Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]

The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared t...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5787
Acceso en línea:
http://hdl.handle.net/11407/5787
Palabra clave:
Ball size distribution
Grinding
Size distribution model
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_157d434ae153d26d486bbbea0684980c
oai_identifier_str oai:repository.udem.edu.co:11407/5787
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
title Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
spellingShingle Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
Ball size distribution
Grinding
Size distribution model
title_short Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
title_full Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
title_fullStr Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
title_full_unstemmed Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
title_sort Comparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
dc.subject.none.fl_str_mv Ball size distribution
Grinding
Size distribution model
topic Ball size distribution
Grinding
Size distribution model
description The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared to the balls retained at the beginning of the process, and additionally, they were compared to the results obtained by the Swebrec adjusted distribution model. In both cases, the experimental data have had a good fit with this model. This practice is important in order to establish the best ball charge at the beginning of the operation and the ball recharge in the steady state. © The author; licensee Universidad Nacional de Colombia.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:00Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:00Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 127353
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5787
dc.identifier.doi.none.fl_str_mv 10.15446/dyna.v86n209.73970
identifier_str_mv 127353
10.15446/dyna.v86n209.73970
url http://hdl.handle.net/11407/5787
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074398270&doi=10.15446%2fdyna.v86n209.73970&partnerID=40&md5=55a789e74595a3ee1328edb00f7f0696
dc.relation.citationvolume.none.fl_str_mv 86
dc.relation.citationissue.none.fl_str_mv 209
dc.relation.references.none.fl_str_mv Zhang, J., Bai, Y., Dong, H., Wu, Q., Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill (2014) Advanced Powder Technology, 25 (3), pp. 983-990
Razavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technology, 284, pp. 149-158
Kolacz, J., Measurement system of the mill charge in grinding ball mill circuits (1997) Minerals Engineering, 10 (12), pp. 1329-1338
Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills II. General solution (1987) Powder Technology, 52 (3), pp. 267-277
Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate (1986) Powder Technology, 47 (1), pp. 87-96
Concha, F., Magne, L., Austin, L.G., Optimization of the makeup ball charge in a grinding mill (1992) International Journal of Minerals Processing, 34 (3), pp. 231-241
Herbst, J.A., Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models (1981) International Journal of Minerals Processing, 7 (1), pp. 1-31
Chimwani, N., Mulenga, F.K., Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product (2015) Powder Technology, 284, pp. 12-18
Austin, L.G., Klimpe, R.R., Luckie, P., (1984) Process Engineering of Size Reduction: Ball Milling, , New York: SME/AIME
Katubilwa, F.M., Moys, M.H., Effect of ball size distribution on milling rate (2009) Minerals Engineering, 22 (15), pp. 1283-1288
Bwalya, M., Moys, M.H., Finnie, G.J., Mulenga, F.K., Exploring ball size distribution in coal grinding mills (2014) Powder Technology, 257, pp. 68-73
Yildirim, K., Cho, H., Austin, L.G., The modeling of dry grinding of quartz in tumbling media mills (1999) Powder Technology, 105 (1-3), pp. 210-221
Rivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J., Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool (2014) Powder Technology, 268, pp. 373-376
Fruhstorfer, J., Schafföner, S., Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution (2014) Ceramics International, 40, pp. 15293-15302. , (9 Part B)
Shin, H., Lee, S., Jung, H.S., Kim, J.-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill (2013) Ceramics International, 39 (8), pp. 8963-8968
Djamarani, K.M., Clark, I.M., Characterization of particle size based on fine and coarse fractions (1997) Powder Technology, 93 (2), pp. 101-108
Rosin, P., Rammler, E., The laws governing the fineness of powdered coal (1933) J. Inst. Fuel, 7, pp. 29-36
Gates, A.O., Kick vs. Rittinger: An experimental investigation in rock crushing performed at Purdue University (1915) Trans AIME, 52, pp. 875-909
Schumann, J., Principles of comminution I: Size distribution and surface calculations (1940) Trans. AIME, Tech. Publ., 1189
Macías-García, A., Cuerda-Correa, E.M., Díaz-Díez, M.A., Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork (2004) Materials Characterization, 52 (2), pp. 159-164
Ouchterlony, F., The Swebrec function: Linking fragmentation by blasting and crushing (2005) Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114 (1), pp. 29-44
Ouchterlony, F., Olsson, M., Nyberg, U., Andersson, P., Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function (2006) International Symposium of Rock Fragmentation by Blasting
Osorio, A.M., Menéndez-Aguado, J.M., Bustamante, O., Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function (2014) Powder Technology, 258, pp. 206-208
Menéndez-Aguado, J.M., Peña-Carpio, E., Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function (2015) Journal of Soils and Sediments, 15 (9), pp. 2004-2011
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Universidad Nacional de Colombia
dc.source.none.fl_str_mv DYNA (Colombia)
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159254942121984
spelling 20192020-04-29T14:54:00Z2020-04-29T14:54:00Z127353http://hdl.handle.net/11407/578710.15446/dyna.v86n209.73970The results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared to the balls retained at the beginning of the process, and additionally, they were compared to the results obtained by the Swebrec adjusted distribution model. In both cases, the experimental data have had a good fit with this model. This practice is important in order to establish the best ball charge at the beginning of the operation and the ball recharge in the steady state. © The author; licensee Universidad Nacional de Colombia.engUniversidad Nacional de ColombiaIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074398270&doi=10.15446%2fdyna.v86n209.73970&partnerID=40&md5=55a789e74595a3ee1328edb00f7f069686209Zhang, J., Bai, Y., Dong, H., Wu, Q., Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill (2014) Advanced Powder Technology, 25 (3), pp. 983-990Razavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technology, 284, pp. 149-158Kolacz, J., Measurement system of the mill charge in grinding ball mill circuits (1997) Minerals Engineering, 10 (12), pp. 1329-1338Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills II. General solution (1987) Powder Technology, 52 (3), pp. 267-277Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate (1986) Powder Technology, 47 (1), pp. 87-96Concha, F., Magne, L., Austin, L.G., Optimization of the makeup ball charge in a grinding mill (1992) International Journal of Minerals Processing, 34 (3), pp. 231-241Herbst, J.A., Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models (1981) International Journal of Minerals Processing, 7 (1), pp. 1-31Chimwani, N., Mulenga, F.K., Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product (2015) Powder Technology, 284, pp. 12-18Austin, L.G., Klimpe, R.R., Luckie, P., (1984) Process Engineering of Size Reduction: Ball Milling, , New York: SME/AIMEKatubilwa, F.M., Moys, M.H., Effect of ball size distribution on milling rate (2009) Minerals Engineering, 22 (15), pp. 1283-1288Bwalya, M., Moys, M.H., Finnie, G.J., Mulenga, F.K., Exploring ball size distribution in coal grinding mills (2014) Powder Technology, 257, pp. 68-73Yildirim, K., Cho, H., Austin, L.G., The modeling of dry grinding of quartz in tumbling media mills (1999) Powder Technology, 105 (1-3), pp. 210-221Rivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J., Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool (2014) Powder Technology, 268, pp. 373-376Fruhstorfer, J., Schafföner, S., Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution (2014) Ceramics International, 40, pp. 15293-15302. , (9 Part B)Shin, H., Lee, S., Jung, H.S., Kim, J.-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill (2013) Ceramics International, 39 (8), pp. 8963-8968Djamarani, K.M., Clark, I.M., Characterization of particle size based on fine and coarse fractions (1997) Powder Technology, 93 (2), pp. 101-108Rosin, P., Rammler, E., The laws governing the fineness of powdered coal (1933) J. Inst. Fuel, 7, pp. 29-36Gates, A.O., Kick vs. Rittinger: An experimental investigation in rock crushing performed at Purdue University (1915) Trans AIME, 52, pp. 875-909Schumann, J., Principles of comminution I: Size distribution and surface calculations (1940) Trans. AIME, Tech. Publ., 1189Macías-García, A., Cuerda-Correa, E.M., Díaz-Díez, M.A., Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork (2004) Materials Characterization, 52 (2), pp. 159-164Ouchterlony, F., The Swebrec function: Linking fragmentation by blasting and crushing (2005) Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114 (1), pp. 29-44Ouchterlony, F., Olsson, M., Nyberg, U., Andersson, P., Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function (2006) International Symposium of Rock Fragmentation by BlastingOsorio, A.M., Menéndez-Aguado, J.M., Bustamante, O., Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function (2014) Powder Technology, 258, pp. 206-208Menéndez-Aguado, J.M., Peña-Carpio, E., Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function (2015) Journal of Soils and Sediments, 15 (9), pp. 2004-2011DYNA (Colombia)Ball size distributionGrindingSize distribution modelComparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rivera-Madrid, I.E., Institución Universitaria Pascual Bravo, Medellín, Colombia; Rincón-Fulla, M., Institución Universitaria Pascual Bravo, Medellín, Colombia, Escuela de física, Universidad Nacional de Colombia, sede Medellín, Colombia; Osorio-Correa, A.M., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Chica-Osorio, L.M., Grupo GICI, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia; Bustamante-Rúa, M.O., CIMEX, Facultad de Minas, Universidad Nacional de Colombia, sede Medellín, Colombia; Menéndez-Aguado, J.M., Escuela Politécnica de Mieres, Universidad de Oviedo, Oviedo, Spainhttp://purl.org/coar/access_right/c_16ecRivera-Madrid I.E.Rincón-Fulla M.Osorio-Correa A.M.Chica-Osorio L.M.Bustamante-Rúa M.O.Menéndez-Aguado J.M.11407/5787oai:repository.udem.edu.co:11407/57872020-05-27 19:11:43.258Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co