Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared t...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5787
- Acceso en línea:
- http://hdl.handle.net/11407/5787
- Palabra clave:
- Ball size distribution
Grinding
Size distribution model
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_157d434ae153d26d486bbbea0684980c |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5787 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
title |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
spellingShingle |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] Ball size distribution Grinding Size distribution model |
title_short |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
title_full |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
title_fullStr |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
title_full_unstemmed |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
title_sort |
Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec] |
dc.subject.none.fl_str_mv |
Ball size distribution Grinding Size distribution model |
topic |
Ball size distribution Grinding Size distribution model |
description |
The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared to the balls retained at the beginning of the process, and additionally, they were compared to the results obtained by the Swebrec adjusted distribution model. In both cases, the experimental data have had a good fit with this model. This practice is important in order to establish the best ball charge at the beginning of the operation and the ball recharge in the steady state. © The author; licensee Universidad Nacional de Colombia. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:00Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:00Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
127353 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5787 |
dc.identifier.doi.none.fl_str_mv |
10.15446/dyna.v86n209.73970 |
identifier_str_mv |
127353 10.15446/dyna.v86n209.73970 |
url |
http://hdl.handle.net/11407/5787 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074398270&doi=10.15446%2fdyna.v86n209.73970&partnerID=40&md5=55a789e74595a3ee1328edb00f7f0696 |
dc.relation.citationvolume.none.fl_str_mv |
86 |
dc.relation.citationissue.none.fl_str_mv |
209 |
dc.relation.references.none.fl_str_mv |
Zhang, J., Bai, Y., Dong, H., Wu, Q., Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill (2014) Advanced Powder Technology, 25 (3), pp. 983-990 Razavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technology, 284, pp. 149-158 Kolacz, J., Measurement system of the mill charge in grinding ball mill circuits (1997) Minerals Engineering, 10 (12), pp. 1329-1338 Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills II. General solution (1987) Powder Technology, 52 (3), pp. 267-277 Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate (1986) Powder Technology, 47 (1), pp. 87-96 Concha, F., Magne, L., Austin, L.G., Optimization of the makeup ball charge in a grinding mill (1992) International Journal of Minerals Processing, 34 (3), pp. 231-241 Herbst, J.A., Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models (1981) International Journal of Minerals Processing, 7 (1), pp. 1-31 Chimwani, N., Mulenga, F.K., Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product (2015) Powder Technology, 284, pp. 12-18 Austin, L.G., Klimpe, R.R., Luckie, P., (1984) Process Engineering of Size Reduction: Ball Milling, , New York: SME/AIME Katubilwa, F.M., Moys, M.H., Effect of ball size distribution on milling rate (2009) Minerals Engineering, 22 (15), pp. 1283-1288 Bwalya, M., Moys, M.H., Finnie, G.J., Mulenga, F.K., Exploring ball size distribution in coal grinding mills (2014) Powder Technology, 257, pp. 68-73 Yildirim, K., Cho, H., Austin, L.G., The modeling of dry grinding of quartz in tumbling media mills (1999) Powder Technology, 105 (1-3), pp. 210-221 Rivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J., Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool (2014) Powder Technology, 268, pp. 373-376 Fruhstorfer, J., Schafföner, S., Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution (2014) Ceramics International, 40, pp. 15293-15302. , (9 Part B) Shin, H., Lee, S., Jung, H.S., Kim, J.-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill (2013) Ceramics International, 39 (8), pp. 8963-8968 Djamarani, K.M., Clark, I.M., Characterization of particle size based on fine and coarse fractions (1997) Powder Technology, 93 (2), pp. 101-108 Rosin, P., Rammler, E., The laws governing the fineness of powdered coal (1933) J. Inst. Fuel, 7, pp. 29-36 Gates, A.O., Kick vs. Rittinger: An experimental investigation in rock crushing performed at Purdue University (1915) Trans AIME, 52, pp. 875-909 Schumann, J., Principles of comminution I: Size distribution and surface calculations (1940) Trans. AIME, Tech. Publ., 1189 Macías-García, A., Cuerda-Correa, E.M., Díaz-Díez, M.A., Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork (2004) Materials Characterization, 52 (2), pp. 159-164 Ouchterlony, F., The Swebrec function: Linking fragmentation by blasting and crushing (2005) Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114 (1), pp. 29-44 Ouchterlony, F., Olsson, M., Nyberg, U., Andersson, P., Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function (2006) International Symposium of Rock Fragmentation by Blasting Osorio, A.M., Menéndez-Aguado, J.M., Bustamante, O., Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function (2014) Powder Technology, 258, pp. 206-208 Menéndez-Aguado, J.M., Peña-Carpio, E., Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function (2015) Journal of Soils and Sediments, 15 (9), pp. 2004-2011 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Universidad Nacional de Colombia |
dc.source.none.fl_str_mv |
DYNA (Colombia) |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159254942121984 |
spelling |
20192020-04-29T14:54:00Z2020-04-29T14:54:00Z127353http://hdl.handle.net/11407/578710.15446/dyna.v86n209.73970The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared to the balls retained at the beginning of the process, and additionally, they were compared to the results obtained by the Swebrec adjusted distribution model. In both cases, the experimental data have had a good fit with this model. This practice is important in order to establish the best ball charge at the beginning of the operation and the ball recharge in the steady state. © The author; licensee Universidad Nacional de Colombia.engUniversidad Nacional de ColombiaIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074398270&doi=10.15446%2fdyna.v86n209.73970&partnerID=40&md5=55a789e74595a3ee1328edb00f7f069686209Zhang, J., Bai, Y., Dong, H., Wu, Q., Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill (2014) Advanced Powder Technology, 25 (3), pp. 983-990Razavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technology, 284, pp. 149-158Kolacz, J., Measurement system of the mill charge in grinding ball mill circuits (1997) Minerals Engineering, 10 (12), pp. 1329-1338Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills II. General solution (1987) Powder Technology, 52 (3), pp. 267-277Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate (1986) Powder Technology, 47 (1), pp. 87-96Concha, F., Magne, L., Austin, L.G., Optimization of the makeup ball charge in a grinding mill (1992) International Journal of Minerals Processing, 34 (3), pp. 231-241Herbst, J.A., Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models (1981) International Journal of Minerals Processing, 7 (1), pp. 1-31Chimwani, N., Mulenga, F.K., Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product (2015) Powder Technology, 284, pp. 12-18Austin, L.G., Klimpe, R.R., Luckie, P., (1984) Process Engineering of Size Reduction: Ball Milling, , New York: SME/AIMEKatubilwa, F.M., Moys, M.H., Effect of ball size distribution on milling rate (2009) Minerals Engineering, 22 (15), pp. 1283-1288Bwalya, M., Moys, M.H., Finnie, G.J., Mulenga, F.K., Exploring ball size distribution in coal grinding mills (2014) Powder Technology, 257, pp. 68-73Yildirim, K., Cho, H., Austin, L.G., The modeling of dry grinding of quartz in tumbling media mills (1999) Powder Technology, 105 (1-3), pp. 210-221Rivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J., Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool (2014) Powder Technology, 268, pp. 373-376Fruhstorfer, J., Schafföner, S., Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution (2014) Ceramics International, 40, pp. 15293-15302. , (9 Part B)Shin, H., Lee, S., Jung, H.S., Kim, J.-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill (2013) Ceramics International, 39 (8), pp. 8963-8968Djamarani, K.M., Clark, I.M., Characterization of particle size based on fine and coarse fractions (1997) Powder Technology, 93 (2), pp. 101-108Rosin, P., Rammler, E., The laws governing the fineness of powdered coal (1933) J. Inst. Fuel, 7, pp. 29-36Gates, A.O., Kick vs. Rittinger: An experimental investigation in rock crushing performed at Purdue University (1915) Trans AIME, 52, pp. 875-909Schumann, J., Principles of comminution I: Size distribution and surface calculations (1940) Trans. AIME, Tech. Publ., 1189Macías-García, A., Cuerda-Correa, E.M., Díaz-Díez, M.A., Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork (2004) Materials Characterization, 52 (2), pp. 159-164Ouchterlony, F., The Swebrec function: Linking fragmentation by blasting and crushing (2005) Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114 (1), pp. 29-44Ouchterlony, F., Olsson, M., Nyberg, U., Andersson, P., Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function (2006) International Symposium of Rock Fragmentation by BlastingOsorio, A.M., Menéndez-Aguado, J.M., Bustamante, O., Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function (2014) Powder Technology, 258, pp. 206-208Menéndez-Aguado, J.M., Peña-Carpio, E., Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function (2015) Journal of Soils and Sediments, 15 (9), pp. 2004-2011DYNA (Colombia)Ball size distributionGrindingSize distribution modelComparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rivera-Madrid, I.E., Institución Universitaria Pascual Bravo, Medellín, Colombia; Rincón-Fulla, M., Institución Universitaria Pascual Bravo, Medellín, Colombia, Escuela de física, Universidad Nacional de Colombia, sede Medellín, Colombia; Osorio-Correa, A.M., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Chica-Osorio, L.M., Grupo GICI, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia; Bustamante-Rúa, M.O., CIMEX, Facultad de Minas, Universidad Nacional de Colombia, sede Medellín, Colombia; Menéndez-Aguado, J.M., Escuela Politécnica de Mieres, Universidad de Oviedo, Oviedo, Spainhttp://purl.org/coar/access_right/c_16ecRivera-Madrid I.E.Rincón-Fulla M.Osorio-Correa A.M.Chica-Osorio L.M.Bustamante-Rúa M.O.Menéndez-Aguado J.M.11407/5787oai:repository.udem.edu.co:11407/57872020-05-27 19:11:43.258Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |