Characterization of titanium powders processed in n-hexane by high-energy ball milling

The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electr...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5927
Acceso en línea:
http://hdl.handle.net/11407/5927
Palabra clave:
Allotropic transformation
High-energy ball milling
Microstructural analysis
Titanium
Ball milling
Crystallite size
Hexane
High resolution transmission electron microscopy
Milling (machining)
Powders
Rietveld analysis
Scanning electron microscopy
X ray diffraction
Dislocation densities
High-energy ball milling
Lattice strain
Milling process
Milling time
N hexane
Titanium powders
Transformation process
Titanium metallography
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_12cb3fc3b37f08c302cd2a96e7a66655
oai_identifier_str oai:repository.udem.edu.co:11407/5927
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Characterization of titanium powders processed in n-hexane by high-energy ball milling
title Characterization of titanium powders processed in n-hexane by high-energy ball milling
spellingShingle Characterization of titanium powders processed in n-hexane by high-energy ball milling
Allotropic transformation
High-energy ball milling
Microstructural analysis
Titanium
Ball milling
Crystallite size
Hexane
High resolution transmission electron microscopy
Milling (machining)
Powders
Rietveld analysis
Scanning electron microscopy
X ray diffraction
Dislocation densities
High-energy ball milling
Lattice strain
Milling process
Milling time
N hexane
Titanium powders
Transformation process
Titanium metallography
title_short Characterization of titanium powders processed in n-hexane by high-energy ball milling
title_full Characterization of titanium powders processed in n-hexane by high-energy ball milling
title_fullStr Characterization of titanium powders processed in n-hexane by high-energy ball milling
title_full_unstemmed Characterization of titanium powders processed in n-hexane by high-energy ball milling
title_sort Characterization of titanium powders processed in n-hexane by high-energy ball milling
dc.subject.spa.fl_str_mv Allotropic transformation
High-energy ball milling
Microstructural analysis
Titanium
topic Allotropic transformation
High-energy ball milling
Microstructural analysis
Titanium
Ball milling
Crystallite size
Hexane
High resolution transmission electron microscopy
Milling (machining)
Powders
Rietveld analysis
Scanning electron microscopy
X ray diffraction
Dislocation densities
High-energy ball milling
Lattice strain
Milling process
Milling time
N hexane
Titanium powders
Transformation process
Titanium metallography
dc.subject.keyword.eng.fl_str_mv Ball milling
Crystallite size
Hexane
High resolution transmission electron microscopy
Milling (machining)
Powders
Rietveld analysis
Scanning electron microscopy
X ray diffraction
Dislocation densities
High-energy ball milling
Lattice strain
Milling process
Milling time
N hexane
Titanium powders
Transformation process
Titanium metallography
description The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder. Graphical Abstract[Figure not available: see fulltext.]. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:58Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:58Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 2683768
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5927
dc.identifier.doi.none.fl_str_mv 10.1007/s00170-020-05991-7
identifier_str_mv 2683768
10.1007/s00170-020-05991-7
url http://hdl.handle.net/11407/5927
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089883157&doi=10.1007%2fs00170-020-05991-7&partnerID=40&md5=391843474c4d390f3df4e7ee9da7ce75
dc.relation.references.none.fl_str_mv Fang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int Mater Rev, 63 (7), pp. 407-459
Wang, M., Zhou, J., Yin, Y., Nan, H., Xue, P., Tu, Z., Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing (2017) J Alloys Compd, 721, pp. 320-332
Romero, C., Yang, F., Bolzoni, L., Fatigue and fracture properties of Ti alloys from powder-based processes – a review (2018) Int J Fatigue, 117, pp. 407-419
Duan, W., Yin, Y., Zhou, J., Wang, M., Nan, H., Zhang, P., Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments (2019) J Alloys Compd, 771, pp. 489-497
Future prospects for titanium powder metallurgy markets (2015) Titanium Powder Metallurgy, pp. 579-600. , https://doi.org/10.1016/B978-0-12-800054-0.00030-7
Duda, T., Raghavan, L.V., 3D metal printing technology (2016) Int Fed Autom Control (IFAC), 49 (29), pp. 103-110. , https://doi.org/10.1016/j.ifacol.2016.11.111
Bolzoni, L., (2011) Diseño Y Procesado De Aleaciones De Titanio Mediante Técnicas Pulvimetalúrgicas Avanzadas, , Tesis Doctoral, Universidad Carlos III de Madrid
Esteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E., Introducción al procesado pulvimetalúrgico del titanio (2011) Rev Metal, 47 (2), pp. 169-187
Nouri, A., Sola, A., Metal particle shape: a practical perspective (2018) Met Powder Rep, 73 (5), pp. 276-282
Phasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations (2010) J Alloys Compd, 492 (1-2), pp. 201-207
Dabhade, V.V., Rama Mohan, T.R., Ramakrishnan, P., Synthesis of nanosized titanium powder by high energy milling (2001) Appl Surf Sci, 182 (3-4), pp. 390-393
Galindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacon, P., Echeverría, F., Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering (2019) Met Mater Int
Yang, L., (2015) Nanotechnology-enhanced metals and alloys for orthopedic implants, Nanotechnology-Enhanced Orthopedic Materials, , Elsevier Ltd, Amsterdam
Phasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater Lett, 64 (10), pp. 1215-1218
Dorofeev, G.A., Lubnin, A.N., Lad Yanov, V.I., Mukhgalin, V.V., Puskkarev, B.E., Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons (2014) Phys Met Metallogr, 115 (2), pp. 157-168
Suryanarayana, C., (2004) Mechanical alloying and milling, , Marcel Dekker, New York
Suryanarayana, C., Froes, F.H.S., Nanocrystalline titanium-magnesium alloys through mechanical alloying (1990) J Mater Res, 5 (9), pp. 1880-1886
Suzuki, T., Nagumo, N., Metastable intermediate phase formation at reaction milling of titanium and n-heptane (1995) Scr Metall Mater, 32 (8), pp. 1215-1220
Bolokang, A.S., Motaung, D.E., Arendse, C.J., Muller, T.F.G., Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder (2015) Adv Powder Technol, 26 (2), pp. 632-639
Avar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram Int, 40 (7), pp. 11123-11130
Manna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H.J., Formation of face-centered-cubic titanium by mechanical attrition (2003) J Appl Phys, 93 (3), pp. 1520-1524
Wawner, F.E., Lawless, K.R., Epitaxial growth of titanium thin films (1969) J Vac Sci Technol, 6 (4), pp. 588-590
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9 (7), pp. 671-675
Waseda, Y., Matsubara, E., Shinoda, K., (2001) X ray diffraction crystallography, , Springer, Berlin
Hajalilou, A., Hashim, M., Ebrahimi-Kahizsangi, R., Ismail, I., Sarami, N., Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering (2014) Adv Powder Technol, 25 (3), pp. 1094-1102
Ali, S., Karunanithi, R., Prashanth, M., Rahman, M.A., X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys (2019) Mater Today Proc, 27, pp. 2390-2393
Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M., Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using rietveld analysis (2018) J Nanomater, 2018, pp. 1-11
Singh, P., Abhash, A., Yadav, N., Shafeeq, M., Singh, I.B., Mondal, D.P., Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy (2018) Powder Technol, 342, pp. 275-287
Asano, K., Enoki, H., Akiba, E., Synthesis process of Mg–Ti BCC alloys by means of ball milling (2009) J Alloys Compd, 486 (1-2), pp. 115-123
Ghosh, B., Pradhan, S.K., Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying (2010) Mater Chem Phys, 120 (2-3), pp. 537-545
Shial, S.R., Masanta, M., Chaira, D., Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture (2018) Powder Technol, 329, pp. 232-240
Hosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv Powder Technol, 26, pp. 448-453
Ma, Q., Froes, F.H.S., (2015) Titanium Powder Metallurgy, , Elsevier Inc., Amsterdam
Xu, W., Xiao, S., Lu, X., Chen, G., Liu, C., Qu, X., Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling (2019) J Mater Sci Technol, 35 (2), pp. 322-327
Zhou, H., Hu, L., Sun, Y., Zhang, H., Duan, C., Yu, H., Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling (2016) Mater Charact, 113, pp. 108-116
Kurama, H., Erkuş, Ş., Gaşan, H., The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill (2017) Ceram Int, 43, pp. S391-S396
Zou, C., Long, Y., Zheng, X., Lin, H., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram Int, 43 (18), pp. 17111-17115
Suryanarayana, C., Mechanical alloying and milling (2001) Prog Mater Sci, 46 (1-2), pp. 1-184
Keskinen, J., Pogany, A., Rubin, J., Ruuskanen, P., Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane (1995) Mater Sci Eng A, 196, pp. 205-211
Lohse, B.H., Calka, A., Wexler, D., Raman spectroscopy as a tool to study TiC formation during controlled ball milling (2005) J Appl Phys, 97 (11), pp. 1-7
Delogu, F., Takacs, L., Mechanochemistry of Ti-C powder mixtures (2014) Acta Mater, 80, pp. 435-444
Chen, C., Qian, S., Wang, S., Niu, L., Liu, R., Liao, B., Zhong, Z., Wu, Y., The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature (2018) Mater Charact, 136, pp. 257-263
Edalati, K., Emami, H., Staykov, A., Smith, D.J., Akiba, E., Horita, Z., Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance (2015) Acta Mater, 99, pp. 150-156
Zhang, D.L., Ying, D.Y., Formation of fcc titanium during heating high energy ball milled Al-Ti powders (2002) Mater Lett, 52 (4-5), pp. 329-333
Han, G., Lu, X., Xia, Q., Lei, B., Yan, Y., Shang, C.J., Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy (2018) J Alloys Compd, 748, pp. 943-952
Lu, C.J., Zhang, J., Li, Z.Q., Structural evolution of titanium powder during ball milling in different atmospheres (2004) J Alloys Compd, 381 (1-2), pp. 278-283
Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of nanocrystalline titanium prepared by high-energy vibrational ball milling (2001) Appl Surf Sci, 182 (3-4), pp. 372-376
Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium (2001) Philos Mag A, 81 (1), pp. 49-60
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
dc.publisher.program.spa.fl_str_mv Ingeniería de Materiales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv International Journal of Advanced Manufacturing Technology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159145285189632
spelling 20202021-02-05T14:57:58Z2021-02-05T14:57:58Z2683768http://hdl.handle.net/11407/592710.1007/s00170-020-05991-7The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder. Graphical Abstract[Figure not available: see fulltext.]. © 2020, Springer-Verlag London Ltd., part of Springer Nature.engSpringerIngeniería de MaterialesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089883157&doi=10.1007%2fs00170-020-05991-7&partnerID=40&md5=391843474c4d390f3df4e7ee9da7ce75Fang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int Mater Rev, 63 (7), pp. 407-459Wang, M., Zhou, J., Yin, Y., Nan, H., Xue, P., Tu, Z., Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing (2017) J Alloys Compd, 721, pp. 320-332Romero, C., Yang, F., Bolzoni, L., Fatigue and fracture properties of Ti alloys from powder-based processes – a review (2018) Int J Fatigue, 117, pp. 407-419Duan, W., Yin, Y., Zhou, J., Wang, M., Nan, H., Zhang, P., Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments (2019) J Alloys Compd, 771, pp. 489-497Future prospects for titanium powder metallurgy markets (2015) Titanium Powder Metallurgy, pp. 579-600. , https://doi.org/10.1016/B978-0-12-800054-0.00030-7Duda, T., Raghavan, L.V., 3D metal printing technology (2016) Int Fed Autom Control (IFAC), 49 (29), pp. 103-110. , https://doi.org/10.1016/j.ifacol.2016.11.111Bolzoni, L., (2011) Diseño Y Procesado De Aleaciones De Titanio Mediante Técnicas Pulvimetalúrgicas Avanzadas, , Tesis Doctoral, Universidad Carlos III de MadridEsteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E., Introducción al procesado pulvimetalúrgico del titanio (2011) Rev Metal, 47 (2), pp. 169-187Nouri, A., Sola, A., Metal particle shape: a practical perspective (2018) Met Powder Rep, 73 (5), pp. 276-282Phasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations (2010) J Alloys Compd, 492 (1-2), pp. 201-207Dabhade, V.V., Rama Mohan, T.R., Ramakrishnan, P., Synthesis of nanosized titanium powder by high energy milling (2001) Appl Surf Sci, 182 (3-4), pp. 390-393Galindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacon, P., Echeverría, F., Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering (2019) Met Mater IntYang, L., (2015) Nanotechnology-enhanced metals and alloys for orthopedic implants, Nanotechnology-Enhanced Orthopedic Materials, , Elsevier Ltd, AmsterdamPhasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater Lett, 64 (10), pp. 1215-1218Dorofeev, G.A., Lubnin, A.N., Lad Yanov, V.I., Mukhgalin, V.V., Puskkarev, B.E., Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons (2014) Phys Met Metallogr, 115 (2), pp. 157-168Suryanarayana, C., (2004) Mechanical alloying and milling, , Marcel Dekker, New YorkSuryanarayana, C., Froes, F.H.S., Nanocrystalline titanium-magnesium alloys through mechanical alloying (1990) J Mater Res, 5 (9), pp. 1880-1886Suzuki, T., Nagumo, N., Metastable intermediate phase formation at reaction milling of titanium and n-heptane (1995) Scr Metall Mater, 32 (8), pp. 1215-1220Bolokang, A.S., Motaung, D.E., Arendse, C.J., Muller, T.F.G., Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder (2015) Adv Powder Technol, 26 (2), pp. 632-639Avar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram Int, 40 (7), pp. 11123-11130Manna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H.J., Formation of face-centered-cubic titanium by mechanical attrition (2003) J Appl Phys, 93 (3), pp. 1520-1524Wawner, F.E., Lawless, K.R., Epitaxial growth of titanium thin films (1969) J Vac Sci Technol, 6 (4), pp. 588-590Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9 (7), pp. 671-675Waseda, Y., Matsubara, E., Shinoda, K., (2001) X ray diffraction crystallography, , Springer, BerlinHajalilou, A., Hashim, M., Ebrahimi-Kahizsangi, R., Ismail, I., Sarami, N., Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering (2014) Adv Powder Technol, 25 (3), pp. 1094-1102Ali, S., Karunanithi, R., Prashanth, M., Rahman, M.A., X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys (2019) Mater Today Proc, 27, pp. 2390-2393Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M., Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using rietveld analysis (2018) J Nanomater, 2018, pp. 1-11Singh, P., Abhash, A., Yadav, N., Shafeeq, M., Singh, I.B., Mondal, D.P., Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy (2018) Powder Technol, 342, pp. 275-287Asano, K., Enoki, H., Akiba, E., Synthesis process of Mg–Ti BCC alloys by means of ball milling (2009) J Alloys Compd, 486 (1-2), pp. 115-123Ghosh, B., Pradhan, S.K., Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying (2010) Mater Chem Phys, 120 (2-3), pp. 537-545Shial, S.R., Masanta, M., Chaira, D., Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture (2018) Powder Technol, 329, pp. 232-240Hosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv Powder Technol, 26, pp. 448-453Ma, Q., Froes, F.H.S., (2015) Titanium Powder Metallurgy, , Elsevier Inc., AmsterdamXu, W., Xiao, S., Lu, X., Chen, G., Liu, C., Qu, X., Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling (2019) J Mater Sci Technol, 35 (2), pp. 322-327Zhou, H., Hu, L., Sun, Y., Zhang, H., Duan, C., Yu, H., Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling (2016) Mater Charact, 113, pp. 108-116Kurama, H., Erkuş, Ş., Gaşan, H., The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill (2017) Ceram Int, 43, pp. S391-S396Zou, C., Long, Y., Zheng, X., Lin, H., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram Int, 43 (18), pp. 17111-17115Suryanarayana, C., Mechanical alloying and milling (2001) Prog Mater Sci, 46 (1-2), pp. 1-184Keskinen, J., Pogany, A., Rubin, J., Ruuskanen, P., Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane (1995) Mater Sci Eng A, 196, pp. 205-211Lohse, B.H., Calka, A., Wexler, D., Raman spectroscopy as a tool to study TiC formation during controlled ball milling (2005) J Appl Phys, 97 (11), pp. 1-7Delogu, F., Takacs, L., Mechanochemistry of Ti-C powder mixtures (2014) Acta Mater, 80, pp. 435-444Chen, C., Qian, S., Wang, S., Niu, L., Liu, R., Liao, B., Zhong, Z., Wu, Y., The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature (2018) Mater Charact, 136, pp. 257-263Edalati, K., Emami, H., Staykov, A., Smith, D.J., Akiba, E., Horita, Z., Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance (2015) Acta Mater, 99, pp. 150-156Zhang, D.L., Ying, D.Y., Formation of fcc titanium during heating high energy ball milled Al-Ti powders (2002) Mater Lett, 52 (4-5), pp. 329-333Han, G., Lu, X., Xia, Q., Lei, B., Yan, Y., Shang, C.J., Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy (2018) J Alloys Compd, 748, pp. 943-952Lu, C.J., Zhang, J., Li, Z.Q., Structural evolution of titanium powder during ball milling in different atmospheres (2004) J Alloys Compd, 381 (1-2), pp. 278-283Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of nanocrystalline titanium prepared by high-energy vibrational ball milling (2001) Appl Surf Sci, 182 (3-4), pp. 372-376Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium (2001) Philos Mag A, 81 (1), pp. 49-60International Journal of Advanced Manufacturing TechnologyAllotropic transformationHigh-energy ball millingMicrostructural analysisTitaniumBall millingCrystallite sizeHexaneHigh resolution transmission electron microscopyMilling (machining)PowdersRietveld analysisScanning electron microscopyX ray diffractionDislocation densitiesHigh-energy ball millingLattice strainMilling processMilling timeN hexaneTitanium powdersTransformation processTitanium metallographyCharacterization of titanium powders processed in n-hexane by high-energy ball millingArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Restrepo, A.H., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaRíos, J.M., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaArango, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, ColombiaZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70 – 01, Medellín, ColombiaValencia-Escobar, A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70 – 01, Medellín, ColombiaBolivar, F.J., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaEcheverría, F.E., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRestrepo A.H.Ríos J.M.Arango F.Correa E.Zuleta A.A.Valencia-Escobar A.Bolivar F.J.Castaño J.G.Echeverría F.E.11407/5927oai:repository.udem.edu.co:11407/59272021-02-05 09:57:58.141Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co