Characterization of titanium powders processed in n-hexane by high-energy ball milling
The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electr...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5927
- Acceso en línea:
- http://hdl.handle.net/11407/5927
- Palabra clave:
- Allotropic transformation
High-energy ball milling
Microstructural analysis
Titanium
Ball milling
Crystallite size
Hexane
High resolution transmission electron microscopy
Milling (machining)
Powders
Rietveld analysis
Scanning electron microscopy
X ray diffraction
Dislocation densities
High-energy ball milling
Lattice strain
Milling process
Milling time
N hexane
Titanium powders
Transformation process
Titanium metallography
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_12cb3fc3b37f08c302cd2a96e7a66655 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5927 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
title |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
spellingShingle |
Characterization of titanium powders processed in n-hexane by high-energy ball milling Allotropic transformation High-energy ball milling Microstructural analysis Titanium Ball milling Crystallite size Hexane High resolution transmission electron microscopy Milling (machining) Powders Rietveld analysis Scanning electron microscopy X ray diffraction Dislocation densities High-energy ball milling Lattice strain Milling process Milling time N hexane Titanium powders Transformation process Titanium metallography |
title_short |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
title_full |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
title_fullStr |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
title_full_unstemmed |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
title_sort |
Characterization of titanium powders processed in n-hexane by high-energy ball milling |
dc.subject.spa.fl_str_mv |
Allotropic transformation High-energy ball milling Microstructural analysis Titanium |
topic |
Allotropic transformation High-energy ball milling Microstructural analysis Titanium Ball milling Crystallite size Hexane High resolution transmission electron microscopy Milling (machining) Powders Rietveld analysis Scanning electron microscopy X ray diffraction Dislocation densities High-energy ball milling Lattice strain Milling process Milling time N hexane Titanium powders Transformation process Titanium metallography |
dc.subject.keyword.eng.fl_str_mv |
Ball milling Crystallite size Hexane High resolution transmission electron microscopy Milling (machining) Powders Rietveld analysis Scanning electron microscopy X ray diffraction Dislocation densities High-energy ball milling Lattice strain Milling process Milling time N hexane Titanium powders Transformation process Titanium metallography |
description |
The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder. Graphical Abstract[Figure not available: see fulltext.]. © 2020, Springer-Verlag London Ltd., part of Springer Nature. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:58Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:58Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
2683768 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5927 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00170-020-05991-7 |
identifier_str_mv |
2683768 10.1007/s00170-020-05991-7 |
url |
http://hdl.handle.net/11407/5927 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089883157&doi=10.1007%2fs00170-020-05991-7&partnerID=40&md5=391843474c4d390f3df4e7ee9da7ce75 |
dc.relation.references.none.fl_str_mv |
Fang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int Mater Rev, 63 (7), pp. 407-459 Wang, M., Zhou, J., Yin, Y., Nan, H., Xue, P., Tu, Z., Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing (2017) J Alloys Compd, 721, pp. 320-332 Romero, C., Yang, F., Bolzoni, L., Fatigue and fracture properties of Ti alloys from powder-based processes – a review (2018) Int J Fatigue, 117, pp. 407-419 Duan, W., Yin, Y., Zhou, J., Wang, M., Nan, H., Zhang, P., Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments (2019) J Alloys Compd, 771, pp. 489-497 Future prospects for titanium powder metallurgy markets (2015) Titanium Powder Metallurgy, pp. 579-600. , https://doi.org/10.1016/B978-0-12-800054-0.00030-7 Duda, T., Raghavan, L.V., 3D metal printing technology (2016) Int Fed Autom Control (IFAC), 49 (29), pp. 103-110. , https://doi.org/10.1016/j.ifacol.2016.11.111 Bolzoni, L., (2011) Diseño Y Procesado De Aleaciones De Titanio Mediante Técnicas Pulvimetalúrgicas Avanzadas, , Tesis Doctoral, Universidad Carlos III de Madrid Esteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E., Introducción al procesado pulvimetalúrgico del titanio (2011) Rev Metal, 47 (2), pp. 169-187 Nouri, A., Sola, A., Metal particle shape: a practical perspective (2018) Met Powder Rep, 73 (5), pp. 276-282 Phasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations (2010) J Alloys Compd, 492 (1-2), pp. 201-207 Dabhade, V.V., Rama Mohan, T.R., Ramakrishnan, P., Synthesis of nanosized titanium powder by high energy milling (2001) Appl Surf Sci, 182 (3-4), pp. 390-393 Galindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacon, P., Echeverría, F., Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering (2019) Met Mater Int Yang, L., (2015) Nanotechnology-enhanced metals and alloys for orthopedic implants, Nanotechnology-Enhanced Orthopedic Materials, , Elsevier Ltd, Amsterdam Phasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater Lett, 64 (10), pp. 1215-1218 Dorofeev, G.A., Lubnin, A.N., Lad Yanov, V.I., Mukhgalin, V.V., Puskkarev, B.E., Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons (2014) Phys Met Metallogr, 115 (2), pp. 157-168 Suryanarayana, C., (2004) Mechanical alloying and milling, , Marcel Dekker, New York Suryanarayana, C., Froes, F.H.S., Nanocrystalline titanium-magnesium alloys through mechanical alloying (1990) J Mater Res, 5 (9), pp. 1880-1886 Suzuki, T., Nagumo, N., Metastable intermediate phase formation at reaction milling of titanium and n-heptane (1995) Scr Metall Mater, 32 (8), pp. 1215-1220 Bolokang, A.S., Motaung, D.E., Arendse, C.J., Muller, T.F.G., Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder (2015) Adv Powder Technol, 26 (2), pp. 632-639 Avar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram Int, 40 (7), pp. 11123-11130 Manna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H.J., Formation of face-centered-cubic titanium by mechanical attrition (2003) J Appl Phys, 93 (3), pp. 1520-1524 Wawner, F.E., Lawless, K.R., Epitaxial growth of titanium thin films (1969) J Vac Sci Technol, 6 (4), pp. 588-590 Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9 (7), pp. 671-675 Waseda, Y., Matsubara, E., Shinoda, K., (2001) X ray diffraction crystallography, , Springer, Berlin Hajalilou, A., Hashim, M., Ebrahimi-Kahizsangi, R., Ismail, I., Sarami, N., Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering (2014) Adv Powder Technol, 25 (3), pp. 1094-1102 Ali, S., Karunanithi, R., Prashanth, M., Rahman, M.A., X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys (2019) Mater Today Proc, 27, pp. 2390-2393 Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M., Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using rietveld analysis (2018) J Nanomater, 2018, pp. 1-11 Singh, P., Abhash, A., Yadav, N., Shafeeq, M., Singh, I.B., Mondal, D.P., Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy (2018) Powder Technol, 342, pp. 275-287 Asano, K., Enoki, H., Akiba, E., Synthesis process of Mg–Ti BCC alloys by means of ball milling (2009) J Alloys Compd, 486 (1-2), pp. 115-123 Ghosh, B., Pradhan, S.K., Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying (2010) Mater Chem Phys, 120 (2-3), pp. 537-545 Shial, S.R., Masanta, M., Chaira, D., Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture (2018) Powder Technol, 329, pp. 232-240 Hosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv Powder Technol, 26, pp. 448-453 Ma, Q., Froes, F.H.S., (2015) Titanium Powder Metallurgy, , Elsevier Inc., Amsterdam Xu, W., Xiao, S., Lu, X., Chen, G., Liu, C., Qu, X., Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling (2019) J Mater Sci Technol, 35 (2), pp. 322-327 Zhou, H., Hu, L., Sun, Y., Zhang, H., Duan, C., Yu, H., Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling (2016) Mater Charact, 113, pp. 108-116 Kurama, H., Erkuş, Ş., Gaşan, H., The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill (2017) Ceram Int, 43, pp. S391-S396 Zou, C., Long, Y., Zheng, X., Lin, H., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram Int, 43 (18), pp. 17111-17115 Suryanarayana, C., Mechanical alloying and milling (2001) Prog Mater Sci, 46 (1-2), pp. 1-184 Keskinen, J., Pogany, A., Rubin, J., Ruuskanen, P., Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane (1995) Mater Sci Eng A, 196, pp. 205-211 Lohse, B.H., Calka, A., Wexler, D., Raman spectroscopy as a tool to study TiC formation during controlled ball milling (2005) J Appl Phys, 97 (11), pp. 1-7 Delogu, F., Takacs, L., Mechanochemistry of Ti-C powder mixtures (2014) Acta Mater, 80, pp. 435-444 Chen, C., Qian, S., Wang, S., Niu, L., Liu, R., Liao, B., Zhong, Z., Wu, Y., The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature (2018) Mater Charact, 136, pp. 257-263 Edalati, K., Emami, H., Staykov, A., Smith, D.J., Akiba, E., Horita, Z., Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance (2015) Acta Mater, 99, pp. 150-156 Zhang, D.L., Ying, D.Y., Formation of fcc titanium during heating high energy ball milled Al-Ti powders (2002) Mater Lett, 52 (4-5), pp. 329-333 Han, G., Lu, X., Xia, Q., Lei, B., Yan, Y., Shang, C.J., Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy (2018) J Alloys Compd, 748, pp. 943-952 Lu, C.J., Zhang, J., Li, Z.Q., Structural evolution of titanium powder during ball milling in different atmospheres (2004) J Alloys Compd, 381 (1-2), pp. 278-283 Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of nanocrystalline titanium prepared by high-energy vibrational ball milling (2001) Appl Surf Sci, 182 (3-4), pp. 372-376 Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium (2001) Philos Mag A, 81 (1), pp. 49-60 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Materiales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
International Journal of Advanced Manufacturing Technology |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159145285189632 |
spelling |
20202021-02-05T14:57:58Z2021-02-05T14:57:58Z2683768http://hdl.handle.net/11407/592710.1007/s00170-020-05991-7The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder. Graphical Abstract[Figure not available: see fulltext.]. © 2020, Springer-Verlag London Ltd., part of Springer Nature.engSpringerIngeniería de MaterialesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089883157&doi=10.1007%2fs00170-020-05991-7&partnerID=40&md5=391843474c4d390f3df4e7ee9da7ce75Fang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int Mater Rev, 63 (7), pp. 407-459Wang, M., Zhou, J., Yin, Y., Nan, H., Xue, P., Tu, Z., Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing (2017) J Alloys Compd, 721, pp. 320-332Romero, C., Yang, F., Bolzoni, L., Fatigue and fracture properties of Ti alloys from powder-based processes – a review (2018) Int J Fatigue, 117, pp. 407-419Duan, W., Yin, Y., Zhou, J., Wang, M., Nan, H., Zhang, P., Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments (2019) J Alloys Compd, 771, pp. 489-497Future prospects for titanium powder metallurgy markets (2015) Titanium Powder Metallurgy, pp. 579-600. , https://doi.org/10.1016/B978-0-12-800054-0.00030-7Duda, T., Raghavan, L.V., 3D metal printing technology (2016) Int Fed Autom Control (IFAC), 49 (29), pp. 103-110. , https://doi.org/10.1016/j.ifacol.2016.11.111Bolzoni, L., (2011) Diseño Y Procesado De Aleaciones De Titanio Mediante Técnicas Pulvimetalúrgicas Avanzadas, , Tesis Doctoral, Universidad Carlos III de MadridEsteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E., Introducción al procesado pulvimetalúrgico del titanio (2011) Rev Metal, 47 (2), pp. 169-187Nouri, A., Sola, A., Metal particle shape: a practical perspective (2018) Met Powder Rep, 73 (5), pp. 276-282Phasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations (2010) J Alloys Compd, 492 (1-2), pp. 201-207Dabhade, V.V., Rama Mohan, T.R., Ramakrishnan, P., Synthesis of nanosized titanium powder by high energy milling (2001) Appl Surf Sci, 182 (3-4), pp. 390-393Galindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacon, P., Echeverría, F., Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering (2019) Met Mater IntYang, L., (2015) Nanotechnology-enhanced metals and alloys for orthopedic implants, Nanotechnology-Enhanced Orthopedic Materials, , Elsevier Ltd, AmsterdamPhasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater Lett, 64 (10), pp. 1215-1218Dorofeev, G.A., Lubnin, A.N., Lad Yanov, V.I., Mukhgalin, V.V., Puskkarev, B.E., Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons (2014) Phys Met Metallogr, 115 (2), pp. 157-168Suryanarayana, C., (2004) Mechanical alloying and milling, , Marcel Dekker, New YorkSuryanarayana, C., Froes, F.H.S., Nanocrystalline titanium-magnesium alloys through mechanical alloying (1990) J Mater Res, 5 (9), pp. 1880-1886Suzuki, T., Nagumo, N., Metastable intermediate phase formation at reaction milling of titanium and n-heptane (1995) Scr Metall Mater, 32 (8), pp. 1215-1220Bolokang, A.S., Motaung, D.E., Arendse, C.J., Muller, T.F.G., Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder (2015) Adv Powder Technol, 26 (2), pp. 632-639Avar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram Int, 40 (7), pp. 11123-11130Manna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H.J., Formation of face-centered-cubic titanium by mechanical attrition (2003) J Appl Phys, 93 (3), pp. 1520-1524Wawner, F.E., Lawless, K.R., Epitaxial growth of titanium thin films (1969) J Vac Sci Technol, 6 (4), pp. 588-590Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9 (7), pp. 671-675Waseda, Y., Matsubara, E., Shinoda, K., (2001) X ray diffraction