., Wu, X.L., Chu, P.K., Quantum confinement effects across two-dimensional planes in MoS2 quantum dots (2015) Appl. Phys. Lett., 106 (23), p. 233113 Karanikolas, V.D., Paspalakis, E., Localized exciton modes and high quantum efficiency of a quantum emitter close to a MoS2 nanodisk (2017) Phys. Rev. B, 96 (4), p. 041404 Loh, G.C., Pandey, R., Yap, Y.K., Karna, S.P., MoS2 quantum dot: effects of passivation, additional layer, and h-BN substrate on its stability and electronic properties (2015) J. Phys. Chem. C, 119 (3), pp. 1565-1574 Wang, Y., Ni, Y., Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection (2014) Anal. Chem., 86 (15), pp. 7463-7470 Zhu, X., Xiang, J., Li, J., Feng, C., Liu, P., Xiang, B., Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups (2018) J. Colloid Interface Sci., 511, pp. 209-214 Pavlović, S., Peeters, F.M., Electronic properties of triangular and hexagonal MoS2 quantum dots (2015) Phys. Rev. B, 91 (15), p. 155410 Segarra, C., Planelles, J., Ulloa, S.E., Edge states in dichalcogenide nanoribbons and triangular quantum dots (2016) Phys. Rev. B, 93 (8), p. 085312 Pei, L., Tao, S., Haibo, S., Song, X., Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles (2015) Solid State Commun., 218, pp. 25-30 Kośmider, K., González, J.W., Fernández-Rossier, J., Large spin splitting in the conduction band of transition metal dichalcogenide monolayers (2013) Phys. Rev. B, 88, p. 245436 Brooks, M., Burkard, G., Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers (2017) Phys. Rev. B, 95 (24), p. 245411 Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14 (11), pp. 2745-2779 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)] (1997) Phys. Rev. Lett., 78. , 1396–1396 Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mexic. Fisica, 64 (1), pp. 94-100 Ridolfi, E., Lewenkopf, C.H., Pereira, V.M., Excitonic structure of the optical conductivity in MoS2 monolayers (2018) Phys. Rev. B, 97, p. 205409 Pan, H., Zhang, Y.-W., Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons (2012) J. Mater. Chem., 22 (15), p. 7280 Güçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88 (15), p. 155429 Gibertini, M., Marzari, N., Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures (2015) Nano Lett., 15 (9), pp. 6229-6238 Bertram, N., Cordes, J., Kim, Y.D., Ganteför, G., Gemming, S., Seifert, G., Nanoplatelets made from MoS2and WS2 (2006) Chem. Phys. Lett., 418 (1-3), pp. 36-39 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Physica E: Low-Dimensional Systems and Nanostructures |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159239265910784 |
spelling |
20192021-02-05T14:59:06Z2021-02-05T14:59:06Z13869477http://hdl.handle.net/11407/607010.1016/j.physe.2019.01.021The energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculation of the energy gaps, density of states and the interband optical response. The structures are found to be small gap semiconductors. In addition, from the calculated real and imaginary parts of the dielectric function the static index of refraction and the so-called energy loss are evaluated. The effect of the particular dot geometry on the physical quantities under study is specially discussed. It is found that the specific triangular configuration with a total of 42 atoms in the border exhibits a very small energy bandgap associated with the spin-up polarization, which leads to a significant deviation of the value of the related static index of refraction, compared with the remaining structures investigated. From the first-principles calculation it has been also possible to evaluate the spin-polarization and estimate the total magnetic moment, which ranges from ∼2μB to ~14μB, depending on the dot size and geometry. © 2019engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060556382&doi=10.1016%2fj.physe.2019.01.021&partnerID=40&md5=d0955845a8e48b1a8abf5147245a9e3e109201208Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage (2015) Science, 347 (6217), p. 1246501Novoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.H.C., 2D materials and van der Waals heterostructures (2016) Science, 353 (6298). , aac9439Liu, Y., Weiss, N.O., Duan, X., Cheng, H.-C., Huang, Y., Duan, X., Van der Waals heterostructures and devices (2016) Nat. Rev. Mater., 1 (9), p. 16042Zhu, Z., Cheng, Y., Schwingenschlögl, U., Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors (2011) Phys. Rev. B, 84, p. 153402Lin, M.-W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Zhou, Z., Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte (2012) J. Phys. Appl. Phys., 45 (34), p. 345102Larentis, S., Fallahazad, B., Tutuc, E., Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers (2012) Appl. Phys. Lett., 101 (22), p. 223104Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., High-performance single layered WSe2 p-FETs with chemically doped contacts (2012) Nano Lett., 12 (7), pp. 3788-3792Bao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S., High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects (2013) Appl. Phys. Lett., 102 (4), p. 42104Du, Y., Neal, A.T., Zhou, H., Peide, D.Y., Transport studies in 2D transition metal dichalcogenides and black phosphorus (2016) J. Phys. Condens. Matter, 28 (26), p. 263002Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, H., Single-layer MoS2 phototransistors (2011) ACS Nano, 6 (1), pp. 74-80Yoon, Y., Ganapathi, K., Salahuddin, S., How good can monolayer MoS2 transistors be? (2011) Nano Lett., 11 (9), pp. 3768-3773Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X., Valley polarization in MoS2 monolayers by optical pumping (2012) Nat. Nanotechnol., 7, pp. 490-493Mak, K.F., He, K., Shan, J., Heinz, T.F., Control of valley polarization in monolayer MoS2 by optical helicity (2012) Nat. Nanotechnol., 7, pp. 494-498Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., pp. 699-712Li, X., Zhu, H., Two-dimensional MoS2: properties, preparation, and applications (2015) J. Materiomics, 1 (1), pp. 33-44Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Zhang, H., Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2 (2013) Small, 9 (11), pp. 1974-1981Sørensen, S.G., Füchtbauer, H.G., Tuxen, A.K., Walton, A.S., Lauritsen, J.V., Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface (2014) ACS Nano, 8 (7), pp. 6788-6796Mahler, B., Hoepfner, V., Liao, K., Ozin, G.A., Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution (2014) J. Am. Chem. Soc., 136 (40), pp. 14121-14127Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Jr., Pantelides, S.T., Bolotin, K.I., Bandgap engineering of strained monolayer and bilayer MoS2 (2013) Nano Lett., 13 (8), pp. 3626-3630Nguyen, C.V., Hieu, N.N., Duque, C.A., Khoa, D.Q., Hieu, N.V., Tung, L.V., Phuc, H.V., Linear and nonlinear magneto-optical properties of monolayer phosphorene (2017) J. Appl. Phys., 121, p. 037301Hieu, N., Ilyasov, V., Vu, T., Poklonski, N., Phuc, H., Phuong, L., Hoi, B., Nguyen, C., First principles study of optical properties of molybdenum disulfide: from bulk to monolayer (2018) Superlattice. Microst., 115, pp. 10-18Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., Liang, X., Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping (2014) ACS Nano, 8 (5), pp. 5270-5281Nguyen, T.P., Sohn, W., Oh, J.H., Jang, H.W., Kim, S.Y., Size-dependent properties of two-dimensional MoS2 and WS2 (2016) J. Phys. Chem. C, 120 (18), pp. 10078-10085Park, S.J., Pak, S.W., Qiu, D., Kang, J.H., Kim, E.K., Structural and optical characterization of MoS2 quantum dots defined by thermal annealing (2017) J. Lumin., 183, pp. 62-67Wei, G., Czaplewski, D.A., Lenferink, E.J., Stanev, T.K., Jung, I.W., Stern, N.P., Size-tunable lateral confinement in monolayer semiconductors (2017) Sci. Rep., 7 (1), p. 3324Wang, X., Sun, G., Li, N., Chen, P., Quantum dots derived from two-dimensional materials and their applications for catalysis and energy (2016) Chem. Soc. Rev., 45 (8), pp. 2239-2262Arul, N.S., Nithya, V.D., Molybdenum disulfide quantum dots: synthesis and applications (2016) RSC Adv., 6 (70), pp. 65670-65682Dhanabalan, S.C., Dhanabalan, B., Ponraj, J.S., Bao, Q., Zhang, H., 2D–Materials-Based quantum dots: gateway towards next-generation optical devices (2017) Adv. Opt. Mater., 5 (19), p. 1700257Gan, Z.X., Liu, L.Z., Wu, H.Y., Hao, Y.L., Shan, Y., Wu, X.L., Chu, P.K., Quantum confinement effects across two-dimensional planes in MoS2 quantum dots (2015) Appl. Phys. Lett., 106 (23), p. 233113Karanikolas, V.D., Paspalakis, E., Localized exciton modes and high quantum efficiency of a quantum emitter close to a MoS2 nanodisk (2017) Phys. Rev. B, 96 (4), p. 041404Loh, G.C., Pandey, R., Yap, Y.K., Karna, S.P., MoS2 quantum dot: effects of passivation, additional layer, and h-BN substrate on its stability and electronic properties (2015) J. Phys. Chem. C, 119 (3), pp. 1565-1574Wang, Y., Ni, Y., Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection (2014) Anal. Chem., 86 (15), pp. 7463-7470Zhu, X., Xiang, J., Li, J., Feng, C., Liu, P., Xiang, B., Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups (2018) J. Colloid Interface Sci., 511, pp. 209-214Pavlović, S., Peeters, F.M., Electronic properties of triangular and hexagonal MoS2 quantum dots (2015) Phys. Rev. B, 91 (15), p. 155410Segarra, C., Planelles, J., Ulloa, S.E., Edge states in dichalcogenide nanoribbons and triangular quantum dots (2016) Phys. Rev. B, 93 (8), p. 085312Pei, L., Tao, S., Haibo, S., Song, X., Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles (2015) Solid State Commun., 218, pp. 25-30Kośmider, K., González, J.W., Fernández-Rossier, J., Large spin splitting in the conduction band of transition metal dichalcogenide monolayers (2013) Phys. Rev. B, 88, p. 245436Brooks, M., Burkard, G., Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers (2017) Phys. Rev. B, 95 (24), p. 245411Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14 (11), pp. 2745-2779Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)] (1997) Phys. Rev. Lett., 78. , 1396–1396Hoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mexic. Fisica, 64 (1), pp. 94-100Ridolfi, E., Lewenkopf, C.H., Pereira, V.M., Excitonic structure of the optical conductivity in MoS2 monolayers (2018) Phys. Rev. B, 97, p. 205409Pan, H., Zhang, Y.-W., Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons (2012) J. Mater. Chem., 22 (15), p. 7280Güçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88 (15), p. 155429Gibertini, M., Marzari, N., Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures (2015) Nano Lett., 15 (9), pp. 6229-6238Bertram, N., Cordes, J., Kim, Y.D., Ganteför, G., Gemming, S., Seifert, G., Nanoplatelets made from MoS2and WS2 (2006) Chem. Phys. Lett., 418 (1-3), pp. 36-39Physica E: Low-Dimensional Systems and NanostructuresElectronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approachArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bertel, R., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaciones, Universidad de la Guajira, Riohacha, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, MexicoCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecBertel R.Mora-Ramos M.E.Correa J.D.11407/6070oai:repository.udem.edu.co:11407/60702021-02-05 09:59:06.659Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |