Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia

Total mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distin...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5943
Acceso en línea:
http://hdl.handle.net/11407/5943
Palabra clave:
Colombia
Fractionation
Gold mines
Mercury
Methylmercury
Sediments
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_142ccf3a39a51c1cf5f0a72ba77a02d8
oai_identifier_str oai:repository.udem.edu.co:11407/5943
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
title Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
spellingShingle Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
Colombia
Fractionation
Gold mines
Mercury
Methylmercury
Sediments
title_short Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
title_full Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
title_fullStr Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
title_full_unstemmed Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
title_sort Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
dc.subject.spa.fl_str_mv Colombia
Fractionation
Gold mines
Mercury
Methylmercury
Sediments
topic Colombia
Fractionation
Gold mines
Mercury
Methylmercury
Sediments
description Total mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distinct groups (2–6; 7–12; 13–20 years). Overall concentration (in ng g−1) pattern of THg in sediments varied from 39.06 to 1271.32 (avg. 209.57) with 174.81 (13–20 years), 205.56 (7–12 years) and 248.33 (2–6 years) respectively. MeHg concentrations accounted for 3.3–10.9% (avg. 6.5%) of THg and were significantly correlated with THg during all periods. Correlations between organic matter (OM) vs MeHg and THg were negative in the oldest pools, signifying a “dilution effect” or “natural burial” of THg and MeHg. Results for sequential extraction indicate that the fraction of elemental Hg (Hg-e) and organo chelated Hg (Hg-o) represent the main chemical forms of Hg in the sediments, regardless of the abandonment period, whereas the bioavailable fraction was only 0.12–1.65% of THg. The significant statistical relationship between MeHg, THg and OM suggests that these parameters control the distribution, mobility, toxicity and bioavailability of Hg in the sediments of these abandoned ponds. Evaluation of THg with sediment quality guidelines indicates that the values are on the higher side for Threshold effect concentration and Upper continental crust. Comparing of MeHg with many other regions outside Colombia is a worrying factor and needs immediate attention to protect the human health. © 2020 Elsevier Ltd
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:11Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:11Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 456535
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5943
dc.identifier.doi.none.fl_str_mv 10.1016/j.chemosphere.2020.127319
identifier_str_mv 456535
10.1016/j.chemosphere.2020.127319
url http://hdl.handle.net/11407/5943
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086445311&doi=10.1016%2fj.chemosphere.2020.127319&partnerID=40&md5=880281005a62835a68e6e97102f54b66
dc.relation.citationvolume.none.fl_str_mv 258
dc.relation.references.none.fl_str_mv Benoit, G., Mercury in dated sediment cores from coastal ponds of St Thomas, USVI (2018) Mar. Pollut. Bull., 126, pp. 535-539
Biester, H., Gosar, M., Covelli, S., Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area (2000) Environ. Sci. Technol., 34, pp. 3330-3336
Biester, H., Muller, G., Scholer, H.F., Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants (2002) Sci. Total Environ., 284, pp. 191-203
Bloom, N.S., Preus, E., Katon, J., Hiltner, M., Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils (2003) Anal. Chim. Acta, 479, pp. 233-248
Boszke, L., Kowalski, A., Glosinska, G., Szarek, R., Siepak, J., Environmental factors affecting speciation of mercury in the bottom sediments
an overview (2003) Pol. J. Environ. Stud., 12 (1), pp. 5-13
Boszke, L., Kowalski, A., Siepak, J., Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland) (2004) Water Air Soil Pollut., 159, pp. 125-138
Bouyoucos, G.J., Hydrometer method improved for making particle size analysis of soils (1962) Agron. J., 54, pp. 464-465. , 1962
Bravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., Molecular composition of organic matter controls methylmercury formation in boreal lakes (2017) Nat. Commun., 8, pp. 142-155
Campbell, P., Lewis, A., Chapman, P., Luoma, S., Stokes, P., Biologically Available Metals in Sediments (1988), p. 298p. , National Research Council of Canada (NRCC) Otawa
Caricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion (1997) Microchem. J., 55, pp. 44-55
Cesar, R., Egler, S., Polivanov, H., Castilhos, Z., Rodrigues, A.P., Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil (2011) Environmental Earth Sciences, 64 (1), pp. 211-222
Chen, X., Ji, H., Yang, W., Zhu, B., Ding, H., Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China (2016) J. Geochem. Explor., 163, pp. 1-9
Ching, I.L., Hongxiao, T., Chemical studies of aquatic pollution by heavy metals in China (1985) Environmental Inorganic Chemistry, pp. 359-371. , K.J. Irgolic A.E. Martel VCH Deerfield Beach
Coquery, M., Welbourn, P.M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare (1995) Water Res., 29 (9), pp. 2094-2102
Davidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz-Barrientos, E., Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure (2006) Anal. Chim. Acta, 565, pp. 63-72
DeLaune, R., Jugsujinda, A., Devai, I., Patrick, W., Jr., Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes (2004) Environ. Sci. Health, 39 (8), pp. 1925-1933
Díez, S., Human health effects of methylmercury exposure (2009) Rev. Environ. Contam. Toxicol., 198, pp. 111-132
Dong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea (2018) Environ. Sci. Pollut. Control Ser.
Filgueiras, A.V., Lavilla, I., Bendicho, C., Chemical sequential extraction for metal partitioning in environmental solid samples (2002) J. Environ. Monit., 4, pp. 823-857
Gerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers (2018) Elem Sci Anth, 6, p. 11
Gómez Tapias, J., Almanza Meléndez, M.F., Mapa Geológico de Colombia (2015), p. 2694513. , Servicio Geológico Colombiano
Green, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system (2019) Sci. Total Environ., 647, pp. 400-410
Guedron, S., Grangeon, S., Lanson, B., Grimaldi, M., Mercury speciation in a tropical soil association
consequence of gold mining on Hg distribution in French Guiana (2009) Geoderma, 153, pp. 331-346
Guimarães, J.R.D., Malm, O., Pfeiffer, W.C., A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil (1995) Sci. Total Environ., 175 (2), p. 151e162
Hammerschmidt, C.R., Fitzgerald, W.F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments (2004) Environ. Sci. Technol., 38, pp. 1487-1495
Han, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., Speciation of mercury in soil and sediment by selective solvent and acid extraction (2003) Anal. Bioanal. Chem., 375, pp. 428-436
Herrero Ortega, S., Catal, N., Bjorn, E., Grontoft, H., Geir Hilmarsson, T., Bertilsson, S., Wu, P., Bravo, A., High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter (2018) Limnol. Oceanogr.
Hesterberg, D., Chouw, J.W., Hutchinson, K.J., Sayers, D.E., Bonding of Hg(II) to reduced organic sulphur in humic acid as affected by S/Hg ratio (2001) Environ. Sci. Technol., 35, p. 2741
Hinton, J.J., Veiga, M.M., Veiga, A.T., Clean artisanal gold mining: a utopian approach? (2003) J. Clean. Prod., 11 (2), pp. 99-115
Hodson, P.V., Norris, K., Berquist, M., Campbell, L.M., Ridal, J.J., Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments (2014) Sci. Total Environ., 494-495, pp. 218-228
Horvat, M., Mercury as a global pollutant (2002) Anal. Bioanal. Chem., 374, pp. 981-982
Ikingura, J.R., Akagib, H., Methylmercury production and distribution in aquatic systems (1999) Sci. Total Environ., 234, pp. 109-118
Ikingura, J.R., Akagib, H., Messo, C., Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania (2006) J. Environ. Manag., 81, pp. 167-173
Issaro, N., Abi-Ghanem, C., Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction (2009) Anal. Chim. Acta, 1-12
Kelly, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., StLouis, V.L., Heyes, A., Moore, T.R., Edwards, G., Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoir (1997) Environ. Sci. Technol., 31, pp. 1334-1344
Kim, M., Han, S., Gieskes, J., Deheyn, D.D., Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments (2011) Sci. Total Environ., 409 (4), pp. 778-784
Kot, F.S., Mercury in chemical fractions of recent pelagic sediments of the Sea of Japan (2004) J. Environ. Monit., 6, pp. 689-695
Kothawala, D., Stedmon, C., Muler, R., Weyhenmeyer, G., Kohler, S., Tranvik, L.J., Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey (2014) Global Change Biol., 20, pp. 1101-1114
Krupadam, R., Ahuja, R., Wate, S., Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India (2007) Environ. Model. Assess., 12, pp. 145-155
Lacerda, L.D., Salomons, W., Mercury from Gold and Silver Mining. A Chemical Time Bomb? (1998), p. 146. , Springer Verlag Berlin
Lei, P., Zhong, H., Duan, D., Pan, K., A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? (2019) Sci. Total Environ., 680, pp. 140-150
Leiva, M.A., Morales, S., Environmental assessment of mercury pollution in urban tailings from gold mining (2013) Ecotoxicol. Environ. Saf., 90, pp. 167-173
Lino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajos River basin in the Brazilian Amazon (2019) Chemosphere, 235, pp. 690-700
Liu, G., Cabrera, J., Allen, M., Cai, Y., Mercury characteristics in soil samples collected nearby the DOE Oak Ridge reservation utilizing sequential extraction and thermal desorption method (2006) Sci. Total Environ., 309, pp. 384-392
Lucotte, M., Montgomery, S., Begin, M., Mercury dynamics at the flooded soil-water interface in reservoirs of Northern Québec: in situ observations (1999) Mercury in the Biogeochemical Cycle, Natural Environments and Hydroelectric Reservoirs of Northern Quebec, p. 334. , M. Lucotte et al. (eds.) Springer Berlin, New York
Lusilao-Makiese, J.G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E.M., Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa (2016) Environ. Monit. Assess., 188 (1), pp. 1-11
Mac Donald, D., Ingersoll, C., Berger, T., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems (2000) Arch. Environ. Contam. Toxicol., 39, pp. 20-31
Male, Y.T., Reichelt-Brushett, Amanda, J., Pocock, M., Nanlohy, A., Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia – potential future risks to environmental health and food safety (2013) Mar. Pollut. Bull., 77, pp. 428-433
Malehase, T., Daso, A.P., Okonkwo, J.O., Determination of mercury and its fractionation products in samples from legacy use of mercury amalgam in gold processing in Randfontein, South Africa (2016) Emerg. Contaminants, 2, pp. 157-165
Marrugo-Negrete, J.L., Pinedo-Hernández, J., Díez, S., Geochemistry of mercury in tropical swamps impacted by gold mining (2015) Chemosphere, 134, pp. 44-51
Mason, R.P., Baumann, Z., Hansen, G., Yao, K.M., Coulibaly, M., Coulibaly, S., An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire (2019) Sci. Total Environ., 665, pp. 1158-1167
Meech, J.A., Veiga, M.M., Tromans, D., Reactivity of mercury from gold mining activities in darkwater ecosystems (1998) Ambio, 27, pp. 92-98
Munthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris, R., Recovery of mercury-contaminated fisheries (2007) Ambio, 36, pp. 33-44
Muresan, B., Cossa, D., Richard, S., Dominique, Y., Monomethylmercury sources in a tropical artificial reservoir (2008) Appl. Geochem., 23 (5), pp. 1101-1126
Nartey, V.K., Klake, R.K., Doamekpor, L.K., Sarpong-Kumankomah, S., Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani– Anwiaso–Bekwai area of South Western Ghana (2012) Environ. Monit. Assess., 184, pp. 7623-7634
Niane, B., Mortiz, R., Guédron, S., Ngom, P.M., Pfeifer, H.R., Mall, I., Poté, J., Effect of recent artisanal small-scale gold mining on the contamination of surface river sediment: case of Gambia River, Kedougou region, southeastern Senegal (2014) J. Geochem. Explor., 144, pp. 517-527
O'Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Rinklebe, J., Mercury speciation, transformation and transportation in soils, atmospheric flux and implications for risk management: a critical review (2019) Environ. Int., 126, pp. 747-761
Odumo, B.O., Carbonell, G., Angeyo, H.K., Patel, J.P., Torrijos, M., Rodríguez Martín, J.A., Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya (2014) Environ. Sci. Pollut. Control Ser., 21 (21), pp. 12426-12435
Pinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia (2015) Chemosphere, 119, pp. 1289-1295
Pestana, M.H.D., Lechler, P., Formoso, M.L.L., Miller, J., Mercury in sediments from gold and copper exploitation areas in the Ä River Basin, Southern Brazil Camaqua (2000) J. S. Am. Earth Sci., 13, pp. 537-547
Pestana, I.A., Bastos, W.R., Almeida, M.G., Mussy, M.H., Souza, C.M., Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil (2019) Chemosphere, 215, pp. 758-765
Pfeiffer, W.C., Lacerda, L.D., Salomons, W., Malm, O., Environmental fate of mercury from gold mining in the Brazilian Amazon (1993) Environ. Rev., 1, pp. 26-37
Ramasamy, E.V., Toms, A., Shylesh, C.M.S., Jayasooryan, K.K., Mahesh, M., Mercury fractionation in the sediments of Vembanad wetland, west coast of India (2012) Environ. Geochem. Health, 34, pp. 575-586
Reid, W.V., Biodiversity hotspots (1998) Trends Ecol. Evol., 13, pp. 275-280
Reis, A.T., Rodrigues, S.M., Davidson, C.M., Pereira, E., Duarte, A.C., Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas (2010) Chemosphere, 81 (11), pp. 1369-1377
Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., Rincón, J., Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain (2009) J. Environ. Manag., 90, pp. 1106-1116
Roy, V., Amyot, M., Carignan, R., Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients (2009) Environ. Sci. Technol., 43, pp. 5605-5611
Rudd, J.W.M., Bodaly, R.A., Fisher, N.S., Kelly, C.A., Kopec, D., Whipple, C., Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota (2018) Sci. Total Environ., 642, pp. 1340-1352
Rudnick, R.L., Gao, S., 4.1 - composition of the continental crust (2014) Treatise on Geochemistry, 4, pp. 1-51. , 2014 second ed
Salazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J.L., Díez, S., Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia (2017) Environ. Int., 107, pp. 47-54
Santos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., Adams, M., Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela (2011) J. Environ. Manag., 92 (4), pp. 1268-1276
Shi, J., Lianga, L., Jianga, G., Jin, X., The speciation and bioavailability of mercury in sediments of Haihe River, China (2005) Environ. Int., 31, pp. 357-365
St Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M., Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate (2000) Bioscience, 50, p. 9
Sunderland, E.M., Gobas, F., Branfireun, B.A., Heyes, A., Environmental controls on the speciation and distribution of mercury in coastal sediments (2006) Mar. Chem., 102, pp. 111-123
Tomiyasu, T., Matsuyama, A., Imura, R., Kodamatani, H., Miyamoto, J., Kono, Y., Kocman, D., Horvat, M., The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil (2012) Environ. Earth Sci., 65, pp. 1309-1322
Ullrich, S., Tanton, T., Abdrashitova, S., Mercury in the aquatic environment: a review of factors affecting methylation (2001) Crit. Rev. Environ. Sci. Technol., 31, pp. 241-293
Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport (2013), p. 44p. , UNEP Chemicals Branch Geneva, Switzerland
Method 7471B for Determination of Mercury in Solid or Semisolid Waste (1998), U.S. Environmental Protection Agency Cincinnati, OH
Priority pollutant list (2015), https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, (Accessed 15 August 2016)
Varejão, E.V.V., Bellato, C.R., Fontes, M.P.F., Mercury fractionation in the stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil (2009) Environ. Monit. Assess., 157, pp. 125-135
Valois, H., Sucesión primaria y ecología de la revegetación de selvas degradadas por minería en el Chocó, Colombia: bases para su restauración ecológica (2016), Universidad de Valladolid Tesis Doctoral
Van Straaten, P., Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe (2000) Sci. Total Environ., 259 (1-3), pp. 105-113
Veiga, M.M., Baker, R.F., Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners (2004), p. 294p. , GEF/UNDP/UNIDO Vienna, Austria
Veiga, M.M., Angeloci-santos, G., Meech, J.A., The Extractive Industries and Society Review of barriers to reduce mercury use in artisanal gold mining (2014) Biochem. Pharmacol., 1 (2), pp. 351-361
Wallschlager, D., Desai, M.V.M., Spengler, M., Windmoler, C.C., Wilken, R.D., Mercury speciation in floodplain soils and sediments along a contaminated river transect (1998) J. Environ. Qual., 27, pp. 1034-1044
Wang, F., Chen, J., Relation of sediment characteristics to trace metal concentrations: a statistical study (2000) Water Res., 34, pp. 694-698
Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., Sources and remediation for mercury contamination in aquatic systems—a literature review (2004) Environ. Pollut., 131, pp. 323-336
Winfrey, M.R., Rudd, J.W.M., Environmental factors affecting the formation of methylmercury in low pH lakes: a review (1990) Environ. Contam. Toxicol., 9, pp. 853-869
Wu, H., Ding, Z., Liu, Y., Liu, J., Yan, H., Pan, J., Li, L., Lu, H., Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China (2011) J. Environ. Sci., 23 (1), pp. 14-21
Xia, K., Skyllberg, U.L., Bleam, W.F., Bloom, R.P., Nater, E.A., Helmke, P.A., X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances (1999) Environ. Sci. Technol., 33, pp. 257-261
Yuan, C.G., Wang, T.F., Song, Y.F., Chang, A.L., Total mercury and sequential extracted mercury in soil near a coal-fired power plant (2010) Fresenius Environ. Bull., 19, pp. 2857-2863
Yong-kui, Y., Zhang, C., Xiao-jun, S., Ding-Yong, W., Effect of organic matter and pH on mercury release from soils (2007) J. Environ. Sci., 19 (11), pp. 1349-1354
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Chemosphere
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159145341812736
spelling 20202021-02-05T14:58:11Z2021-02-05T14:58:11Z456535http://hdl.handle.net/11407/594310.1016/j.chemosphere.2020.127319Total mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distinct groups (2–6; 7–12; 13–20 years). Overall concentration (in ng g−1) pattern of THg in sediments varied from 39.06 to 1271.32 (avg. 209.57) with 174.81 (13–20 years), 205.56 (7–12 years) and 248.33 (2–6 years) respectively. MeHg concentrations accounted for 3.3–10.9% (avg. 6.5%) of THg and were significantly correlated with THg during all periods. Correlations between organic matter (OM) vs MeHg and THg were negative in the oldest pools, signifying a “dilution effect” or “natural burial” of THg and MeHg. Results for sequential extraction indicate that the fraction of elemental Hg (Hg-e) and organo chelated Hg (Hg-o) represent the main chemical forms of Hg in the sediments, regardless of the abandonment period, whereas the bioavailable fraction was only 0.12–1.65% of THg. The significant statistical relationship between MeHg, THg and OM suggests that these parameters control the distribution, mobility, toxicity and bioavailability of Hg in the sediments of these abandoned ponds. Evaluation of THg with sediment quality guidelines indicates that the values are on the higher side for Threshold effect concentration and Upper continental crust. Comparing of MeHg with many other regions outside Colombia is a worrying factor and needs immediate attention to protect the human health. © 2020 Elsevier LtdengElsevier LtdIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086445311&doi=10.1016%2fj.chemosphere.2020.127319&partnerID=40&md5=880281005a62835a68e6e97102f54b66258Benoit, G., Mercury in dated sediment cores from coastal ponds of St Thomas, USVI (2018) Mar. Pollut. Bull., 126, pp. 535-539Biester, H., Gosar, M., Covelli, S., Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area (2000) Environ. Sci. Technol., 34, pp. 3330-3336Biester, H., Muller, G., Scholer, H.F., Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants (2002) Sci. Total Environ., 284, pp. 191-203Bloom, N.S., Preus, E., Katon, J., Hiltner, M., Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils (2003) Anal. Chim. Acta, 479, pp. 233-248Boszke, L., Kowalski, A., Glosinska, G., Szarek, R., Siepak, J., Environmental factors affecting speciation of mercury in the bottom sedimentsan overview (2003) Pol. J. Environ. Stud., 12 (1), pp. 5-13Boszke, L., Kowalski, A., Siepak, J., Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland) (2004) Water Air Soil Pollut., 159, pp. 125-138Bouyoucos, G.J., Hydrometer method improved for making particle size analysis of soils (1962) Agron. J., 54, pp. 464-465. , 1962Bravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., Molecular composition of organic matter controls methylmercury formation in boreal lakes (2017) Nat. Commun., 8, pp. 142-155Campbell, P., Lewis, A., Chapman, P., Luoma, S., Stokes, P., Biologically Available Metals in Sediments (1988), p. 298p. , National Research Council of Canada (NRCC) OtawaCaricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion (1997) Microchem. J., 55, pp. 44-55Cesar, R., Egler, S., Polivanov, H., Castilhos, Z., Rodrigues, A.P., Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil (2011) Environmental Earth Sciences, 64 (1), pp. 211-222Chen, X., Ji, H., Yang, W., Zhu, B., Ding, H., Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China (2016) J. Geochem. Explor., 163, pp. 1-9Ching, I.L., Hongxiao, T., Chemical studies of aquatic pollution by heavy metals in China (1985) Environmental Inorganic Chemistry, pp. 359-371. , K.J. Irgolic A.E. Martel VCH Deerfield BeachCoquery, M., Welbourn, P.M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare (1995) Water Res., 29 (9), pp. 2094-2102Davidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz-Barrientos, E., Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure (2006) Anal. Chim. Acta, 565, pp. 63-72DeLaune, R., Jugsujinda, A., Devai, I., Patrick, W., Jr., Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes (2004) Environ. Sci. Health, 39 (8), pp. 1925-1933Díez, S., Human health effects of methylmercury exposure (2009) Rev. Environ. Contam. Toxicol., 198, pp. 111-132Dong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea (2018) Environ. Sci. Pollut. Control Ser.Filgueiras, A.V., Lavilla, I., Bendicho, C., Chemical sequential extraction for metal partitioning in environmental solid samples (2002) J. Environ. Monit., 4, pp. 823-857Gerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers (2018) Elem Sci Anth, 6, p. 11Gómez Tapias, J., Almanza Meléndez, M.F., Mapa Geológico de Colombia (2015), p. 2694513. , Servicio Geológico ColombianoGreen, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system (2019) Sci. Total Environ., 647, pp. 400-410Guedron, S., Grangeon, S., Lanson, B., Grimaldi, M., Mercury speciation in a tropical soil associationconsequence of gold mining on Hg distribution in French Guiana (2009) Geoderma, 153, pp. 331-346Guimarães, J.R.D., Malm, O., Pfeiffer, W.C., A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil (1995) Sci. Total Environ., 175 (2), p. 151e162Hammerschmidt, C.R., Fitzgerald, W.F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments (2004) Environ. Sci. Technol., 38, pp. 1487-1495Han, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., Speciation of mercury in soil and sediment by selective solvent and acid extraction (2003) Anal. Bioanal. Chem., 375, pp. 428-436Herrero Ortega, S., Catal, N., Bjorn, E., Grontoft, H., Geir Hilmarsson, T., Bertilsson, S., Wu, P., Bravo, A., High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter (2018) Limnol. Oceanogr.Hesterberg, D., Chouw, J.W., Hutchinson, K.J., Sayers, D.E., Bonding of Hg(II) to reduced organic sulphur in humic acid as affected by S/Hg ratio (2001) Environ. Sci. Technol., 35, p. 2741Hinton, J.J., Veiga, M.M., Veiga, A.T., Clean artisanal gold mining: a utopian approach? (2003) J. Clean. Prod., 11 (2), pp. 99-115Hodson, P.V., Norris, K., Berquist, M., Campbell, L.M., Ridal, J.J., Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments (2014) Sci. Total Environ., 494-495, pp. 218-228Horvat, M., Mercury as a global pollutant (2002) Anal. Bioanal. Chem., 374, pp. 981-982Ikingura, J.R., Akagib, H., Methylmercury production and distribution in aquatic systems (1999) Sci. Total Environ., 234, pp. 109-118Ikingura, J.R., Akagib, H., Messo, C., Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania (2006) J. Environ. Manag., 81, pp. 167-173Issaro, N., Abi-Ghanem, C., Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction (2009) Anal. Chim. Acta, 1-12Kelly, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., StLouis, V.L., Heyes, A., Moore, T.R., Edwards, G., Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoir (1997) Environ. Sci. Technol., 31, pp. 1334-1344Kim, M., Han, S., Gieskes, J., Deheyn, D.D., Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments (2011) Sci. Total Environ., 409 (4), pp. 778-784Kot, F.S., Mercury in chemical fractions of recent pelagic sediments of the Sea of Japan (2004) J. Environ. Monit., 6, pp. 689-695Kothawala, D., Stedmon, C., Muler, R., Weyhenmeyer, G., Kohler, S., Tranvik, L.J., Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey (2014) Global Change Biol., 20, pp. 1101-1114Krupadam, R., Ahuja, R., Wate, S., Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India (2007) Environ. Model. Assess., 12, pp. 145-155Lacerda, L.D., Salomons, W., Mercury from Gold and Silver Mining. A Chemical Time Bomb? (1998), p. 146. , Springer Verlag BerlinLei, P., Zhong, H., Duan, D., Pan, K., A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? (2019) Sci. Total Environ., 680, pp. 140-150Leiva, M.A., Morales, S., Environmental assessment of mercury pollution in urban tailings from gold mining (2013) Ecotoxicol. Environ. Saf., 90, pp. 167-173Lino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajos River basin in the Brazilian Amazon (2019) Chemosphere, 235, pp. 690-700Liu, G., Cabrera, J., Allen, M., Cai, Y., Mercury characteristics in soil samples collected nearby the DOE Oak Ridge reservation utilizing sequential extraction and thermal desorption method (2006) Sci. Total Environ., 309, pp. 384-392Lucotte, M., Montgomery, S., Begin, M., Mercury dynamics at the flooded soil-water interface in reservoirs of Northern Québec: in situ observations (1999) Mercury in the Biogeochemical Cycle, Natural Environments and Hydroelectric Reservoirs of Northern Quebec, p. 334. , M. Lucotte et al. (eds.) Springer Berlin, New YorkLusilao-Makiese, J.G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E.M., Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa (2016) Environ. Monit. Assess., 188 (1), pp. 1-11Mac Donald, D., Ingersoll, C., Berger, T., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems (2000) Arch. Environ. Contam. Toxicol., 39, pp. 20-31Male, Y.T., Reichelt-Brushett, Amanda, J., Pocock, M., Nanlohy, A., Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia – potential future risks to environmental health and food safety (2013) Mar. Pollut. Bull., 77, pp. 428-433Malehase, T., Daso, A.P., Okonkwo, J.O., Determination of mercury and its fractionation products in samples from legacy use of mercury amalgam in gold processing in Randfontein, South Africa (2016) Emerg. Contaminants, 2, pp. 157-165Marrugo-Negrete, J.L., Pinedo-Hernández, J., Díez, S., Geochemistry of mercury in tropical swamps impacted by gold mining (2015) Chemosphere, 134, pp. 44-51Mason, R.P., Baumann, Z., Hansen, G., Yao, K.M., Coulibaly, M., Coulibaly, S., An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire (2019) Sci. Total Environ., 665, pp. 1158-1167Meech, J.A., Veiga, M.M., Tromans, D., Reactivity of mercury from gold mining activities in darkwater ecosystems (1998) Ambio, 27, pp. 92-98Munthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris, R., Recovery of mercury-contaminated fisheries (2007) Ambio, 36, pp. 33-44Muresan, B., Cossa, D., Richard, S., Dominique, Y., Monomethylmercury sources in a tropical artificial reservoir (2008) Appl. Geochem., 23 (5), pp. 1101-1126Nartey, V.K., Klake, R.K., Doamekpor, L.K., Sarpong-Kumankomah, S., Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani– Anwiaso–Bekwai area of South Western Ghana (2012) Environ. Monit. Assess., 184, pp. 7623-7634Niane, B., Mortiz, R., Guédron, S., Ngom, P.M., Pfeifer, H.R., Mall, I., Poté, J., Effect of recent artisanal small-scale gold mining on the contamination of surface river sediment: case of Gambia River, Kedougou region, southeastern Senegal (2014) J. Geochem. Explor., 144, pp. 517-527O'Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Rinklebe, J., Mercury speciation, transformation and transportation in soils, atmospheric flux and implications for risk management: a critical review (2019) Environ. Int., 126, pp. 747-761Odumo, B.O., Carbonell, G., Angeyo, H.K., Patel, J.P., Torrijos, M., Rodríguez Martín, J.A., Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya (2014) Environ. Sci. Pollut. Control Ser., 21 (21), pp. 12426-12435Pinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia (2015) Chemosphere, 119, pp. 1289-1295Pestana, M.H.D., Lechler, P., Formoso, M.L.L., Miller, J., Mercury in sediments from gold and copper exploitation areas in the Ä River Basin, Southern Brazil Camaqua (2000) J. S. Am. Earth Sci., 13, pp. 537-547Pestana, I.A., Bastos, W.R., Almeida, M.G., Mussy, M.H., Souza, C.M., Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil (2019) Chemosphere, 215, pp. 758-765Pfeiffer, W.C., Lacerda, L.D., Salomons, W., Malm, O., Environmental fate of mercury from gold mining in the Brazilian Amazon (1993) Environ. Rev., 1, pp. 26-37Ramasamy, E.V., Toms, A., Shylesh, C.M.S., Jayasooryan, K.K., Mahesh, M., Mercury fractionation in the sediments of Vembanad wetland, west coast of India (2012) Environ. Geochem. Health, 34, pp. 575-586Reid, W.V., Biodiversity hotspots (1998) Trends Ecol. Evol., 13, pp. 275-280Reis, A.T., Rodrigues, S.M., Davidson, C.M., Pereira, E., Duarte, A.C., Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas (2010) Chemosphere, 81 (11), pp. 1369-1377Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., Rincón, J., Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain (2009) J. Environ. Manag., 90, pp. 1106-1116Roy, V., Amyot, M., Carignan, R., Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients (2009) Environ. Sci. Technol., 43, pp. 5605-5611Rudd, J.W.M., Bodaly, R.A., Fisher, N.S., Kelly, C.A., Kopec, D., Whipple, C., Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota (2018) Sci. Total Environ., 642, pp. 1340-1352Rudnick, R.L., Gao, S., 4.1 - composition of the continental crust (2014) Treatise on Geochemistry, 4, pp. 1-51. , 2014 second edSalazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J.L., Díez, S., Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia (2017) Environ. Int., 107, pp. 47-54Santos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., Adams, M., Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela (2011) J. Environ. Manag., 92 (4), pp. 1268-1276Shi, J., Lianga, L., Jianga, G., Jin, X., The speciation and bioavailability of mercury in sediments of Haihe River, China (2005) Environ. Int., 31, pp. 357-365St Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M., Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate (2000) Bioscience, 50, p. 9Sunderland, E.M., Gobas, F., Branfireun, B.A., Heyes, A., Environmental controls on the speciation and distribution of mercury in coastal sediments (2006) Mar. Chem., 102, pp. 111-123Tomiyasu, T., Matsuyama, A., Imura, R., Kodamatani, H., Miyamoto, J., Kono, Y., Kocman, D., Horvat, M., The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil (2012) Environ. Earth Sci., 65, pp. 1309-1322Ullrich, S., Tanton, T., Abdrashitova, S., Mercury in the aquatic environment: a review of factors affecting methylation (2001) Crit. Rev. Environ. Sci. Technol., 31, pp. 241-293Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport (2013), p. 44p. , UNEP Chemicals Branch Geneva, SwitzerlandMethod 7471B for Determination of Mercury in Solid or Semisolid Waste (1998), U.S. Environmental Protection Agency Cincinnati, OHPriority pollutant list (2015), https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, (Accessed 15 August 2016)Varejão, E.V.V., Bellato, C.R., Fontes, M.P.F., Mercury fractionation in the stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil (2009) Environ. Monit. Assess., 157, pp. 125-135Valois, H., Sucesión primaria y ecología de la revegetación de selvas degradadas por minería en el Chocó, Colombia: bases para su restauración ecológica (2016), Universidad de Valladolid Tesis DoctoralVan Straaten, P., Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe (2000) Sci. Total Environ., 259 (1-3), pp. 105-113Veiga, M.M., Baker, R.F., Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners (2004), p. 294p. , GEF/UNDP/UNIDO Vienna, AustriaVeiga, M.M., Angeloci-santos, G., Meech, J.A., The Extractive Industries and Society Review of barriers to reduce mercury use in artisanal gold mining (2014) Biochem. Pharmacol., 1 (2), pp. 351-361Wallschlager, D., Desai, M.V.M., Spengler, M., Windmoler, C.C., Wilken, R.D., Mercury speciation in floodplain soils and sediments along a contaminated river transect (1998) J. Environ. Qual., 27, pp. 1034-1044Wang, F., Chen, J., Relation of sediment characteristics to trace metal concentrations: a statistical study (2000) Water Res., 34, pp. 694-698Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., Sources and remediation for mercury contamination in aquatic systems—a literature review (2004) Environ. Pollut., 131, pp. 323-336Winfrey, M.R., Rudd, J.W.M., Environmental factors affecting the formation of methylmercury in low pH lakes: a review (1990) Environ. Contam. Toxicol., 9, pp. 853-869Wu, H., Ding, Z., Liu, Y., Liu, J., Yan, H., Pan, J., Li, L., Lu, H., Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China (2011) J. Environ. Sci., 23 (1), pp. 14-21Xia, K., Skyllberg, U.L., Bleam, W.F., Bloom, R.P., Nater, E.A., Helmke, P.A., X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances (1999) Environ. Sci. Technol., 33, pp. 257-261Yuan, C.G., Wang, T.F., Song, Y.F., Chang, A.L., Total mercury and sequential extracted mercury in soil near a coal-fired power plant (2010) Fresenius Environ. Bull., 19, pp. 2857-2863Yong-kui, Y., Zhang, C., Xiao-jun, S., Ding-Yong, W., Effect of organic matter and pH on mercury release from soils (2007) J. Environ. Sci., 19 (11), pp. 1349-1354ChemosphereColombiaFractionationGold minesMercuryMethylmercurySedimentsDistribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in ColombiaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gutiérrez-Mosquera, H., Facultad de Ingeniería, Universidad Tecnológica del Chocó, Carrera 22 No.18B-10, Quibdó, Colombia, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaMarrugo-Negrete, J., Departamento de Química, Facultad de Ciencias Básicas, Grupo de Agua, Química Aplicada y Ambiental, Universidad de Córdoba, Carrera 6 No. 76-103, Montería, Córdoba, ColombiaDíez, S., Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, E-08034, SpainMorales-Mira, G., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaMontoya-Jaramillo, L.J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaJonathan, M.P., Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, Ciudad de Mexico, C.P.07340, Mexicohttp://purl.org/coar/access_right/c_16ecGutiérrez-Mosquera H.Marrugo-Negrete J.Díez S.Morales-Mira G.Montoya-Jaramillo L.J.Jonathan M.P.11407/5943oai:repository.udem.edu.co:11407/59432021-02-05 09:58:11.751Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co