Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
Total mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distin...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5943
- Acceso en línea:
- http://hdl.handle.net/11407/5943
- Palabra clave:
- Colombia
Fractionation
Gold mines
Mercury
Methylmercury
Sediments
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_142ccf3a39a51c1cf5f0a72ba77a02d8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5943 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
title |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
spellingShingle |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia Colombia Fractionation Gold mines Mercury Methylmercury Sediments |
title_short |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
title_full |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
title_fullStr |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
title_full_unstemmed |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
title_sort |
Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia |
dc.subject.spa.fl_str_mv |
Colombia Fractionation Gold mines Mercury Methylmercury Sediments |
topic |
Colombia Fractionation Gold mines Mercury Methylmercury Sediments |
description |
Total mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distinct groups (2–6; 7–12; 13–20 years). Overall concentration (in ng g−1) pattern of THg in sediments varied from 39.06 to 1271.32 (avg. 209.57) with 174.81 (13–20 years), 205.56 (7–12 years) and 248.33 (2–6 years) respectively. MeHg concentrations accounted for 3.3–10.9% (avg. 6.5%) of THg and were significantly correlated with THg during all periods. Correlations between organic matter (OM) vs MeHg and THg were negative in the oldest pools, signifying a “dilution effect” or “natural burial” of THg and MeHg. Results for sequential extraction indicate that the fraction of elemental Hg (Hg-e) and organo chelated Hg (Hg-o) represent the main chemical forms of Hg in the sediments, regardless of the abandonment period, whereas the bioavailable fraction was only 0.12–1.65% of THg. The significant statistical relationship between MeHg, THg and OM suggests that these parameters control the distribution, mobility, toxicity and bioavailability of Hg in the sediments of these abandoned ponds. Evaluation of THg with sediment quality guidelines indicates that the values are on the higher side for Threshold effect concentration and Upper continental crust. Comparing of MeHg with many other regions outside Colombia is a worrying factor and needs immediate attention to protect the human health. © 2020 Elsevier Ltd |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:11Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:11Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
456535 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5943 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.chemosphere.2020.127319 |
identifier_str_mv |
456535 10.1016/j.chemosphere.2020.127319 |
url |
http://hdl.handle.net/11407/5943 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086445311&doi=10.1016%2fj.chemosphere.2020.127319&partnerID=40&md5=880281005a62835a68e6e97102f54b66 |
dc.relation.citationvolume.none.fl_str_mv |
258 |
dc.relation.references.none.fl_str_mv |
Benoit, G., Mercury in dated sediment cores from coastal ponds of St Thomas, USVI (2018) Mar. Pollut. Bull., 126, pp. 535-539 Biester, H., Gosar, M., Covelli, S., Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area (2000) Environ. Sci. Technol., 34, pp. 3330-3336 Biester, H., Muller, G., Scholer, H.F., Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants (2002) Sci. Total Environ., 284, pp. 191-203 Bloom, N.S., Preus, E., Katon, J., Hiltner, M., Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils (2003) Anal. Chim. Acta, 479, pp. 233-248 Boszke, L., Kowalski, A., Glosinska, G., Szarek, R., Siepak, J., Environmental factors affecting speciation of mercury in the bottom sediments an overview (2003) Pol. J. Environ. Stud., 12 (1), pp. 5-13 Boszke, L., Kowalski, A., Siepak, J., Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland) (2004) Water Air Soil Pollut., 159, pp. 125-138 Bouyoucos, G.J., Hydrometer method improved for making particle size analysis of soils (1962) Agron. J., 54, pp. 464-465. , 1962 Bravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., Molecular composition of organic matter controls methylmercury formation in boreal lakes (2017) Nat. Commun., 8, pp. 142-155 Campbell, P., Lewis, A., Chapman, P., Luoma, S., Stokes, P., Biologically Available Metals in Sediments (1988), p. 298p. , National Research Council of Canada (NRCC) Otawa Caricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion (1997) Microchem. J., 55, pp. 44-55 Cesar, R., Egler, S., Polivanov, H., Castilhos, Z., Rodrigues, A.P., Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil (2011) Environmental Earth Sciences, 64 (1), pp. 211-222 Chen, X., Ji, H., Yang, W., Zhu, B., Ding, H., Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China (2016) J. Geochem. Explor., 163, pp. 1-9 Ching, I.L., Hongxiao, T., Chemical studies of aquatic pollution by heavy metals in China (1985) Environmental Inorganic Chemistry, pp. 359-371. , K.J. Irgolic A.E. Martel VCH Deerfield Beach Coquery, M., Welbourn, P.M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare (1995) Water Res., 29 (9), pp. 2094-2102 Davidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz-Barrientos, E., Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure (2006) Anal. Chim. Acta, 565, pp. 63-72 DeLaune, R., Jugsujinda, A., Devai, I., Patrick, W., Jr., Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes (2004) Environ. Sci. Health, 39 (8), pp. 1925-1933 Díez, S., Human health effects of methylmercury exposure (2009) Rev. Environ. Contam. Toxicol., 198, pp. 111-132 Dong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea (2018) Environ. Sci. Pollut. Control Ser. Filgueiras, A.V., Lavilla, I., Bendicho, C., Chemical sequential extraction for metal partitioning in environmental solid samples (2002) J. Environ. Monit., 4, pp. 823-857 Gerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers (2018) Elem Sci Anth, 6, p. 11 Gómez Tapias, J., Almanza Meléndez, M.F., Mapa Geológico de Colombia (2015), p. 2694513. , Servicio Geológico Colombiano Green, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system (2019) Sci. Total Environ., 647, pp. 400-410 Guedron, S., Grangeon, S., Lanson, B., Grimaldi, M., Mercury speciation in a tropical soil association consequence of gold mining on Hg distribution in French Guiana (2009) Geoderma, 153, pp. 331-346 Guimarães, J.R.D., Malm, O., Pfeiffer, W.C., A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil (1995) Sci. Total Environ., 175 (2), p. 151e162 Hammerschmidt, C.R., Fitzgerald, W.F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments (2004) Environ. Sci. Technol., 38, pp. 1487-1495 Han, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., Speciation of mercury in soil and sediment by selective solvent and acid extraction (2003) Anal. Bioanal. Chem., 375, pp. 428-436 Herrero Ortega, S., Catal, N., Bjorn, E., Grontoft, H., Geir Hilmarsson, T., Bertilsson, S., Wu, P., Bravo, A., High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter (2018) Limnol. Oceanogr. Hesterberg, D., Chouw, J.W., Hutchinson, K.J., Sayers, D.E., Bonding of Hg(II) to reduced organic sulphur in humic acid as affected by S/Hg ratio (2001) Environ. Sci. Technol., 35, p. 2741 Hinton, J.J., Veiga, M.M., Veiga, A.T., Clean artisanal gold mining: a utopian approach? (2003) J. Clean. Prod., 11 (2), pp. 99-115 Hodson, P.V., Norris, K., Berquist, M., Campbell, L.M., Ridal, J.J., Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments (2014) Sci. Total Environ., 494-495, pp. 218-228 Horvat, M., Mercury as a global pollutant (2002) Anal. Bioanal. Chem., 374, pp. 981-982 Ikingura, J.R., Akagib, H., Methylmercury production and distribution in aquatic systems (1999) Sci. Total Environ., 234, pp. 109-118 Ikingura, J.R., Akagib, H., Messo, C., Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania (2006) J. Environ. Manag., 81, pp. 167-173 Issaro, N., Abi-Ghanem, C., Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction (2009) Anal. Chim. Acta, 1-12 Kelly, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., StLouis, V.L., Heyes, A., Moore, T.R., Edwards, G., Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoir (1997) Environ. Sci. Technol., 31, pp. 1334-1344 Kim, M., Han, S., Gieskes, J., Deheyn, D.D., Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments (2011) Sci. Total Environ., 409 (4), pp. 778-784 Kot, F.S., Mercury in chemical fractions of recent pelagic sediments of the Sea of Japan (2004) J. Environ. Monit., 6, pp. 689-695 Kothawala, D., Stedmon, C., Muler, R., Weyhenmeyer, G., Kohler, S., Tranvik, L.J., Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey (2014) Global Change Biol., 20, pp. 1101-1114 Krupadam, R., Ahuja, R., Wate, S., Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India (2007) Environ. Model. Assess., 12, pp. 145-155 Lacerda, L.D., Salomons, W., Mercury from Gold and Silver Mining. A Chemical Time Bomb? (1998), p. 146. , Springer Verlag Berlin Lei, P., Zhong, H., Duan, D., Pan, K., A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? (2019) Sci. Total Environ., 680, pp. 140-150 Leiva, M.A., Morales, S., Environmental assessment of mercury pollution in urban tailings from gold mining (2013) Ecotoxicol. Environ. Saf., 90, pp. 167-173 Lino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajos River basin in the Brazilian Amazon (2019) Chemosphere, 235, pp. 690-700 Liu, G., Cabrera, J., Allen, M., Cai, Y., Mercury characteristics in soil samples collected nearby the DOE Oak Ridge reservation utilizing sequential extraction and thermal desorption method (2006) Sci. Total Environ., 309, pp. 384-392 Lucotte, M., Montgomery, S., Begin, M., Mercury dynamics at the flooded soil-water interface in reservoirs of Northern Québec: in situ observations (1999) Mercury in the Biogeochemical Cycle, Natural Environments and Hydroelectric Reservoirs of Northern Quebec, p. 334. , M. Lucotte et al. (eds.) Springer Berlin, New York Lusilao-Makiese, J.G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E.M., Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa (2016) Environ. Monit. Assess., 188 (1), pp. 1-11 Mac Donald, D., Ingersoll, C., Berger, T., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems (2000) Arch. Environ. Contam. Toxicol., 39, pp. 20-31 Male, Y.T., Reichelt-Brushett, Amanda, J., Pocock, M., Nanlohy, A., Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia – potential future risks to environmental health and food safety (2013) Mar. Pollut. Bull., 77, pp. 428-433 Malehase, T., Daso, A.P., Okonkwo, J.O., Determination of mercury and its fractionation products in samples from legacy use of mercury amalgam in gold processing in Randfontein, South Africa (2016) Emerg. Contaminants, 2, pp. 157-165 Marrugo-Negrete, J.L., Pinedo-Hernández, J., Díez, S., Geochemistry of mercury in tropical swamps impacted by gold mining (2015) Chemosphere, 134, pp. 44-51 Mason, R.P., Baumann, Z., Hansen, G., Yao, K.M., Coulibaly, M., Coulibaly, S., An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire (2019) Sci. Total Environ., 665, pp. 1158-1167 Meech, J.A., Veiga, M.M., Tromans, D., Reactivity of mercury from gold mining activities in darkwater ecosystems (1998) Ambio, 27, pp. 92-98 Munthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris, R., Recovery of mercury-contaminated fisheries (2007) Ambio, 36, pp. 33-44 Muresan, B., Cossa, D., Richard, S., Dominique, Y., Monomethylmercury sources in a tropical artificial reservoir (2008) Appl. Geochem., 23 (5), pp. 1101-1126 Nartey, V.K., Klake, R.K., Doamekpor, L.K., Sarpong-Kumankomah, S., Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani– Anwiaso–Bekwai area of South Western Ghana (2012) Environ. Monit. Assess., 184, pp. 7623-7634 Niane, B., Mortiz, R., Guédron, S., Ngom, P.M., Pfeifer, H.R., Mall, I., Poté, J., Effect of recent artisanal small-scale gold mining on the contamination of surface river sediment: case of Gambia River, Kedougou region, southeastern Senegal (2014) J. Geochem. Explor., 144, pp. 517-527 O'Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Rinklebe, J., Mercury speciation, transformation and transportation in soils, atmospheric flux and implications for risk management: a critical review (2019) Environ. Int., 126, pp. 747-761 Odumo, B.O., Carbonell, G., Angeyo, H.K., Patel, J.P., Torrijos, M., Rodríguez Martín, J.A., Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya (2014) Environ. Sci. Pollut. Control Ser., 21 (21), pp. 12426-12435 Pinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia (2015) Chemosphere, 119, pp. 1289-1295 Pestana, M.H.D., Lechler, P., Formoso, M.L.L., Miller, J., Mercury in sediments from gold and copper exploitation areas in the Ä River Basin, Southern Brazil Camaqua (2000) J. S. Am. Earth Sci., 13, pp. 537-547 Pestana, I.A., Bastos, W.R., Almeida, M.G., Mussy, M.H., Souza, C.M., Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil (2019) Chemosphere, 215, pp. 758-765 Pfeiffer, W.C., Lacerda, L.D., Salomons, W., Malm, O., Environmental fate of mercury from gold mining in the Brazilian Amazon (1993) Environ. Rev., 1, pp. 26-37 Ramasamy, E.V., Toms, A., Shylesh, C.M.S., Jayasooryan, K.K., Mahesh, M., Mercury fractionation in the sediments of Vembanad wetland, west coast of India (2012) Environ. Geochem. Health, 34, pp. 575-586 Reid, W.V., Biodiversity hotspots (1998) Trends Ecol. Evol., 13, pp. 275-280 Reis, A.T., Rodrigues, S.M., Davidson, C.M., Pereira, E., Duarte, A.C., Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas (2010) Chemosphere, 81 (11), pp. 1369-1377 Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., Rincón, J., Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain (2009) J. Environ. Manag., 90, pp. 1106-1116 Roy, V., Amyot, M., Carignan, R., Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients (2009) Environ. Sci. Technol., 43, pp. 5605-5611 Rudd, J.W.M., Bodaly, R.A., Fisher, N.S., Kelly, C.A., Kopec, D., Whipple, C., Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota (2018) Sci. Total Environ., 642, pp. 1340-1352 Rudnick, R.L., Gao, S., 4.1 - composition of the continental crust (2014) Treatise on Geochemistry, 4, pp. 1-51. , 2014 second ed Salazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J.L., Díez, S., Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia (2017) Environ. Int., 107, pp. 47-54 Santos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., Adams, M., Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela (2011) J. Environ. Manag., 92 (4), pp. 1268-1276 Shi, J., Lianga, L., Jianga, G., Jin, X., The speciation and bioavailability of mercury in sediments of Haihe River, China (2005) Environ. Int., 31, pp. 357-365 St Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M., Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate (2000) Bioscience, 50, p. 9 Sunderland, E.M., Gobas, F., Branfireun, B.A., Heyes, A., Environmental controls on the speciation and distribution of mercury in coastal sediments (2006) Mar. Chem., 102, pp. 111-123 Tomiyasu, T., Matsuyama, A., Imura, R., Kodamatani, H., Miyamoto, J., Kono, Y., Kocman, D., Horvat, M., The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil (2012) Environ. Earth Sci., 65, pp. 1309-1322 Ullrich, S., Tanton, T., Abdrashitova, S., Mercury in the aquatic environment: a review of factors affecting methylation (2001) Crit. Rev. Environ. Sci. Technol., 31, pp. 241-293 Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport (2013), p. 44p. , UNEP Chemicals Branch Geneva, Switzerland Method 7471B for Determination of Mercury in Solid or Semisolid Waste (1998), U.S. Environmental Protection Agency Cincinnati, OH Priority pollutant list (2015), https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, (Accessed 15 August 2016) Varejão, E.V.V., Bellato, C.R., Fontes, M.P.F., Mercury fractionation in the stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil (2009) Environ. Monit. Assess., 157, pp. 125-135 Valois, H., Sucesión primaria y ecología de la revegetación de selvas degradadas por minería en el Chocó, Colombia: bases para su restauración ecológica (2016), Universidad de Valladolid Tesis Doctoral Van Straaten, P., Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe (2000) Sci. Total Environ., 259 (1-3), pp. 105-113 Veiga, M.M., Baker, R.F., Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners (2004), p. 294p. , GEF/UNDP/UNIDO Vienna, Austria Veiga, M.M., Angeloci-santos, G., Meech, J.A., The Extractive Industries and Society Review of barriers to reduce mercury use in artisanal gold mining (2014) Biochem. Pharmacol., 1 (2), pp. 351-361 Wallschlager, D., Desai, M.V.M., Spengler, M., Windmoler, C.C., Wilken, R.D., Mercury speciation in floodplain soils and sediments along a contaminated river transect (1998) J. Environ. Qual., 27, pp. 1034-1044 Wang, F., Chen, J., Relation of sediment characteristics to trace metal concentrations: a statistical study (2000) Water Res., 34, pp. 694-698 Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., Sources and remediation for mercury contamination in aquatic systems—a literature review (2004) Environ. Pollut., 131, pp. 323-336 Winfrey, M.R., Rudd, J.W.M., Environmental factors affecting the formation of methylmercury in low pH lakes: a review (1990) Environ. Contam. Toxicol., 9, pp. 853-869 Wu, H., Ding, Z., Liu, Y., Liu, J., Yan, H., Pan, J., Li, L., Lu, H., Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China (2011) J. Environ. Sci., 23 (1), pp. 14-21 Xia, K., Skyllberg, U.L., Bleam, W.F., Bloom, R.P., Nater, E.A., Helmke, P.A., X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances (1999) Environ. Sci. Technol., 33, pp. 257-261 Yuan, C.G., Wang, T.F., Song, Y.F., Chang, A.L., Total mercury and sequential extracted mercury in soil near a coal-fired power plant (2010) Fresenius Environ. Bull., 19, pp. 2857-2863 Yong-kui, Y., Zhang, C., Xiao-jun, S., Ding-Yong, W., Effect of organic matter and pH on mercury release from soils (2007) J. Environ. Sci., 19 (11), pp. 1349-1354 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Chemosphere |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159145341812736 |
spelling |
20202021-02-05T14:58:11Z2021-02-05T14:58:11Z456535http://hdl.handle.net/11407/594310.1016/j.chemosphere.2020.127319Total mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distinct groups (2–6; 7–12; 13–20 years). Overall concentration (in ng g−1) pattern of THg in sediments varied from 39.06 to 1271.32 (avg. 209.57) with 174.81 (13–20 years), 205.56 (7–12 years) and 248.33 (2–6 years) respectively. MeHg concentrations accounted for 3.3–10.9% (avg. 6.5%) of THg and were significantly correlated with THg during all periods. Correlations between organic matter (OM) vs MeHg and THg were negative in the oldest pools, signifying a “dilution effect” or “natural burial” of THg and MeHg. Results for sequential extraction indicate that the fraction of elemental Hg (Hg-e) and organo chelated Hg (Hg-o) represent the main chemical forms of Hg in the sediments, regardless of the abandonment period, whereas the bioavailable fraction was only 0.12–1.65% of THg. The significant statistical relationship between MeHg, THg and OM suggests that these parameters control the distribution, mobility, toxicity and bioavailability of Hg in the sediments of these abandoned ponds. Evaluation of THg with sediment quality guidelines indicates that the values are on the higher side for Threshold effect concentration and Upper continental crust. Comparing of MeHg with many other regions outside Colombia is a worrying factor and needs immediate attention to protect the human health. © 2020 Elsevier LtdengElsevier LtdIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086445311&doi=10.1016%2fj.chemosphere.2020.127319&partnerID=40&md5=880281005a62835a68e6e97102f54b66258Benoit, G., Mercury in dated sediment cores from coastal ponds of St Thomas, USVI (2018) Mar. Pollut. Bull., 126, pp. 535-539Biester, H., Gosar, M., Covelli, S., Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area (2000) Environ. Sci. Technol., 34, pp. 3330-3336Biester, H., Muller, G., Scholer, H.F., Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants (2002) Sci. Total Environ., 284, pp. 191-203Bloom, N.S., Preus, E., Katon, J., Hiltner, M., Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils (2003) Anal. Chim. Acta, 479, pp. 233-248Boszke, L., Kowalski, A., Glosinska, G., Szarek, R., Siepak, J., Environmental factors affecting speciation of mercury in the bottom sedimentsan overview (2003) Pol. J. Environ. Stud., 12 (1), pp. 5-13Boszke, L., Kowalski, A., Siepak, J., Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland) (2004) Water Air Soil Pollut., 159, pp. 125-138Bouyoucos, G.J., Hydrometer method improved for making particle size analysis of soils (1962) Agron. J., 54, pp. 464-465. , 1962Bravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., Molecular composition of organic matter controls methylmercury formation in boreal lakes (2017) Nat. Commun., 8, pp. 142-155Campbell, P., Lewis, A., Chapman, P., Luoma, S., Stokes, P., Biologically Available Metals in Sediments (1988), p. 298p. , National Research Council of Canada (NRCC) OtawaCaricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion (1997) Microchem. J., 55, pp. 44-55Cesar, R., Egler, S., Polivanov, H., Castilhos, Z., Rodrigues, A.P., Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil (2011) Environmental Earth Sciences, 64 (1), pp. 211-222Chen, X., Ji, H., Yang, W., Zhu, B., Ding, H., Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China (2016) J. Geochem. Explor., 163, pp. 1-9Ching, I.L., Hongxiao, T., Chemical studies of aquatic pollution by heavy metals in China (1985) Environmental Inorganic Chemistry, pp. 359-371. , K.J. Irgolic A.E. Martel VCH Deerfield BeachCoquery, M., Welbourn, P.M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare (1995) Water Res., 29 (9), pp. 2094-2102Davidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz-Barrientos, E., Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure (2006) Anal. Chim. Acta, 565, pp. 63-72DeLaune, R., Jugsujinda, A., Devai, I., Patrick, W., Jr., Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes (2004) Environ. Sci. Health, 39 (8), pp. 1925-1933Díez, S., Human health effects of methylmercury exposure (2009) Rev. Environ. Contam. Toxicol., 198, pp. 111-132Dong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea (2018) Environ. Sci. Pollut. Control Ser.Filgueiras, A.V., Lavilla, I., Bendicho, C., Chemical sequential extraction for metal partitioning in environmental solid samples (2002) J. Environ. Monit., 4, pp. 823-857Gerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers (2018) Elem Sci Anth, 6, p. 11Gómez Tapias, J., Almanza Meléndez, M.F., Mapa Geológico de Colombia (2015), p. 2694513. , Servicio Geológico ColombianoGreen, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system (2019) Sci. Total Environ., 647, pp. 400-410Guedron, S., Grangeon, S., Lanson, B., Grimaldi, M., Mercury speciation in a tropical soil associationconsequence of gold mining on Hg distribution in French Guiana (2009) Geoderma, 153, pp. 331-346Guimarães, J.R.D., Malm, O., Pfeiffer, W.C., A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil (1995) Sci. Total Environ., 175 (2), p. 151e162Hammerschmidt, C.R., Fitzgerald, W.F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments (2004) Environ. Sci. Technol., 38, pp. 1487-1495Han, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., Speciation of mercury in soil and sediment by selective solvent and acid extraction (2003) Anal. Bioanal. Chem., 375, pp. 428-436Herrero Ortega, S., Catal, N., Bjorn, E., Grontoft, H., Geir Hilmarsson, T., Bertilsson, S., Wu, P., Bravo, A., High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter (2018) Limnol. Oceanogr.Hesterberg, D., Chouw, J.W., Hutchinson, K.J., Sayers, D.E., Bonding of Hg(II) to reduced organic sulphur in humic acid as affected by S/Hg ratio (2001) Environ. Sci. Technol., 35, p. 2741Hinton, J.J., Veiga, M.M., Veiga, A.T., Clean artisanal gold mining: a utopian approach? (2003) J. Clean. Prod., 11 (2), pp. 99-115Hodson, P.V., Norris, K., Berquist, M., Campbell, L.M., Ridal, J.J., Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments (2014) Sci. Total Environ., 494-495, pp. 218-228Horvat, M., Mercury as a global pollutant (2002) Anal. Bioanal. Chem., 374, pp. 981-982Ikingura, J.R., Akagib, H., Methylmercury production and distribution in aquatic systems (1999) Sci. Total Environ., 234, pp. 109-118Ikingura, J.R., Akagib, H., Messo, C., Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania (2006) J. Environ. Manag., 81, pp. 167-173Issaro, N., Abi-Ghanem, C., Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction (2009) Anal. Chim. Acta, 1-12Kelly, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., StLouis, V.L., Heyes, A., Moore, T.R., Edwards, G., Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoir (1997) Environ. Sci. Technol., 31, pp. 1334-1344Kim, M., Han, S., Gieskes, J., Deheyn, D.D., Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments (2011) Sci. Total Environ., 409 (4), pp. 778-784Kot, F.S., Mercury in chemical fractions of recent pelagic sediments of the Sea of Japan (2004) J. Environ. Monit., 6, pp. 689-695Kothawala, D., Stedmon, C., Muler, R., Weyhenmeyer, G., Kohler, S., Tranvik, L.J., Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey (2014) Global Change Biol., 20, pp. 1101-1114Krupadam, R., Ahuja, R., Wate, S., Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India (2007) Environ. Model. Assess., 12, pp. 145-155Lacerda, L.D., Salomons, W., Mercury from Gold and Silver Mining. A Chemical Time Bomb? (1998), p. 146. , Springer Verlag BerlinLei, P., Zhong, H., Duan, D., Pan, K., A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? (2019) Sci. Total Environ., 680, pp. 140-150Leiva, M.A., Morales, S., Environmental assessment of mercury pollution in urban tailings from gold mining (2013) Ecotoxicol. Environ. Saf., 90, pp. 167-173Lino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajos River basin in the Brazilian Amazon (2019) Chemosphere, 235, pp. 690-700Liu, G., Cabrera, J., Allen, M., Cai, Y., Mercury characteristics in soil samples collected nearby the DOE Oak Ridge reservation utilizing sequential extraction and thermal desorption method (2006) Sci. Total Environ., 309, pp. 384-392Lucotte, M., Montgomery, S., Begin, M., Mercury dynamics at the flooded soil-water interface in reservoirs of Northern Québec: in situ observations (1999) Mercury in the Biogeochemical Cycle, Natural Environments and Hydroelectric Reservoirs of Northern Quebec, p. 334. , M. Lucotte et al. (eds.) Springer Berlin, New YorkLusilao-Makiese, J.G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E.M., Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa (2016) Environ. Monit. Assess., 188 (1), pp. 1-11Mac Donald, D., Ingersoll, C., Berger, T., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems (2000) Arch. Environ. Contam. Toxicol., 39, pp. 20-31Male, Y.T., Reichelt-Brushett, Amanda, J., Pocock, M., Nanlohy, A., Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia – potential future risks to environmental health and food safety (2013) Mar. Pollut. Bull., 77, pp. 428-433Malehase, T., Daso, A.P., Okonkwo, J.O., Determination of mercury and its fractionation products in samples from legacy use of mercury amalgam in gold processing in Randfontein, South Africa (2016) Emerg. Contaminants, 2, pp. 157-165Marrugo-Negrete, J.L., Pinedo-Hernández, J., Díez, S., Geochemistry of mercury in tropical swamps impacted by gold mining (2015) Chemosphere, 134, pp. 44-51Mason, R.P., Baumann, Z., Hansen, G., Yao, K.M., Coulibaly, M., Coulibaly, S., An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire (2019) Sci. Total Environ., 665, pp. 1158-1167Meech, J.A., Veiga, M.M., Tromans, D., Reactivity of mercury from gold mining activities in darkwater ecosystems (1998) Ambio, 27, pp. 92-98Munthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris, R., Recovery of mercury-contaminated fisheries (2007) Ambio, 36, pp. 33-44Muresan, B., Cossa, D., Richard, S., Dominique, Y., Monomethylmercury sources in a tropical artificial reservoir (2008) Appl. Geochem., 23 (5), pp. 1101-1126Nartey, V.K., Klake, R.K., Doamekpor, L.K., Sarpong-Kumankomah, S., Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani– Anwiaso–Bekwai area of South Western Ghana (2012) Environ. Monit. Assess., 184, pp. 7623-7634Niane, B., Mortiz, R., Guédron, S., Ngom, P.M., Pfeifer, H.R., Mall, I., Poté, J., Effect of recent artisanal small-scale gold mining on the contamination of surface river sediment: case of Gambia River, Kedougou region, southeastern Senegal (2014) J. Geochem. Explor., 144, pp. 517-527O'Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Rinklebe, J., Mercury speciation, transformation and transportation in soils, atmospheric flux and implications for risk management: a critical review (2019) Environ. Int., 126, pp. 747-761Odumo, B.O., Carbonell, G., Angeyo, H.K., Patel, J.P., Torrijos, M., Rodríguez Martín, J.A., Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya (2014) Environ. Sci. Pollut. Control Ser., 21 (21), pp. 12426-12435Pinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia (2015) Chemosphere, 119, pp. 1289-1295Pestana, M.H.D., Lechler, P., Formoso, M.L.L., Miller, J., Mercury in sediments from gold and copper exploitation areas in the Ä River Basin, Southern Brazil Camaqua (2000) J. S. Am. Earth Sci., 13, pp. 537-547Pestana, I.A., Bastos, W.R., Almeida, M.G., Mussy, M.H., Souza, C.M., Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil (2019) Chemosphere, 215, pp. 758-765Pfeiffer, W.C., Lacerda, L.D., Salomons, W., Malm, O., Environmental fate of mercury from gold mining in the Brazilian Amazon (1993) Environ. Rev., 1, pp. 26-37Ramasamy, E.V., Toms, A., Shylesh, C.M.S., Jayasooryan, K.K., Mahesh, M., Mercury fractionation in the sediments of Vembanad wetland, west coast of India (2012) Environ. Geochem. Health, 34, pp. 575-586Reid, W.V., Biodiversity hotspots (1998) Trends Ecol. Evol., 13, pp. 275-280Reis, A.T., Rodrigues, S.M., Davidson, C.M., Pereira, E., Duarte, A.C., Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas (2010) Chemosphere, 81 (11), pp. 1369-1377Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., Rincón, J., Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain (2009) J. Environ. Manag., 90, pp. 1106-1116Roy, V., Amyot, M., Carignan, R., Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients (2009) Environ. Sci. Technol., 43, pp. 5605-5611Rudd, J.W.M., Bodaly, R.A., Fisher, N.S., Kelly, C.A., Kopec, D., Whipple, C., Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota (2018) Sci. Total Environ., 642, pp. 1340-1352Rudnick, R.L., Gao, S., 4.1 - composition of the continental crust (2014) Treatise on Geochemistry, 4, pp. 1-51. , 2014 second edSalazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J.L., Díez, S., Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia (2017) Environ. Int., 107, pp. 47-54Santos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., Adams, M., Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela (2011) J. Environ. Manag., 92 (4), pp. 1268-1276Shi, J., Lianga, L., Jianga, G., Jin, X., The speciation and bioavailability of mercury in sediments of Haihe River, China (2005) Environ. Int., 31, pp. 357-365St Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M., Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate (2000) Bioscience, 50, p. 9Sunderland, E.M., Gobas, F., Branfireun, B.A., Heyes, A., Environmental controls on the speciation and distribution of mercury in coastal sediments (2006) Mar. Chem., 102, pp. 111-123Tomiyasu, T., Matsuyama, A., Imura, R., Kodamatani, H., Miyamoto, J., Kono, Y., Kocman, D., Horvat, M., The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil (2012) Environ. Earth Sci., 65, pp. 1309-1322Ullrich, S., Tanton, T., Abdrashitova, S., Mercury in the aquatic environment: a review of factors affecting methylation (2001) Crit. Rev. Environ. Sci. Technol., 31, pp. 241-293Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport (2013), p. 44p. , UNEP Chemicals Branch Geneva, SwitzerlandMethod 7471B for Determination of Mercury in Solid or Semisolid Waste (1998), U.S. Environmental Protection Agency Cincinnati, OHPriority pollutant list (2015), https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, (Accessed 15 August 2016)Varejão, E.V.V., Bellato, C.R., Fontes, M.P.F., Mercury fractionation in the stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil (2009) Environ. Monit. Assess., 157, pp. 125-135Valois, H., Sucesión primaria y ecología de la revegetación de selvas degradadas por minería en el Chocó, Colombia: bases para su restauración ecológica (2016), Universidad de Valladolid Tesis DoctoralVan Straaten, P., Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe (2000) Sci. Total Environ., 259 (1-3), pp. 105-113Veiga, M.M., Baker, R.F., Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners (2004), p. 294p. , GEF/UNDP/UNIDO Vienna, AustriaVeiga, M.M., Angeloci-santos, G., Meech, J.A., The Extractive Industries and Society Review of barriers to reduce mercury use in artisanal gold mining (2014) Biochem. Pharmacol., 1 (2), pp. 351-361Wallschlager, D., Desai, M.V.M., Spengler, M., Windmoler, C.C., Wilken, R.D., Mercury speciation in floodplain soils and sediments along a contaminated river transect (1998) J. Environ. Qual., 27, pp. 1034-1044Wang, F., Chen, J., Relation of sediment characteristics to trace metal concentrations: a statistical study (2000) Water Res., 34, pp. 694-698Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., Sources and remediation for mercury contamination in aquatic systems—a literature review (2004) Environ. Pollut., 131, pp. 323-336Winfrey, M.R., Rudd, J.W.M., Environmental factors affecting the formation of methylmercury in low pH lakes: a review (1990) Environ. Contam. Toxicol., 9, pp. 853-869Wu, H., Ding, Z., Liu, Y., Liu, J., Yan, H., Pan, J., Li, L., Lu, H., Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China (2011) J. Environ. Sci., 23 (1), pp. 14-21Xia, K., Skyllberg, U.L., Bleam, W.F., Bloom, R.P., Nater, E.A., Helmke, P.A., X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances (1999) Environ. Sci. Technol., 33, pp. 257-261Yuan, C.G., Wang, T.F., Song, Y.F., Chang, A.L., Total mercury and sequential extracted mercury in soil near a coal-fired power plant (2010) Fresenius Environ. Bull., 19, pp. 2857-2863Yong-kui, Y., Zhang, C., Xiao-jun, S., Ding-Yong, W., Effect of organic matter and pH on mercury release from soils (2007) J. Environ. Sci., 19 (11), pp. 1349-1354ChemosphereColombiaFractionationGold minesMercuryMethylmercurySedimentsDistribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in ColombiaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gutiérrez-Mosquera, H., Facultad de Ingeniería, Universidad Tecnológica del Chocó, Carrera 22 No.18B-10, Quibdó, Colombia, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaMarrugo-Negrete, J., Departamento de Química, Facultad de Ciencias Básicas, Grupo de Agua, Química Aplicada y Ambiental, Universidad de Córdoba, Carrera 6 No. 76-103, Montería, Córdoba, ColombiaDíez, S., Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, E-08034, SpainMorales-Mira, G., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaMontoya-Jaramillo, L.J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaJonathan, M.P., Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, Ciudad de Mexico, C.P.07340, Mexicohttp://purl.org/coar/access_right/c_16ecGutiérrez-Mosquera H.Marrugo-Negrete J.Díez S.Morales-Mira G.Montoya-Jaramillo L.J.Jonathan M.P.11407/5943oai:repository.udem.edu.co:11407/59432021-02-05 09:58:11.751Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |