Small additions of actived Biochar from palm oil shells to Portland cement mortar

Biochar is a solid material obtained from the thermochemical conversion of biomass in a limited oxygen environment. Portland cement-based products are the main construction materials. The manufacturing process of cement result in several harmful emissions, in particular CO2 emissions. In this work,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5689
Acceso en línea:
http://hdl.handle.net/11407/5689
Palabra clave:
Carbonation
Compressive strength
Earthquake engineering
Engineering research
Mortar
Oxygen
Portland cement
Accelerated carbonation
Carbonation depth
Compression resistance
Compression strength
Earthquake resistant
Harmful emissions
Manufacturing process
Thermochemical Conversion
Palm oil
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_184b7bf2d4a16aab4394a7dc17d08c7c
oai_identifier_str oai:repository.udem.edu.co:11407/5689
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Small additions of actived Biochar from palm oil shells to Portland cement mortar
title Small additions of actived Biochar from palm oil shells to Portland cement mortar
spellingShingle Small additions of actived Biochar from palm oil shells to Portland cement mortar
Carbonation
Compressive strength
Earthquake engineering
Engineering research
Mortar
Oxygen
Portland cement
Accelerated carbonation
Carbonation depth
Compression resistance
Compression strength
Earthquake resistant
Harmful emissions
Manufacturing process
Thermochemical Conversion
Palm oil
title_short Small additions of actived Biochar from palm oil shells to Portland cement mortar
title_full Small additions of actived Biochar from palm oil shells to Portland cement mortar
title_fullStr Small additions of actived Biochar from palm oil shells to Portland cement mortar
title_full_unstemmed Small additions of actived Biochar from palm oil shells to Portland cement mortar
title_sort Small additions of actived Biochar from palm oil shells to Portland cement mortar
dc.subject.none.fl_str_mv Carbonation
Compressive strength
Earthquake engineering
Engineering research
Mortar
Oxygen
Portland cement
Accelerated carbonation
Carbonation depth
Compression resistance
Compression strength
Earthquake resistant
Harmful emissions
Manufacturing process
Thermochemical Conversion
Palm oil
topic Carbonation
Compressive strength
Earthquake engineering
Engineering research
Mortar
Oxygen
Portland cement
Accelerated carbonation
Carbonation depth
Compression resistance
Compression strength
Earthquake resistant
Harmful emissions
Manufacturing process
Thermochemical Conversion
Palm oil
description Biochar is a solid material obtained from the thermochemical conversion of biomass in a limited oxygen environment. Portland cement-based products are the main construction materials. The manufacturing process of cement result in several harmful emissions, in particular CO2 emissions. In this work, biochar was produce from residues of palm oil shells stover at 700°C under a limited oxygen condition. Biochar small additions of 0.1, 0.33 and 0.5 % (w/w) were incorporated into Portland cement mortar samples. Mortar samples were made according to the Colombian earthquake-resistant standard. Early compression strength of samples were evaluated at 7, 14, 21 and 28 days. Mortar samples were subjected to an accelerated carbonation test using a carbonation chamber built for that purpose. Results shows that the early compression strength was altered since mortar with no biochar additions exhibit higher compression resistance that the ones exhibited by samples with small additions. Furthermore, this decreasing in the early compression strength is attributed to the presence of the surfactant used to incorporate the small amount of biochar into the cement matrix. Carbonation result shows that samples with small additions of biochar increases the measured carbonation depth. © Published under licence by IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:40Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:40Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5689
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1247/1/012052
identifier_str_mv 17426588
10.1088/1742-6596/1247/1/012052
url http://hdl.handle.net/11407/5689
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067686&doi=10.1088%2f1742-6596%2f1247%2f1%2f012052&partnerID=40&md5=29bf5d982e44dfa2e8bf54d10970f17d
dc.relation.citationvolume.none.fl_str_mv 1247
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Kupwade-Patil, K., De Wolf, C., Chin, S., Ochsendorf, J., Hajiah, A.E., Al-Mumin, A., Büyüköztürk, O., Impact of Embodied Energy on materials/buildings with partial replacement of ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash (2018) J. Clean. Prod., 177, pp. 547-554
Zerrahn, A., Schill, W.P., Kemfert, C., On the economics of electrical storage for variable renewable energy sources (2018) Eur. Econ. Rev., 108, pp. 259-279
D'Alessandro, D.M., Smit, B., Long, J.R., Carbon dioxide capture: Prospects for new materials (2010) Angew. Chemie - Int. Ed., 49 (35), pp. 6058-6082
Ahmad, S., Khushnood, R.A., Jagdale, P., Tulliani, J.-M., Ferro, G.A., High performance self-consolidating cementitious composites by using micro carbonized bamboo particles (2015) Mater. Des., 76, pp. 223-229
Akhtar, A., Sarmah, A.K., Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties (2018) Sci. Total Environ., 616-617, pp. 408-416
Cuthbertson, D., Berardi, U., Briens, C., Berruti, F., Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties (2019) Biomass and Bioenergy, 120, pp. 77-83
García Calvo, J.L., Pérez, G., Carballosa, P., Erkizia, E., Gaitero, J.J., Guerrero, A., The effect of nanoparticles on the self-healing capacity of high performance concrete (2019) Nanotechnology in Eco-efficient Construction, pp. 43-67. , Elsevier
Gupta, S., Kua, H.W., Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review (2017) J. Mater. Civ. Eng., 29 (9)
Gupta, S., Kua, H.W., Koh, H.J., Application of biochar from food and wood waste as green admixture for cement mortar (2018) Sci. Total Environ., 619-620, pp. 419-435
Gupta, S., Kua, H.W., Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar (2019) Sci. Total Environ., 662, pp. 952-962
Gupta, S., Kua, H.W., Pang, S.D., Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability (2018) Constr. Build. Mater., 167, pp. 874-889
Gupta, S., Kua, H.W., Low, C.Y., Use of biochar as carbon sequestering additive in cement mortar (2018) Cem. Concr. Compos., 87, pp. 110-129
(2017) Cementos. Mezcla Mecánica de Pastas y Morteros de Cemento Hidráulico de Consistencia Plástica, , Icontec Internacional NTC 112
(2010) Titulo D - Mampostería Estructural, , Reglamento Colombiano de Normas Sismo Resistentes NSR 10
(2007) Concretos. Método de Ensayo Para El Análisis Por Tamizado de Los Agregados Finos y Gruesos, , Icontec Internacional NTC 77
Mendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes (2018) Cem. Concr. Res., 107, pp. 101-109
Moreno, E.I., Domínguez Lara, G.G., Cob Sarabia, E.J., Duarte Gómez, F., Efecto de la relación agua/cemento en la velocidad de carbonatación del concreto utilizando una cámara de aceleración (2004) Ingeniería, 8, pp. 117-130
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Ingeniería de Materiales
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas;Facultad de Ingenierías
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Journal of Physics: Conference Series
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159139628122112
spelling 20192020-04-29T14:53:40Z2020-04-29T14:53:40Z17426588http://hdl.handle.net/11407/568910.1088/1742-6596/1247/1/012052Biochar is a solid material obtained from the thermochemical conversion of biomass in a limited oxygen environment. Portland cement-based products are the main construction materials. The manufacturing process of cement result in several harmful emissions, in particular CO2 emissions. In this work, biochar was produce from residues of palm oil shells stover at 700°C under a limited oxygen condition. Biochar small additions of 0.1, 0.33 and 0.5 % (w/w) were incorporated into Portland cement mortar samples. Mortar samples were made according to the Colombian earthquake-resistant standard. Early compression strength of samples were evaluated at 7, 14, 21 and 28 days. Mortar samples were subjected to an accelerated carbonation test using a carbonation chamber built for that purpose. Results shows that the early compression strength was altered since mortar with no biochar additions exhibit higher compression resistance that the ones exhibited by samples with small additions. Furthermore, this decreasing in the early compression strength is attributed to the presence of the surfactant used to incorporate the small amount of biochar into the cement matrix. Carbonation result shows that samples with small additions of biochar increases the measured carbonation depth. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingIngeniería de MaterialesFacultad de Ciencias Básicas;Facultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067686&doi=10.1088%2f1742-6596%2f1247%2f1%2f012052&partnerID=40&md5=29bf5d982e44dfa2e8bf54d10970f17d12471Kupwade-Patil, K., De Wolf, C., Chin, S., Ochsendorf, J., Hajiah, A.E., Al-Mumin, A., Büyüköztürk, O., Impact of Embodied Energy on materials/buildings with partial replacement of ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash (2018) J. Clean. Prod., 177, pp. 547-554Zerrahn, A., Schill, W.P., Kemfert, C., On the economics of electrical storage for variable renewable energy sources (2018) Eur. Econ. Rev., 108, pp. 259-279D'Alessandro, D.M., Smit, B., Long, J.R., Carbon dioxide capture: Prospects for new materials (2010) Angew. Chemie - Int. Ed., 49 (35), pp. 6058-6082Ahmad, S., Khushnood, R.A., Jagdale, P., Tulliani, J.-M., Ferro, G.A., High performance self-consolidating cementitious composites by using micro carbonized bamboo particles (2015) Mater. Des., 76, pp. 223-229Akhtar, A., Sarmah, A.K., Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties (2018) Sci. Total Environ., 616-617, pp. 408-416Cuthbertson, D., Berardi, U., Briens, C., Berruti, F., Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties (2019) Biomass and Bioenergy, 120, pp. 77-83García Calvo, J.L., Pérez, G., Carballosa, P., Erkizia, E., Gaitero, J.J., Guerrero, A., The effect of nanoparticles on the self-healing capacity of high performance concrete (2019) Nanotechnology in Eco-efficient Construction, pp. 43-67. , ElsevierGupta, S., Kua, H.W., Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review (2017) J. Mater. Civ. Eng., 29 (9)Gupta, S., Kua, H.W., Koh, H.J., Application of biochar from food and wood waste as green admixture for cement mortar (2018) Sci. Total Environ., 619-620, pp. 419-435Gupta, S., Kua, H.W., Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar (2019) Sci. Total Environ., 662, pp. 952-962Gupta, S., Kua, H.W., Pang, S.D., Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability (2018) Constr. Build. Mater., 167, pp. 874-889Gupta, S., Kua, H.W., Low, C.Y., Use of biochar as carbon sequestering additive in cement mortar (2018) Cem. Concr. Compos., 87, pp. 110-129(2017) Cementos. Mezcla Mecánica de Pastas y Morteros de Cemento Hidráulico de Consistencia Plástica, , Icontec Internacional NTC 112(2010) Titulo D - Mampostería Estructural, , Reglamento Colombiano de Normas Sismo Resistentes NSR 10(2007) Concretos. Método de Ensayo Para El Análisis Por Tamizado de Los Agregados Finos y Gruesos, , Icontec Internacional NTC 77Mendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes (2018) Cem. Concr. Res., 107, pp. 101-109Moreno, E.I., Domínguez Lara, G.G., Cob Sarabia, E.J., Duarte Gómez, F., Efecto de la relación agua/cemento en la velocidad de carbonatación del concreto utilizando una cámara de aceleración (2004) Ingeniería, 8, pp. 117-130Journal of Physics: Conference SeriesCarbonationCompressive strengthEarthquake engineeringEngineering researchMortarOxygenPortland cementAccelerated carbonationCarbonation depthCompression resistanceCompression strengthEarthquake resistantHarmful emissionsManufacturing processThermochemical ConversionPalm oilSmall additions of actived Biochar from palm oil shells to Portland cement mortarConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Flórez, E., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierias, Universidad de Medellin UdeM, Medellin, Colombia; Acelas, N., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierias, Universidad de Medellin UdeM, Medellin, Colombia; Ramirez, A.P., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierias, Universidad de Medellin UdeM, Medellin, Colombia; Giraldo, S., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierias, Universidad de Medellin UdeM, Medellin, Colombia; Rodriguez, B., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierias, Universidad de Medellin UdeM, Medellin, Colombia; Correa, E., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Medellin, Colombia; Echeverria, F., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Medellin, Colombiahttp://purl.org/coar/access_right/c_16ecFlórez E.Acelas N.Ramirez A.P.Giraldo S.Rodriguez B.Correa E.Echeverria F.11407/5689oai:repository.udem.edu.co:11407/56892020-05-27 16:26:10.134Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co