Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]

This article shows the prediction of the level of insolvency in companies that are not listed on the stock exchange belonging to the health sector for one and two years in advance, using the multiple logistic regression analysis based on indicators of liquidity, indebtedness, financial structure and...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5723
Acceso en línea:
http://hdl.handle.net/11407/5723
Palabra clave:
Financial indicators
Insolvency
Logit models
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_1752f8af9e513d45d6fc547ff82cce6b
oai_identifier_str oai:repository.udem.edu.co:11407/5723
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
title Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
spellingShingle Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
Financial indicators
Insolvency
Logit models
title_short Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
title_full Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
title_fullStr Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
title_full_unstemmed Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
title_sort Modeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]
dc.subject.none.fl_str_mv Financial indicators
Insolvency
Logit models
topic Financial indicators
Insolvency
Logit models
description This article shows the prediction of the level of insolvency in companies that are not listed on the stock exchange belonging to the health sector for one and two years in advance, using the multiple logistic regression analysis based on indicators of liquidity, indebtedness, financial structure and pro_tability. The period 2010@@@2013 is taken as a reference for a sample of 3,930 companies categorized by size (large, medium, small and micro), and classified by their level of high, medium and low insolvency risk. The success results of the models are between 70% and 80% for each of the years, validating the results obtained throughout the study. © 2019, Universidad Pablo de Olavide.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:46Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:46Z
dc.date.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1886516X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5723
identifier_str_mv 1886516X
url http://hdl.handle.net/11407/5723
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077237101&partnerID=40&md5=f211ea890034fc8bfb1d98506ef8bcd2
dc.relation.citationvolume.none.fl_str_mv 26
dc.relation.citationstartpage.none.fl_str_mv 128
dc.relation.citationendpage.none.fl_str_mv 145
dc.relation.references.none.fl_str_mv Alaka, H., Oyedele, L., Owolabi, H., Kumar, V., Ajayi, S., Akinade, O., Bilal, M., Systematic Review of Bankruptcy Prediction Models: Towards a Framework for Tool Selection (2018) Expert Systems with Applications, 94, pp. 164-184
Altman, E., Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy (1968) The Journal of Finance, 23 (4), pp. 589-609
Altman, E., (1981) Financial Handbook, , New York: John Wiley & Sons
Appiah, K., Chizema, A., Arthur, J., Predicting corporate failure: A systematic literature review of methodological issues (2015) International Journal of Law and Management, 57 (5), pp. 461-485
Aziz, M., Dar, H., Predicting corporate bankruptcy: Where we stand? (2006) Corporate Governance: The International Journal of Business in Society, 6 (1), pp. 18-33
Beaver, W.H., Financial Ratios as Predictors of Failure (1966) Journal of Accounting Research, 4 (3), pp. 71-111
Collins, R., Green, R., Statistical methods for bankruptcy forecasting (1982) Journal of Economics and Business, 34 (4), pp. 349-354
De Llano, P., Piñeiro, C., Rodriguez, M., Business failure prediction. A contribution to the synthesis of a theory, through comparative analysis of different prediction techniques (2016) Estudios de Economía, 43 (2), pp. 163-198
Fitzpatrick, F., A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firm (1932) Certified Public Accountant, 6, pp. 727-731
Korol, T., Early warning models against bankruptcy risk for Central European and Latin American enterprises (2013) Economic Modelling, 31, pp. 22-30
Laffarga, J., Martín, J., Vázquez, M., El análisis de la solvencia de las instituciones bancarias: Propuesta de una metodología y aplicaciones a la Banca española (1985) ESIC-Market, 48, pp. 51-73
Lennox, C., Identifying failing companies: A re-evaluation of the logit, probit and DA approaches (1999) Journal of Economics and Business, 51 (4), pp. 347-364
Lincoln, M., An empirical study of the usefulness of accounting ratios to describe levels of insolvency risk (1984) Journal of Banking & Finance, 8 (2), pp. 321-340
McDonald, B., Morris, M., The statistical validity of the ratio method in financial analysis: An empirical examination (1984) Journal of Business Finance & Accounting, 11 (1), pp. 89-97
Mures, M., García, A., Vallejo, M., Análisis del fracaso empresarial por sectores: Factores diferenciadores (2012) Pecunia, pp. 53-83. , Monográfico 2010
Ohlson, J., Financial Ratios and the Probabilistic Prediction of Bankruptcy (1980) Journal of Accounting Research, 18 (1), pp. 109-131
Pereira, J., Crespo, M., Sáez, J., Modelos de Previsão do Fracasso Empresarial: Aspectos a considerar (2007) Revista de Estudos Politécnicos, 4 (7), pp. 111-118. , (en portugués)
Pérez, C., Santín, D., (2007) Minería de datos. Técnicas y herramientas, , Madrid: Paraninfo
Platt, H., Platt, M., Predicting corporate financial distress: Reflections on choice-based sample bias (2002) Journal of Economics and Finance, 26 (2), pp. 184-199
Premachandra, I., Bhabra, G., Sueyoshi, T., DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique (2009) European Journal of Operational Research, 193 (2), pp. 412-424
Ravi, P., Ravi, V., Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review (2007) European Journal of Operational Research, 180 (1), pp. 1-28
Rodríguez, C., Maté, M., López, F., El contagio en el fracaso empresarial como consecuencia de la proximidad geográfica: Un análisis con los estadísticos join-count aplicado al sector servicios (2017) Revista de Métodos Cuantitativos para la Economía y la Empresa, 23, pp. 75-95
Sun, J., Li, H., Huang, Q., He, K., Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches (2014) Knowledge-Based Systems, 57, pp. 41-56
Tam, K., Kiang, M., Predicting bank failures: A neural network approach (1990) Applied Artificial Intelligence, 4 (4), pp. 265-282
Tascón, M., Castaño, F., Variables y modelos para la identificación y predicción del fracaso empresarial: Revisión de la investigación empírica reciente (2012) Revista de Contabilidad, 15 (1), pp. 7-58
Turetsky, H., McEwen, R., An empirical investigation of firm longevity: A model of the ex ante predictors of financial distress (2001) Review of Quantitative Finance and Accounting, 16 (4), pp. 323-343
Zmijewski, M., Methodological Issues Related to the Estimation of Financial Distress Prediction Models (1984) Journal of Accounting Research, 22, pp. 59-82
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Universidad Pablo de Olavide
dc.publisher.program.none.fl_str_mv Administración de Empresas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Económicas y Administrativas
publisher.none.fl_str_mv Universidad Pablo de Olavide
dc.source.none.fl_str_mv Revista de Metodos Cuantitativos para la Economia y la Empresa
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159260866576384
spelling 20182020-04-29T14:53:46Z2020-04-29T14:53:46Z1886516Xhttp://hdl.handle.net/11407/5723This article shows the prediction of the level of insolvency in companies that are not listed on the stock exchange belonging to the health sector for one and two years in advance, using the multiple logistic regression analysis based on indicators of liquidity, indebtedness, financial structure and pro_tability. The period 2010@@@2013 is taken as a reference for a sample of 3,930 companies categorized by size (large, medium, small and micro), and classified by their level of high, medium and low insolvency risk. The success results of the models are between 70% and 80% for each of the years, validating the results obtained throughout the study. © 2019, Universidad Pablo de Olavide.spaUniversidad Pablo de OlavideAdministración de EmpresasFacultad de Ciencias Económicas y Administrativashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077237101&partnerID=40&md5=f211ea890034fc8bfb1d98506ef8bcd226128145Alaka, H., Oyedele, L., Owolabi, H., Kumar, V., Ajayi, S., Akinade, O., Bilal, M., Systematic Review of Bankruptcy Prediction Models: Towards a Framework for Tool Selection (2018) Expert Systems with Applications, 94, pp. 164-184Altman, E., Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy (1968) The Journal of Finance, 23 (4), pp. 589-609Altman, E., (1981) Financial Handbook, , New York: John Wiley & SonsAppiah, K., Chizema, A., Arthur, J., Predicting corporate failure: A systematic literature review of methodological issues (2015) International Journal of Law and Management, 57 (5), pp. 461-485Aziz, M., Dar, H., Predicting corporate bankruptcy: Where we stand? (2006) Corporate Governance: The International Journal of Business in Society, 6 (1), pp. 18-33Beaver, W.H., Financial Ratios as Predictors of Failure (1966) Journal of Accounting Research, 4 (3), pp. 71-111Collins, R., Green, R., Statistical methods for bankruptcy forecasting (1982) Journal of Economics and Business, 34 (4), pp. 349-354De Llano, P., Piñeiro, C., Rodriguez, M., Business failure prediction. A contribution to the synthesis of a theory, through comparative analysis of different prediction techniques (2016) Estudios de Economía, 43 (2), pp. 163-198Fitzpatrick, F., A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firm (1932) Certified Public Accountant, 6, pp. 727-731Korol, T., Early warning models against bankruptcy risk for Central European and Latin American enterprises (2013) Economic Modelling, 31, pp. 22-30Laffarga, J., Martín, J., Vázquez, M., El análisis de la solvencia de las instituciones bancarias: Propuesta de una metodología y aplicaciones a la Banca española (1985) ESIC-Market, 48, pp. 51-73Lennox, C., Identifying failing companies: A re-evaluation of the logit, probit and DA approaches (1999) Journal of Economics and Business, 51 (4), pp. 347-364Lincoln, M., An empirical study of the usefulness of accounting ratios to describe levels of insolvency risk (1984) Journal of Banking & Finance, 8 (2), pp. 321-340McDonald, B., Morris, M., The statistical validity of the ratio method in financial analysis: An empirical examination (1984) Journal of Business Finance & Accounting, 11 (1), pp. 89-97Mures, M., García, A., Vallejo, M., Análisis del fracaso empresarial por sectores: Factores diferenciadores (2012) Pecunia, pp. 53-83. , Monográfico 2010Ohlson, J., Financial Ratios and the Probabilistic Prediction of Bankruptcy (1980) Journal of Accounting Research, 18 (1), pp. 109-131Pereira, J., Crespo, M., Sáez, J., Modelos de Previsão do Fracasso Empresarial: Aspectos a considerar (2007) Revista de Estudos Politécnicos, 4 (7), pp. 111-118. , (en portugués)Pérez, C., Santín, D., (2007) Minería de datos. Técnicas y herramientas, , Madrid: ParaninfoPlatt, H., Platt, M., Predicting corporate financial distress: Reflections on choice-based sample bias (2002) Journal of Economics and Finance, 26 (2), pp. 184-199Premachandra, I., Bhabra, G., Sueyoshi, T., DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique (2009) European Journal of Operational Research, 193 (2), pp. 412-424Ravi, P., Ravi, V., Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review (2007) European Journal of Operational Research, 180 (1), pp. 1-28Rodríguez, C., Maté, M., López, F., El contagio en el fracaso empresarial como consecuencia de la proximidad geográfica: Un análisis con los estadísticos join-count aplicado al sector servicios (2017) Revista de Métodos Cuantitativos para la Economía y la Empresa, 23, pp. 75-95Sun, J., Li, H., Huang, Q., He, K., Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches (2014) Knowledge-Based Systems, 57, pp. 41-56Tam, K., Kiang, M., Predicting bank failures: A neural network approach (1990) Applied Artificial Intelligence, 4 (4), pp. 265-282Tascón, M., Castaño, F., Variables y modelos para la identificación y predicción del fracaso empresarial: Revisión de la investigación empírica reciente (2012) Revista de Contabilidad, 15 (1), pp. 7-58Turetsky, H., McEwen, R., An empirical investigation of firm longevity: A model of the ex ante predictors of financial distress (2001) Review of Quantitative Finance and Accounting, 16 (4), pp. 323-343Zmijewski, M., Methodological Issues Related to the Estimation of Financial Distress Prediction Models (1984) Journal of Accounting Research, 22, pp. 59-82Revista de Metodos Cuantitativos para la Economia y la EmpresaFinancial indicatorsInsolvencyLogit modelsModeling of insolvency risk in health sector companies using logit models [Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Támara Ayús, A.L., Departamento de Finanzas, Escuela de Economía y Finanzas Universidad EAFIT, Colombia; Villegas, G.C., Administrativas Universidad de Medellín, Colombia; Leones Castro, M.C., Departamento de Finanzas, Escuela de Economía y Finanzas Universidad EAFIT, Colombia; Salazar Bocanegra, J.A., Departamento de Finanzas, Escuela de Economía y Finanzas Universidad EAFIT, Colombiahttp://purl.org/coar/access_right/c_16ecTámara Ayús A.L.Villegas G.C.Leones Castro M.C.Salazar Bocanegra J.A.11407/5723oai:repository.udem.edu.co:11407/57232020-05-27 19:13:39.955Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co