A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability

In the last years research-based programs relevant to sustainability have been developed. Some technological research programs are focused on the design of systems and processes that can be useful for mitigating greenhouse gas emissions as CO2. To diminish the negative impact caused by CO2 for globa...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4864
Acceso en línea:
http://hdl.handle.net/11407/4864
Palabra clave:
Green reagent
Greenhouse emission
Membrane reactor technology
Simulation
Sustainability
Bioreactors
Carbon dioxide
Carbonation
Environmental technology
Fuel additives
Gas emissions
Global warming
Greenhouse gases
Information systems
Information use
Membrane technology
Environmental sustainability
Green reagent
Greenhouse emissions
Greenhouse gas mitigation
Membrane reactor
Modelling and simulations
Simulation
Technological research projects
Sustainable development
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_15fa5b25ed00fb66addfeda8c461d1b4
oai_identifier_str oai:repository.udem.edu.co:11407/4864
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
title A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
spellingShingle A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
Green reagent
Greenhouse emission
Membrane reactor technology
Simulation
Sustainability
Bioreactors
Carbon dioxide
Carbonation
Environmental technology
Fuel additives
Gas emissions
Global warming
Greenhouse gases
Information systems
Information use
Membrane technology
Environmental sustainability
Green reagent
Greenhouse emissions
Greenhouse gas mitigation
Membrane reactor
Modelling and simulations
Simulation
Technological research projects
Sustainable development
title_short A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
title_full A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
title_fullStr A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
title_full_unstemmed A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
title_sort A software-based predictive model for greenhouse gas mitigation: Towards environmental sustainability
dc.contributor.affiliation.spa.fl_str_mv Moncada, S.V., Universidad de Medellín;Palacio, M.G., Telecommunications Engineering Department;Luna-Delrisco, M., Universidad de Medellín;Orozco, C.A.A., Universidad de Medellín;Jair, J.,Universidad de Medellín;Montealegre, J.J.Q., Telecommunications Engineering Department;Imbachi, J.C., Telecommunications Engineering Department;Diaz-Forero, I., Servicio Nacional de Aprendizaje - SENA
dc.subject.spa.fl_str_mv Green reagent
Greenhouse emission
Membrane reactor technology
Simulation
Sustainability
Bioreactors
Carbon dioxide
Carbonation
Environmental technology
Fuel additives
Gas emissions
Global warming
Greenhouse gases
Information systems
Information use
Membrane technology
Environmental sustainability
Green reagent
Greenhouse emissions
Greenhouse gas mitigation
Membrane reactor
Modelling and simulations
Simulation
Technological research projects
Sustainable development
topic Green reagent
Greenhouse emission
Membrane reactor technology
Simulation
Sustainability
Bioreactors
Carbon dioxide
Carbonation
Environmental technology
Fuel additives
Gas emissions
Global warming
Greenhouse gases
Information systems
Information use
Membrane technology
Environmental sustainability
Green reagent
Greenhouse emissions
Greenhouse gas mitigation
Membrane reactor
Modelling and simulations
Simulation
Technological research projects
Sustainable development
description In the last years research-based programs relevant to sustainability have been developed. Some technological research programs are focused on the design of systems and processes that can be useful for mitigating greenhouse gas emissions as CO2. To diminish the negative impact caused by CO2 for global warming, its chemical transformation in Dimethyl Carbonate is a promising technology. Dimethyl Carbonate is a solvent with low toxicity and due to oxidative capacity can be used as fuel additive. In this work, the membrane reactor technology to improve the Dymethyl Carbonate production is explored from the perspective of modelling and simulation. As a result, a software-based model is implemented, in order to develop and couple different models for describing the membrane reactor. Simulation results showed that the membrane reactor, compared with conventional reactor, increase the reaction conversion and Dymethyl Carbonate production up to 67% and 78%, respectively. Finally, it can be seen that the solution obtained from software-based model allows to conclude that membrane reactor is a promising technology to mitigate CO2 emissions, allowing to achieve environmental sustainability. © 2018 AISTI.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:18Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:18Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.isbn.none.fl_str_mv 9789899843486
dc.identifier.issn.none.fl_str_mv 21660727
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4864
dc.identifier.doi.none.fl_str_mv 10.23919/CISTI.2018.8399195
identifier_str_mv 9789899843486
21660727
10.23919/CISTI.2018.8399195
url http://hdl.handle.net/11407/4864
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049907918&doi=10.23919%2fCISTI.2018.8399195&partnerID=40&md5=b4c8431983c736c8cf64c68fed77547a
dc.relation.citationvolume.spa.fl_str_mv 2018-June
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.ispartofes.spa.fl_str_mv Iberian Conference on Information Systems and Technologies, CISTI
dc.relation.references.spa.fl_str_mv Kates, R.W., Sustainability science (2001) Science, 292, pp. 641-642;Pielke, R.A., Jr., Hurricanes and global warming (2005) Bulletin of the American Meteorological Society, 86, pp. 1571-1575;Program, U.G.C.R., (2009) Global Climate Change Impacts in the United States, , Cambridge University Press;Knutson, T.R., Tropical cyclones and climate change (2010) Nature Geoscience, 3, p. 157;Blasing, T., Recent greenhouse gas concentrations (2016) ESS-DIVE (Environmental System Science Data Infrastructure for A Virtual Ecosystem), , Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States);(2005) Kyoto Protocol, , http://unfccc.int/kyoto_protocol/items/2830.php, U. N. F. C. C. Change;http://unfccc.int/paris_agreement/items/9485.php;(2015) Paris Agreement, , http://bigpicture.unfccc.int/#content-The-paris-agreemen, U. N. F. C. C. Change;Olivier, J., (2017) TRENDS in GLOBAL CO2 and TOTAL GREENHOUSE GAS EMISSIONS;Pridmore, A., (2003) Climate Change, Impacts, Future Scenarios Andthe Role of Transport;Springer, U., The market for tradable GHG permits under the Kyoto Protocol: A survey of model studies (2003) Energy Economics, 25, pp. 527-551. , 2003/09/01/;Chapel, D.G., Recovery of CO2 from flue gases: Commercial trends (1999) Canadian Society of Chemical Engineers Annual Meeting;Zangeneh, F.T., Conversion of carbon dioxide to valuable petrochemicals: An approach to clean development mechanism (2011) Journal of Natural Gas Chemistry, 20, pp. 219-231;Dave, N., CO2 capture by aqueous amines and aqueous ammonia-A Comparison (2009) Energy Procedia, 1, pp. 949-954;Schäffner, B., Organic carbonates as solvents in synthesis and catalysis (2010) Chemical Reviews, 110, pp. 4554-4581;Wen, L.-B., The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission (2010) Applied Energy, 87, pp. 115-121;Tundo, P., (2000) Dimethylcarbonate As A Green Reagent, , ed: ACS Publications;Pacheco, M.A., Marshall, C.L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive (1997) Energy &Fuels, 11, pp. 2-29;Santos, B.A., Review for the direct synthesis of dimethyl carbonate (2014) ChemBioEng Reviews, 1, pp. 214-229;Abanda, F., Mathematical modelling of embodied energy, greenhouse gases, waste, time-cost parameters of building projects: A review (2013) Building and Environment, 59, pp. 23-37;Mason, I., Mathematical modelling of the composting process: A review (2006) Waste Management, 26, pp. 3-21;Gertsev, V.I., Gertseva, V., Classification of mathematical models in ecology (2004) Ecological Modelling, 178, pp. 329-334;Baldwin, R.L., (1995) Modeling Ruminant Digestion and Metabolism, , Springer Science &Business Media;Thornley, J., France, J., (1984) Role of Modeling in Animal Production Research and Extension Work;Zhang, H.-Y., Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor (2006) Journal of Membrane Science, 279, pp. 301-310;Middleton, R.S., A dynamic model for optimally phasing in CO2 capture and storage infrastructure (2012) Environmental Modelling &Software, 37, pp. 193-205;Mirzaesmaeeli, H., A multi-period optimization model for energy planning with CO2 emission consideration (2010) Journal of Environmental Management, 91, pp. 1063-1070;Fan, Y., Analyzing impact factors of CO2 emissions using the STIRPAT model (2006) Environmental Impact Assessment Review, 26, pp. 377-395;Nordsveen, M., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: Theory and verification (2003) Corrosion, 59, pp. 443-456;Serna-Guerrero, R., Modeling CO2 adsorption on aminefunctionalized mesoporous silica: 1. A semi-empirical equilibrium model (2010) Chemical Engineering Journal, 161, pp. 173-181;Dixit, M.K., Identification of parameters for embodied energy measurement: A literature review (2010) Energy and Buildings, 42, pp. 1238-1247;Chang, Y., The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model (2010) Energy Policy, 38, pp. 6597-6603;Joel, A.S., Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations (2015) Applied Thermal Engineering, 74, pp. 47-53;Steeneveldt, R., CO2 capture and storage: Closing the knowing-doing gap (2006) Chemical Engineering Research and Design, 84, pp. 739-763;Wang, M., Post-combustion CO2 capture with chemical absorption: A state-of-The-art review (2011) Chemical Engineering Research and Design, 89, pp. 1609-1624;Kosinov, N., Recent developments in zeolite membranes for gas separation (2016) Journal of Membrane Science, 499, pp. 65-79;Rohde, M., Fischer-Tropsch synthesis with in situ H2O removal-Directions of membrane development (2008) Microporous and Mesoporous Materials, 115, pp. 123-136;Caro, J., Noack, M., Zeolite membranes-recent developments and progress (2008) Microporous and Mesoporous Materials, 115, pp. 215-233;Li, C.-F., Zhong, S.-H., Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst (2003) Catalysis Today, 82, pp. 83-90;Van De Graaf, J.M., Modeling permeation of binary mixtures through zeolite membranes (1999) AIChE Journal, 45, pp. 497-511;Myers, A., Prausnitz, J.M., Thermodynamics of mixedgas adsorption (1965) AIChE Journal, 11, pp. 121-127;Orrego-Romero, A.F., Pelletization of catalysts supported on activated carbon. A Case Study: Clean synthesis of dimethyl carbonate from methanol and CO2 (2016) Revista Facultad de Ingeniería Universidad de Antioquia, pp. 38-47;Bustamante, F., Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol (2012) Industrial &Engineering Chemistry Research, 51, pp. 8945-8956
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv IEEE Computer Society
dc.publisher.program.spa.fl_str_mv Ingeniería en Energía;Ingeniería de Sistemas;Ingeniería de Telecomunicaciones
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159115396579328
spelling 2018-10-31T13:44:18Z2018-10-31T13:44:18Z2018978989984348621660727http://hdl.handle.net/11407/486410.23919/CISTI.2018.8399195In the last years research-based programs relevant to sustainability have been developed. Some technological research programs are focused on the design of systems and processes that can be useful for mitigating greenhouse gas emissions as CO2. To diminish the negative impact caused by CO2 for global warming, its chemical transformation in Dimethyl Carbonate is a promising technology. Dimethyl Carbonate is a solvent with low toxicity and due to oxidative capacity can be used as fuel additive. In this work, the membrane reactor technology to improve the Dymethyl Carbonate production is explored from the perspective of modelling and simulation. As a result, a software-based model is implemented, in order to develop and couple different models for describing the membrane reactor. Simulation results showed that the membrane reactor, compared with conventional reactor, increase the reaction conversion and Dymethyl Carbonate production up to 67% and 78%, respectively. Finally, it can be seen that the solution obtained from software-based model allows to conclude that membrane reactor is a promising technology to mitigate CO2 emissions, allowing to achieve environmental sustainability. © 2018 AISTI.engIEEE Computer SocietyIngeniería en Energía;Ingeniería de Sistemas;Ingeniería de TelecomunicacionesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049907918&doi=10.23919%2fCISTI.2018.8399195&partnerID=40&md5=b4c8431983c736c8cf64c68fed77547a2018-June16Iberian Conference on Information Systems and Technologies, CISTIKates, R.W., Sustainability science (2001) Science, 292, pp. 641-642;Pielke, R.A., Jr., Hurricanes and global warming (2005) Bulletin of the American Meteorological Society, 86, pp. 1571-1575;Program, U.G.C.R., (2009) Global Climate Change Impacts in the United States, , Cambridge University Press;Knutson, T.R., Tropical cyclones and climate change (2010) Nature Geoscience, 3, p. 157;Blasing, T., Recent greenhouse gas concentrations (2016) ESS-DIVE (Environmental System Science Data Infrastructure for A Virtual Ecosystem), , Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States);(2005) Kyoto Protocol, , http://unfccc.int/kyoto_protocol/items/2830.php, U. N. F. C. C. Change;http://unfccc.int/paris_agreement/items/9485.php;(2015) Paris Agreement, , http://bigpicture.unfccc.int/#content-The-paris-agreemen, U. N. F. C. C. Change;Olivier, J., (2017) TRENDS in GLOBAL CO2 and TOTAL GREENHOUSE GAS EMISSIONS;Pridmore, A., (2003) Climate Change, Impacts, Future Scenarios Andthe Role of Transport;Springer, U., The market for tradable GHG permits under the Kyoto Protocol: A survey of model studies (2003) Energy Economics, 25, pp. 527-551. , 2003/09/01/;Chapel, D.G., Recovery of CO2 from flue gases: Commercial trends (1999) Canadian Society of Chemical Engineers Annual Meeting;Zangeneh, F.T., Conversion of carbon dioxide to valuable petrochemicals: An approach to clean development mechanism (2011) Journal of Natural Gas Chemistry, 20, pp. 219-231;Dave, N., CO2 capture by aqueous amines and aqueous ammonia-A Comparison (2009) Energy Procedia, 1, pp. 949-954;Schäffner, B., Organic carbonates as solvents in synthesis and catalysis (2010) Chemical Reviews, 110, pp. 4554-4581;Wen, L.-B., The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission (2010) Applied Energy, 87, pp. 115-121;Tundo, P., (2000) Dimethylcarbonate As A Green Reagent, , ed: ACS Publications;Pacheco, M.A., Marshall, C.L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive (1997) Energy &Fuels, 11, pp. 2-29;Santos, B.A., Review for the direct synthesis of dimethyl carbonate (2014) ChemBioEng Reviews, 1, pp. 214-229;Abanda, F., Mathematical modelling of embodied energy, greenhouse gases, waste, time-cost parameters of building projects: A review (2013) Building and Environment, 59, pp. 23-37;Mason, I., Mathematical modelling of the composting process: A review (2006) Waste Management, 26, pp. 3-21;Gertsev, V.I., Gertseva, V., Classification of mathematical models in ecology (2004) Ecological Modelling, 178, pp. 329-334;Baldwin, R.L., (1995) Modeling Ruminant Digestion and Metabolism, , Springer Science &Business Media;Thornley, J., France, J., (1984) Role of Modeling in Animal Production Research and Extension Work;Zhang, H.-Y., Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor (2006) Journal of Membrane Science, 279, pp. 301-310;Middleton, R.S., A dynamic model for optimally phasing in CO2 capture and storage infrastructure (2012) Environmental Modelling &Software, 37, pp. 193-205;Mirzaesmaeeli, H., A multi-period optimization model for energy planning with CO2 emission consideration (2010) Journal of Environmental Management, 91, pp. 1063-1070;Fan, Y., Analyzing impact factors of CO2 emissions using the STIRPAT model (2006) Environmental Impact Assessment Review, 26, pp. 377-395;Nordsveen, M., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: Theory and verification (2003) Corrosion, 59, pp. 443-456;Serna-Guerrero, R., Modeling CO2 adsorption on aminefunctionalized mesoporous silica: 1. A semi-empirical equilibrium model (2010) Chemical Engineering Journal, 161, pp. 173-181;Dixit, M.K., Identification of parameters for embodied energy measurement: A literature review (2010) Energy and Buildings, 42, pp. 1238-1247;Chang, Y., The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model (2010) Energy Policy, 38, pp. 6597-6603;Joel, A.S., Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations (2015) Applied Thermal Engineering, 74, pp. 47-53;Steeneveldt, R., CO2 capture and storage: Closing the knowing-doing gap (2006) Chemical Engineering Research and Design, 84, pp. 739-763;Wang, M., Post-combustion CO2 capture with chemical absorption: A state-of-The-art review (2011) Chemical Engineering Research and Design, 89, pp. 1609-1624;Kosinov, N., Recent developments in zeolite membranes for gas separation (2016) Journal of Membrane Science, 499, pp. 65-79;Rohde, M., Fischer-Tropsch synthesis with in situ H2O removal-Directions of membrane development (2008) Microporous and Mesoporous Materials, 115, pp. 123-136;Caro, J., Noack, M., Zeolite membranes-recent developments and progress (2008) Microporous and Mesoporous Materials, 115, pp. 215-233;Li, C.-F., Zhong, S.-H., Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst (2003) Catalysis Today, 82, pp. 83-90;Van De Graaf, J.M., Modeling permeation of binary mixtures through zeolite membranes (1999) AIChE Journal, 45, pp. 497-511;Myers, A., Prausnitz, J.M., Thermodynamics of mixedgas adsorption (1965) AIChE Journal, 11, pp. 121-127;Orrego-Romero, A.F., Pelletization of catalysts supported on activated carbon. A Case Study: Clean synthesis of dimethyl carbonate from methanol and CO2 (2016) Revista Facultad de Ingeniería Universidad de Antioquia, pp. 38-47;Bustamante, F., Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol (2012) Industrial &Engineering Chemistry Research, 51, pp. 8945-8956ScopusGreen reagentGreenhouse emissionMembrane reactor technologySimulationSustainabilityBioreactorsCarbon dioxideCarbonationEnvironmental technologyFuel additivesGas emissionsGlobal warmingGreenhouse gasesInformation systemsInformation useMembrane technologyEnvironmental sustainabilityGreen reagentGreenhouse emissionsGreenhouse gas mitigationMembrane reactorModelling and simulationsSimulationTechnological research projectsSustainable developmentA software-based predictive model for greenhouse gas mitigation: Towards environmental sustainabilityConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fMoncada, S.V., Universidad de Medellín;Palacio, M.G., Telecommunications Engineering Department;Luna-Delrisco, M., Universidad de Medellín;Orozco, C.A.A., Universidad de Medellín;Jair, J.,Universidad de Medellín;Montealegre, J.J.Q., Telecommunications Engineering Department;Imbachi, J.C., Telecommunications Engineering Department;Diaz-Forero, I., Servicio Nacional de Aprendizaje - SENAMoncada S.V.Palacio M.G.Luna-Delrisco M.Orozco C.A.A.Jair J.Montealegre J.J.Q.Imbachi J.C.Diaz-Forero I.http://purl.org/coar/access_right/c_16ec11407/4864oai:repository.udem.edu.co:11407/48642020-05-27 15:54:23.081Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co