crystallography, , Springer, BerlinHajalilou, A., Hashim, M., Ebrahimi-Kahizsangi, R., Ismail, I., Sarami, N., Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering (2014) Adv Powder Technol, 25 (3), pp. 1094-1102Ali, S., Karunanithi, R., Prashanth, M., Rahman, M.A., X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys (2019) Mater Today Proc, 27, pp. 2390-2393Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M., Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using rietveld analysis (2018) J Nanomater, 2018, pp. 1-11Singh, P., Abhash, A., Yadav, N., Shafeeq, M., Singh, I.B., Mondal, D.P., Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy (2018) Powder Technol, 342, pp. 275-287Asano, K., Enoki, H., Akiba, E., Synthesis process of Mg–Ti BCC alloys by means of ball milling (2009) J Alloys Compd, 486 (1-2), pp. 115-123Ghosh, B., Pradhan, S.K., Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying (2010) Mater Chem Phys, 120 (2-3), pp. 537-545Shial, S.R., Masanta, M., Chaira, D., Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture (2018) Powder Technol, 329, pp. 232-240Hosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv Powder Technol, 26, pp. 448-453Ma, Q., Froes, F.H.S., (2015) Titanium Powder Metallurgy, , Elsevier Inc., AmsterdamXu, W., Xiao, S., Lu, X., Chen, G., Liu, C., Qu, X., Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling (2019) J Mater Sci Technol, 35 (2), pp. 322-327Zhou, H., Hu, L., Sun, Y., Zhang, H., Duan, C., Yu, H., Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling (2016) Mater Charact, 113, pp. 108-116Kurama, H., Erkuş, Ş., Gaşan, H., The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill (2017) Ceram Int, 43, pp. S391-S396Zou, C., Long, Y., Zheng, X., Lin, H., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram Int, 43 (18), pp. 17111-17115Suryanarayana, C., Mechanical alloying and milling (2001) Prog Mater Sci, 46 (1-2), pp. 1-184Keskinen, J., Pogany, A., Rubin, J., Ruuskanen, P., Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane (1995) Mater Sci Eng A, 196, pp. 205-211Lohse, B.H., Calka, A., Wexler, D., Raman spectroscopy as a tool to study TiC formation during controlled ball milling (2005) J Appl Phys, 97 (11), pp. 1-7Delogu, F., Takacs, L., Mechanochemistry of Ti-C powder mixtures (2014) Acta Mater, 80, pp. 435-444Chen, C., Qian, S., Wang, S., Niu, L., Liu, R., Liao, B., Zhong, Z., Wu, Y., The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature (2018) Mater Charact, 136, pp. 257-263Edalati, K., Emami, H., Staykov, A., Smith, D.J., Akiba, E., Horita, Z., Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance (2015) Acta Mater, 99, pp. 150-156Zhang, D.L., Ying, D.Y., Formation of fcc titanium during heating high energy ball milled Al-Ti powders (2002) Mater Lett, 52 (4-5), pp. 329-333Han, G., Lu, X., Xia, Q., Lei, B., Yan, Y., Shang, C.J., Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy (2018) J Alloys Compd, 748, pp. 943-952Lu, C.J., Zhang, J., Li, Z.Q., Structural evolution of titanium powder during ball milling in different atmospheres (2004) J Alloys Compd, 381 (1-2), pp. 278-283Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of nanocrystalline titanium prepared by high-energy vibrational ball milling (2001) Appl Surf Sci, 182 (3-4), pp. 372-376Chatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium (2001) Philos Mag A, 81 (1), pp. 49-60International Journal of Advanced Manufacturing TechnologyAllotropic transformationHigh-energy ball millingMicrostructural analysisTitaniumBall millingCrystallite sizeHexaneHigh resolution transmission electron microscopyMilling (machining)PowdersRietveld analysisScanning electron microscopyX ray diffractionDislocation densitiesHigh-energy ball millingLattice strainMilling processMilling timeN hexaneTitanium powdersTransformation processTitanium metallographyCharacterization of titanium powders processed in n-hexane by high-energy ball millingArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Restrepo, A.H., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaRíos, J.M., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaArango, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, ColombiaZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70 – 01, Medellín, ColombiaValencia-Escobar, A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70 – 01, Medellín, ColombiaBolivar, F.J., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, ColombiaEcheverría, F.E., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRestrepo A.H.Ríos J.M.Arango F.Correa E.Zuleta A.A.Valencia-Escobar A.Bolivar F.J.Castaño J.G.Echeverría F.E.11407/5927oai:repository.udem.edu.co:11407/59272021-02-05 09:57:58.141Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |