Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks
Introduction: Executive functions play a fundamental role in walking by integrating information from cognitive-motor pathways. Subtle changes in brain and behavior may help identify older adults who are more susceptible to executive function deficits with advancing age due to prefrontal cortex deter...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5886
- Acceso en línea:
- http://hdl.handle.net/11407/5886
- Palabra clave:
- Aging
Cognitive science
dual-task walking
executive demands
fNIRS
Gait
Near Infra-red spectroscopy
Task Performance and Analysis
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_125a5c4896053954bfe3feaa26929457 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5886 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
title |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
spellingShingle |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks Aging Cognitive science dual-task walking executive demands fNIRS Gait Near Infra-red spectroscopy Task Performance and Analysis |
title_short |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
title_full |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
title_fullStr |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
title_full_unstemmed |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
title_sort |
Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks |
dc.subject.spa.fl_str_mv |
Aging Cognitive science dual-task walking executive demands fNIRS Gait Near Infra-red spectroscopy Task Performance and Analysis |
topic |
Aging Cognitive science dual-task walking executive demands fNIRS Gait Near Infra-red spectroscopy Task Performance and Analysis |
description |
Introduction: Executive functions play a fundamental role in walking by integrating information from cognitive-motor pathways. Subtle changes in brain and behavior may help identify older adults who are more susceptible to executive function deficits with advancing age due to prefrontal cortex deterioration. This study aims to examine how older adults mitigate executive demands while walking during cognitively demanding tasks. Methods: Twenty healthy older adults (M = 71.8 years, SD = 6.4) performed simple reaction time (SRT), go/no-go (GNG), n-back (NBK), and double number sequence (DNS) cognitive tasks of increasing difficulty while walking (i.e., dual task). Functional near infra-red spectroscopy (fNIRS) was used to measure the hemodynamic response (i.e., oxy- [HbO2] and deoxyhemoglobin [HbR]) changes in the prefrontal cortex (PFC) during dual and single tasks (i.e., walking alone). In addition, performance was measured using gait speed (m/s), response time (s), and accuracy (% correct). Results: Using repeated measures ANOVAs, neural findings demonstrated a main effect of task such that ∆HbO2 (p =.047) and ∆HbR (p =.040) decreased between single and dual tasks. An interaction between task and cognitive difficulty (p =.014) revealed that gait speed decreased in the DNS between single and dual tasks. A main effect of task in response time indicated that the SRT response time was faster than all other difficulty levels (p <.001). Accuracy performance declined between single and dual tasks (p =.028) and across difficulty levels (p <.001) but was not significantly different between the NBK and DNS. Conclusion: Findings suggest that a healthy older adult sample might mitigate executive demands using an automatic locomotor control strategy such that shifting conscious attention away from walking during the dual tasks resulted in decreased ∆HbO2 and ∆HbR. However, decreased prefrontal activation was inefficient at maintaining response time and accuracy performance and may be differently affected by increasing cognitive demands. © 2021 The Authors. Brain and Behavior published by Wiley Periodicals LLC |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:32Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:32Z |
dc.date.none.fl_str_mv |
2021 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
21623279 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5886 |
dc.identifier.doi.none.fl_str_mv |
10.1002/brb3.2021 |
identifier_str_mv |
21623279 10.1002/brb3.2021 |
url |
http://hdl.handle.net/11407/5886 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099016547&doi=10.1002%2fbrb3.2021&partnerID=40&md5=7f41cc0f78859abd960ebdb95849a1a3 |
dc.relation.references.none.fl_str_mv |
Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., Cockburn, J., Cognitive motor interference while walking: A systematic review and meta-analysis (2011) Neuroscience & Biobehavioral Reviews, 35 (3), pp. 715-728. , https://doi.org/10.1016/j.neubiorev.2010.08.008 Al-Yahya, E., Johansen-Berg, H., Kischka, U., Zarei, M., Cockburn, J., Dawes, H., Prefrontal cortex activation while walking under dual-task conditions in stroke: A multimodal imaging study (2016) Neurorehabilitation and Neural Repair, 30 (6), pp. 591-599. , https://doi.org/10.1177/1545968315613864 Baddeley, A., (1986) Working memory, , Oxford University Press Beck, E., Intzandt, B., Almeida, Q.J., Can dual task walking improve in Parkinson’s disease after external focus of attention exercise? A single blind randomized controlled trial (2018) Neurorehabilitation and Neural Repair, 32 (1), pp. 18-33. , https://doi.org/10.1177/1545968317746782 Bernstein, N., (1967) The co-ordination and regulation of movements, , New York, Pergamon Press Bertsch, K., Hagemann, D., Hermes, M., Walter, C., Khan, R., Naumann, E., Resting cerebral blood flow, attention, and aging (2009) Brain Research, 1267, pp. 77-88. , https://doi.org/10.1016/j.brainres.2009.02.053 Beurskens, R., Bock, O., Age-related deficits of dual-task walking: A review (2012) Neural Plasticity, 2012, pp. 1-9. , https://doi.org/10.1155/2012/131608 Beurskens, R., Helmich, I., Rein, R., Bock, O., Age-related changes in prefrontal activity during walking in dual-task situations: A fNIRS study (2014) International Journal of Psychophysiology, 92 (3), pp. 122-128. , https://doi.org/10.1016/j.ijpsycho.2014.03.005 Brustio, P., Magistro, D., Zecca, M., Rabaglietti, E., Liubicich, M., Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study (2017) PLoS One, 12 (7). , https://doi.org/10.1371/journal.pone.0181698 Cabeza, R., Albert, M., Belleville, S., Craik, F., Duarte, A., Grady, C., Lindenberger, U., Rajah, M.N., Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing (2018) Nature Reviews Neuroscience, 19 (11), pp. 701-710. , https://doi.org/10.1038/s41583-018-0068-2 Clark, D., Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies (2015) Frontiers in Human Neuroscience, 9. , https://doi.org/10.3389/fnhum.2015.00246 Delbaere, K., Close, J., Mikolaizak, A., Sachdev, P., Brodaty, H., Lord, S., The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study (2010) Age and Ageing, 39 (2), pp. 210-216. , https://doi.org/10.1093/ageing/afp225 Dietrich, A., Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis (2003) Consciousness and Cognition, 12 (2), pp. 231-256. , https://doi.org/10.1016/S1053-8100(02)00046-6 Dietrich, A., Audiffren, M., The reticular-activating hypofrontality (RAH) model of acute exercise (2011) Neuroscience & Biobehavioral Reviews, 35 (6), pp. 1305-1325. , https://doi.org/10.1016/j.neubiorev.2011.02.001 Dupuy, O., Gauthier, C., Fraser, S., Desjardins-Crèpeau, L., Desjardins, M., Mekary, S., Lesage, F., Bherer, L., Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women (2015) Frontiers in Human Neuroscience, 9. , https://doi.org/10.3389/fnhum.2015.00066 Fraser, S., Dupuy, O., Pouliot, P., Lesage, F., Bherer, L., Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load (2016) Frontiers in Aging Neuroscience, 8. , https://doi.org/10.3389/fnagi.2016.00240 Grady, C., Functional brain imaging and age-related changes in cognition (2000) Biological Psychology, 54 (1), pp. 259-281. , https://doi.org/10.1016/S0301-0511(00)00059-4 Guralnik, J., Simonsick, E., Ferrucci, L., Glynn, R., Berkman, L., Blazer, D., Scherr, P., Wallace, R., A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission (1994) Journal of Gerontology, 49 (2), pp. M85-M94. , https://doi.org/10.1093/geronj/49.2.M85 Harada, T., Miyai, I., Suzuki, M., Kubota, K., Gait capacity affects cortical activation patterns related to speed control in the elderly (2009) Experimental Brain Research, 193 (3), pp. 445-454. , https://doi.org/10.1007/s00221-008-1643-y Hausdorff, J., Schweiger, A., Herman, T., Yogev-Seligmann, G., Giladi, N., Dual task decrements in gait among healthy older adults: Contributing factors (2008) The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63 (12), pp. 1335-1343 Hawkins, K., Fox, E., Daly, J., Rose, D., Christou, E.A., McGuirk, T., Otzel, D., Clark, D., Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications (2018) Human Movement Science, 59, pp. 46-55. , https://doi.org/10.1016/j.humov.2018.03.010 Hernandez, M., Holtzer, R., Chaparro, G., Jean, K., Balto, J., Sandroff, B., Izzetoglu, M., Motl, R., Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis (2016) Journal of the Neurological Sciences, 370, pp. 277-283. , https://doi.org/10.1016/j.jns.2016.10.002 Herold, F., Wiegel, P., Scholkmann, F., Thiers, A., Hamacher, D., Schega, L., Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks (2017) Neurophotonics, 4 (4). , https://doi.org/10.1117/1.NPh.4.4.041403 Herwig, U., Satrapi, P., Schönfeldt-Lecuona, C., Using the international 10–20 eeg system for positioning of transcranial magnetic stimulation (2003) Brain Topography, 16 (2), pp. 95-99. , https://doi.org/10.1023/B:BRAT.0000006333.93597.9d Hollman, J., McDade, E., Petersen, R., Normative spatiotemporal gait parameters in older adults (2011) Gait & Posture, 34 (1), pp. 111-118. , https://doi.org/10.1016/j.gaitpost.2011.03.024 Holtzer, R., Mahoney, J., Izzetoglu, M., Izzetoglu, K., Onaral, B., Verghese, J., FNIRS study of walking and walking while talking in young and old individuals (2011) The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A (8), pp. 879-887. , https://doi.org/10.1093/gerona/glr068 Holtzer, R., Mahoney, J., Izzetoglu, M., Wang, C., England, S., Verghese, J., Online fronto-cortical control of simple and attention-demanding locomotion in humans (2015) NeuroImage, 112, pp. 152-159. , https://doi.org/10.1016/j.neuroimage.2015.03.002 Holtzer, R., Verghese, J., Allali, G., Izzetoglu, M., Wang, C., Mahoney, J., Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis (2016) Brain Topography, 29 (2), pp. 334-343. , https://doi.org/10.1007/s10548-015-0465-z Hsieh, S., Wu, M., Tang, C., Adaptive strategies for the elderly in inhibiting irrelevant and conflict no-go trials while performing the go/no-go task (2016) Frontiers in Aging Neuroscience, 7. , https://doi.org/10.3389/fnagi.2015.00243 Huxhold, O., Li, S., Schmiedek, F., Lindenberger, U., Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention (2006) Brain Research Bulletin, 69 (3), pp. 294-305. , https://doi.org/10.1016/j.brainresbull.2006.01.002 Kahya, M., Moon, S., Ranchet, M., Vukas, R., Lyons, K.E., Pahwa, R., Akinwuntan, A., Devos, H., Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review (2019) Experimental Gerontology, 128. , https://doi.org/10.1016/j.exger.2019.110756 Kyrdalen, I., Thingstad, P., Sandvik, L., Ormstad, H., Associations between gait speed and well-known fall risk factors among community-dwelling older adults (2019) Physiotherapy Research International, 24 (1). , https://doi.org/10.1002/pri.1743 Leff, D., Orihuela-Espina, F., Elwell, C., Athanasiou, T., Delpy, D., Darzi, A.W., Yang, G., Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies (2011) NeuroImage, 54 (4), pp. 2922-2936. , https://doi.org/10.1016/j.neuroimage.2010.10.058 Lu, C., Liu, Y., Yang, Y., Wu, Y., Wang, R., Maintaining gait performance by cortical activation during dual-task interference: A functional near-infrared spectroscopy study (2015) PLoS One, 10 (6). , https://doi.org/10.1371/journal.pone.0129390 Lundin-Olsson, L., Nyberg, L., Gustafson, Y., Himbert, D., Seknadji, P., Karila-Cohen, D., Juliard, J., Steg, P., “Stops walking when talking” as a predictor of falls in elderly people (1997) The Lancet, 349. , https://doi.org/10.1016/S0140-6736(97)24009-2 Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M., Bloem, B.R., Giladi, N., Deutsch, J., Mirelman, A., The Role of the frontal lobe in complex walking among patients with parkinson’s disease and healthy older adults: An fNIRS study (2016) Neurorehabilitation and Neural Repair, 30 (10), pp. 963-971. , https://doi.org/10.1177/1545968316650426 Marusic, U., Taube, W., Morrison, S.A., Biasutti, L., Grassi, B., De Pauw, K., Meeusen, R., Ruffieux, J., Aging effects on prefrontal cortex oxygenation in a posture-cognition dual-task: An fNIRS pilot study (2019) European Review of Aging and Physical Activity, 16 (1). , https://doi.org/10.1186/s11556-018-0209-7 Mirelman, A., Maidan, I., Bernad-Elazari, H., Shustack, S., Giladi, N., Hausdorff, J., Effects of aging on prefrontal brain activation during challenging walking conditions (2017) Brain and Cognition, 115, pp. 41-46. , https://doi.org/10.1016/j.bandc.2017.04.002 Miyai, I., Tanabe, H., Sase, I., Eda, H., Oda, I., Konishi, I., Tsunazawa, Y., Kubota, K., Cortical mapping of gait in humans: A near-infrared spectroscopic topography study (2001) NeuroImage, 14 (5), pp. 1186-1192. , https://doi.org/10.1006/nimg.2001.0905 Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J., Chertkow, H., The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment (2005) Journal of the American Geriatrics Society, 53 (4), pp. 695-699. , https://doi.org/10.1111/j.1532-5415.2005.53221.x Oldfield, R., The assessment and analysis of handedness: The Edinburgh inventory (1971) Neuropsychologia, 9 (1), pp. 97-113. , https://doi.org/10.1016/0028-3932(71)90067-4 Pashler, H., (1994) Dual-task Interference in Simple Tasks: Data and Theory., 116 (2). , https://doi.org/10.1037/0033-2909.116.2.220 Patel, P., Lamar, M., Bhatt, T., Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking (2014) Neuroscience, 260, pp. 140-148. , https://doi.org/10.1016/j.neuroscience.2013.12.016 Pelicioni, P., Tijsma, M., Lord, S., Menant, J., Prefrontal cortical activation measured by fNIRS during walking: Effects of age, disease and secondary task (2019) PeerJ, 7. , https://doi.org/10.7717/peerj.6833 Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., Burgess, P., The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience (2018) Annals of the New York Academy of Sciences, 1464 (1), pp. 5-29. , https://doi.org/10.1111/nyas.13948 Poldrack, R.A., The neural correlates of motor skill automaticity (2005) Journal of Neuroscience, 25 (22), pp. 5356-5364. , https://doi.org/10.1523/JNEUROSCI.3880-04.2005 Potvin-Desrochers, A., Richer, N., Lajoie, Y., Cognitive tasks promote automatization of postural control in young and older adults (2017) Gait & Posture, 57, pp. 40-45. , https://doi.org/10.1016/j.gaitpost.2017.05.019 Quaresima, V., Ferrari, M., A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? (2019) Photonics, 6 (3). , https://doi.org/10.3390/photonics6030087 Reuter-Lorenz, P., Park, D., How does it STAC up? Revisiting the scaffolding theory of aging and cognition (2014) Neuropsychology Review, 24 (3), pp. 355-370. , https://doi.org/10.1007/s11065-014-9270-9 Richer, N., Saunders, D., Polskaia, N., Lajoie, Y., The effects of attentional focus and cognitive tasks on postural sway may be the result of automaticity (2017) Gait & Posture, 54, pp. 45-49. , https://doi.org/10.1016/j.gaitpost.2017.02.022 Rosso, A., Cenciarini, M., Sparto, P., Loughlin, P., Furman, J., Huppert, T., Neuroimaging of an attention demanding dual-task during dynamic postural control (2017) Gait & Posture, 57, pp. 193-198. , https://doi.org/10.1016/j.gaitpost.2017.06.013 Schneider, W., Shiffrin, R., Controlled and automatic human information processing: I. detection, search, and attention (1977) Psychological Review, 84 (1) Scholkmann, F., Wolf, M., General equation for the differential pathlength factor of the frontal human head depending on wavelength and age (2013) Journal of Biomedical Optics, 18 (10). , https://doi.org/10.1117/1.JBO.18.10.105004 Shumway-Cook, A., Woollacott, M., Kerns, K., Baldwin, M., The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls (1997) The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52A (4), pp. M232-M240. , https://doi.org/10.1093/gerona/52A.4.M232 Smith, E., Cusack, T., Blake, C., The effect of a dual task on gait speed in community dwelling older adults: A systematic review and meta-analysis (2016) Gait & Posture, 44, pp. 250-258. , https://doi.org/10.1016/j.gaitpost.2015.12.017 Sorond, F., Kiely, D., Galica, A., Moscufo, N., Serrador, J., Iloputaife, I., Egorova, S., Lipsitz, L., Neurovascular coupling is impaired in slow walkers: The MOBILIZE Boston Study (2011) Annals of Neurology, 70 (2), pp. 213-220. , https://doi.org/10.1002/ana.22433 Srygley, J., Mirelman, A., Herman, T., Giladi, N., Hausdorff, J., When does walking alter thinking? Age and task associated findings (2009) Brain Research, 1253, pp. 92-99. , https://doi.org/10.1016/j.brainres.2008.11.067 St-Amant, G., Rahman, T., Polskaia, N., Fraser, S., Lajoie, Y., Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing (2020) Human Movement Science, 70. , https://doi.org/10.1016/j.humov.2020.102587 Strauss, P., Sherman, N., Spreen, O., (2006) A compendium of neuropsychological tests: Administration, norms, and commentary, , Oxford University Press Verghese, J., Wang, C., Ayers, E., Izzetoglu, M., Holtzer, R., Brain activation in high-functioning older adults and falls: Prospective cohort study (2017) Neurology, 88 (2), pp. 191-197. , https://doi.org/10.1212/WNL.0000000000003421 Vermeij, A., van Beek, A., Olde Rikkert, M., Claassen, J., Kessels, R., Effects of aging on cerebral oxygenation during working-memory performance: A functional near-infrared spectroscopy study (2012) PLoS One, 7 (9). , https://doi.org/10.1371/journal.pone.0046210 Wechsler, D., (1981) Wechsler adult intelligence scale-revised (WAIS-R), , Psychological Corporation Woollacott, M., Shumway-Cook, A., Attention and the control of posture and gait: A review of an emerging area of research (2002) Gait & Posture, 16 (1), pp. 1-14. , https://doi.org/10.1016/S0966-6362(01)00156-4 Wu, T., Kansaku, K., Hallett, M., How Self-Initiated Memorized Movements Become Automatic: A Functional MRI Study (2004) Journal of Neurophysiology, 91 (4), pp. 1690-1698. , https://doi.org/10.1152/jn.01052.2003 Wulf, G., Shea, C., Park, J., Attention and motor performance: Preferences for and advantages of an external focus (2001) Research Quarterly for Exercise and Sport, 72 (4), pp. 335-344. , https://doi.org/10.1080/02701367.2001.10608970 Yesavage, J., Sheikh, A., Geriatric depression scale (GDS) (1986) Clinical Gerontologist, 5 (1-2), pp. 165-173. , https://doi.org/10.1300/J018v05n01_09 Yogev, G., Hausdorff, J., Giladi, N., The role of executive function and attention in gait (2008) Movement Disorders: Official Journal of the Movement Disorder Society, 23 (3), pp. 329-472. , https://doi.org/10.1002/mds.21720 Yogev-Seligmann, G., Hausdorff, J., Giladi, N., Do we always prioritize balance when walking? Towards an integrated model of task prioritization (2012) Movement Disorders, 27 (6), pp. 765-770. , https://doi.org/10.1002/mds.24963 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Ltd |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Telecomunicaciones |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
John Wiley and Sons Ltd |
dc.source.none.fl_str_mv |
Brain and Behavior |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159176719400960 |
spelling |
20212021-02-05T14:57:32Z2021-02-05T14:57:32Z21623279http://hdl.handle.net/11407/588610.1002/brb3.2021Introduction: Executive functions play a fundamental role in walking by integrating information from cognitive-motor pathways. Subtle changes in brain and behavior may help identify older adults who are more susceptible to executive function deficits with advancing age due to prefrontal cortex deterioration. This study aims to examine how older adults mitigate executive demands while walking during cognitively demanding tasks. Methods: Twenty healthy older adults (M = 71.8 years, SD = 6.4) performed simple reaction time (SRT), go/no-go (GNG), n-back (NBK), and double number sequence (DNS) cognitive tasks of increasing difficulty while walking (i.e., dual task). Functional near infra-red spectroscopy (fNIRS) was used to measure the hemodynamic response (i.e., oxy- [HbO2] and deoxyhemoglobin [HbR]) changes in the prefrontal cortex (PFC) during dual and single tasks (i.e., walking alone). In addition, performance was measured using gait speed (m/s), response time (s), and accuracy (% correct). Results: Using repeated measures ANOVAs, neural findings demonstrated a main effect of task such that ∆HbO2 (p =.047) and ∆HbR (p =.040) decreased between single and dual tasks. An interaction between task and cognitive difficulty (p =.014) revealed that gait speed decreased in the DNS between single and dual tasks. A main effect of task in response time indicated that the SRT response time was faster than all other difficulty levels (p <.001). Accuracy performance declined between single and dual tasks (p =.028) and across difficulty levels (p <.001) but was not significantly different between the NBK and DNS. Conclusion: Findings suggest that a healthy older adult sample might mitigate executive demands using an automatic locomotor control strategy such that shifting conscious attention away from walking during the dual tasks resulted in decreased ∆HbO2 and ∆HbR. However, decreased prefrontal activation was inefficient at maintaining response time and accuracy performance and may be differently affected by increasing cognitive demands. © 2021 The Authors. Brain and Behavior published by Wiley Periodicals LLCengJohn Wiley and Sons LtdIngeniería de TelecomunicacionesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099016547&doi=10.1002%2fbrb3.2021&partnerID=40&md5=7f41cc0f78859abd960ebdb95849a1a3Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., Cockburn, J., Cognitive motor interference while walking: A systematic review and meta-analysis (2011) Neuroscience & Biobehavioral Reviews, 35 (3), pp. 715-728. , https://doi.org/10.1016/j.neubiorev.2010.08.008Al-Yahya, E., Johansen-Berg, H., Kischka, U., Zarei, M., Cockburn, J., Dawes, H., Prefrontal cortex activation while walking under dual-task conditions in stroke: A multimodal imaging study (2016) Neurorehabilitation and Neural Repair, 30 (6), pp. 591-599. , https://doi.org/10.1177/1545968315613864Baddeley, A., (1986) Working memory, , Oxford University PressBeck, E., Intzandt, B., Almeida, Q.J., Can dual task walking improve in Parkinson’s disease after external focus of attention exercise? A single blind randomized controlled trial (2018) Neurorehabilitation and Neural Repair, 32 (1), pp. 18-33. , https://doi.org/10.1177/1545968317746782Bernstein, N., (1967) The co-ordination and regulation of movements, , New York, Pergamon PressBertsch, K., Hagemann, D., Hermes, M., Walter, C., Khan, R., Naumann, E., Resting cerebral blood flow, attention, and aging (2009) Brain Research, 1267, pp. 77-88. , https://doi.org/10.1016/j.brainres.2009.02.053Beurskens, R., Bock, O., Age-related deficits of dual-task walking: A review (2012) Neural Plasticity, 2012, pp. 1-9. , https://doi.org/10.1155/2012/131608Beurskens, R., Helmich, I., Rein, R., Bock, O., Age-related changes in prefrontal activity during walking in dual-task situations: A fNIRS study (2014) International Journal of Psychophysiology, 92 (3), pp. 122-128. , https://doi.org/10.1016/j.ijpsycho.2014.03.005Brustio, P., Magistro, D., Zecca, M., Rabaglietti, E., Liubicich, M., Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study (2017) PLoS One, 12 (7). , https://doi.org/10.1371/journal.pone.0181698Cabeza, R., Albert, M., Belleville, S., Craik, F., Duarte, A., Grady, C., Lindenberger, U., Rajah, M.N., Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing (2018) Nature Reviews Neuroscience, 19 (11), pp. 701-710. , https://doi.org/10.1038/s41583-018-0068-2Clark, D., Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies (2015) Frontiers in Human Neuroscience, 9. , https://doi.org/10.3389/fnhum.2015.00246Delbaere, K., Close, J., Mikolaizak, A., Sachdev, P., Brodaty, H., Lord, S., The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study (2010) Age and Ageing, 39 (2), pp. 210-216. , https://doi.org/10.1093/ageing/afp225Dietrich, A., Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis (2003) Consciousness and Cognition, 12 (2), pp. 231-256. , https://doi.org/10.1016/S1053-8100(02)00046-6Dietrich, A., Audiffren, M., The reticular-activating hypofrontality (RAH) model of acute exercise (2011) Neuroscience & Biobehavioral Reviews, 35 (6), pp. 1305-1325. , https://doi.org/10.1016/j.neubiorev.2011.02.001Dupuy, O., Gauthier, C., Fraser, S., Desjardins-Crèpeau, L., Desjardins, M., Mekary, S., Lesage, F., Bherer, L., Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women (2015) Frontiers in Human Neuroscience, 9. , https://doi.org/10.3389/fnhum.2015.00066Fraser, S., Dupuy, O., Pouliot, P., Lesage, F., Bherer, L., Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load (2016) Frontiers in Aging Neuroscience, 8. , https://doi.org/10.3389/fnagi.2016.00240Grady, C., Functional brain imaging and age-related changes in cognition (2000) Biological Psychology, 54 (1), pp. 259-281. , https://doi.org/10.1016/S0301-0511(00)00059-4Guralnik, J., Simonsick, E., Ferrucci, L., Glynn, R., Berkman, L., Blazer, D., Scherr, P., Wallace, R., A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission (1994) Journal of Gerontology, 49 (2), pp. M85-M94. , https://doi.org/10.1093/geronj/49.2.M85Harada, T., Miyai, I., Suzuki, M., Kubota, K., Gait capacity affects cortical activation patterns related to speed control in the elderly (2009) Experimental Brain Research, 193 (3), pp. 445-454. , https://doi.org/10.1007/s00221-008-1643-yHausdorff, J., Schweiger, A., Herman, T., Yogev-Seligmann, G., Giladi, N., Dual task decrements in gait among healthy older adults: Contributing factors (2008) The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63 (12), pp. 1335-1343Hawkins, K., Fox, E., Daly, J., Rose, D., Christou, E.A., McGuirk, T., Otzel, D., Clark, D., Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications (2018) Human Movement Science, 59, pp. 46-55. , https://doi.org/10.1016/j.humov.2018.03.010Hernandez, M., Holtzer, R., Chaparro, G., Jean, K., Balto, J., Sandroff, B., Izzetoglu, M., Motl, R., Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis (2016) Journal of the Neurological Sciences, 370, pp. 277-283. , https://doi.org/10.1016/j.jns.2016.10.002Herold, F., Wiegel, P., Scholkmann, F., Thiers, A., Hamacher, D., Schega, L., Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks (2017) Neurophotonics, 4 (4). , https://doi.org/10.1117/1.NPh.4.4.041403Herwig, U., Satrapi, P., Schönfeldt-Lecuona, C., Using the international 10–20 eeg system for positioning of transcranial magnetic stimulation (2003) Brain Topography, 16 (2), pp. 95-99. , https://doi.org/10.1023/B:BRAT.0000006333.93597.9dHollman, J., McDade, E., Petersen, R., Normative spatiotemporal gait parameters in older adults (2011) Gait & Posture, 34 (1), pp. 111-118. , https://doi.org/10.1016/j.gaitpost.2011.03.024Holtzer, R., Mahoney, J., Izzetoglu, M., Izzetoglu, K., Onaral, B., Verghese, J., FNIRS study of walking and walking while talking in young and old individuals (2011) The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A (8), pp. 879-887. , https://doi.org/10.1093/gerona/glr068Holtzer, R., Mahoney, J., Izzetoglu, M., Wang, C., England, S., Verghese, J., Online fronto-cortical control of simple and attention-demanding locomotion in humans (2015) NeuroImage, 112, pp. 152-159. , https://doi.org/10.1016/j.neuroimage.2015.03.002Holtzer, R., Verghese, J., Allali, G., Izzetoglu, M., Wang, C., Mahoney, J., Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis (2016) Brain Topography, 29 (2), pp. 334-343. , https://doi.org/10.1007/s10548-015-0465-zHsieh, S., Wu, M., Tang, C., Adaptive strategies for the elderly in inhibiting irrelevant and conflict no-go trials while performing the go/no-go task (2016) Frontiers in Aging Neuroscience, 7. , https://doi.org/10.3389/fnagi.2015.00243Huxhold, O., Li, S., Schmiedek, F., Lindenberger, U., Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention (2006) Brain Research Bulletin, 69 (3), pp. 294-305. , https://doi.org/10.1016/j.brainresbull.2006.01.002Kahya, M., Moon, S., Ranchet, M., Vukas, R., Lyons, K.E., Pahwa, R., Akinwuntan, A., Devos, H., Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review (2019) Experimental Gerontology, 128. , https://doi.org/10.1016/j.exger.2019.110756Kyrdalen, I., Thingstad, P., Sandvik, L., Ormstad, H., Associations between gait speed and well-known fall risk factors among community-dwelling older adults (2019) Physiotherapy Research International, 24 (1). , https://doi.org/10.1002/pri.1743Leff, D., Orihuela-Espina, F., Elwell, C., Athanasiou, T., Delpy, D., Darzi, A.W., Yang, G., Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies (2011) NeuroImage, 54 (4), pp. 2922-2936. , https://doi.org/10.1016/j.neuroimage.2010.10.058Lu, C., Liu, Y., Yang, Y., Wu, Y., Wang, R., Maintaining gait performance by cortical activation during dual-task interference: A functional near-infrared spectroscopy study (2015) PLoS One, 10 (6). , https://doi.org/10.1371/journal.pone.0129390Lundin-Olsson, L., Nyberg, L., Gustafson, Y., Himbert, D., Seknadji, P., Karila-Cohen, D., Juliard, J., Steg, P., “Stops walking when talking” as a predictor of falls in elderly people (1997) The Lancet, 349. , https://doi.org/10.1016/S0140-6736(97)24009-2Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M., Bloem, B.R., Giladi, N., Deutsch, J., Mirelman, A., The Role of the frontal lobe in complex walking among patients with parkinson’s disease and healthy older adults: An fNIRS study (2016) Neurorehabilitation and Neural Repair, 30 (10), pp. 963-971. , https://doi.org/10.1177/1545968316650426Marusic, U., Taube, W., Morrison, S.A., Biasutti, L., Grassi, B., De Pauw, K., Meeusen, R., Ruffieux, J., Aging effects on prefrontal cortex oxygenation in a posture-cognition dual-task: An fNIRS pilot study (2019) European Review of Aging and Physical Activity, 16 (1). , https://doi.org/10.1186/s11556-018-0209-7Mirelman, A., Maidan, I., Bernad-Elazari, H., Shustack, S., Giladi, N., Hausdorff, J., Effects of aging on prefrontal brain activation during challenging walking conditions (2017) Brain and Cognition, 115, pp. 41-46. , https://doi.org/10.1016/j.bandc.2017.04.002Miyai, I., Tanabe, H., Sase, I., Eda, H., Oda, I., Konishi, I., Tsunazawa, Y., Kubota, K., Cortical mapping of gait in humans: A near-infrared spectroscopic topography study (2001) NeuroImage, 14 (5), pp. 1186-1192. , https://doi.org/10.1006/nimg.2001.0905Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J., Chertkow, H., The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment (2005) Journal of the American Geriatrics Society, 53 (4), pp. 695-699. , https://doi.org/10.1111/j.1532-5415.2005.53221.xOldfield, R., The assessment and analysis of handedness: The Edinburgh inventory (1971) Neuropsychologia, 9 (1), pp. 97-113. , https://doi.org/10.1016/0028-3932(71)90067-4Pashler, H., (1994) Dual-task Interference in Simple Tasks: Data and Theory., 116 (2). , https://doi.org/10.1037/0033-2909.116.2.220Patel, P., Lamar, M., Bhatt, T., Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking (2014) Neuroscience, 260, pp. 140-148. , https://doi.org/10.1016/j.neuroscience.2013.12.016Pelicioni, P., Tijsma, M., Lord, S., Menant, J., Prefrontal cortical activation measured by fNIRS during walking: Effects of age, disease and secondary task (2019) PeerJ, 7. , https://doi.org/10.7717/peerj.6833Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., Burgess, P., The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience (2018) Annals of the New York Academy of Sciences, 1464 (1), pp. 5-29. , https://doi.org/10.1111/nyas.13948Poldrack, R.A., The neural correlates of motor skill automaticity (2005) Journal of Neuroscience, 25 (22), pp. 5356-5364. , https://doi.org/10.1523/JNEUROSCI.3880-04.2005Potvin-Desrochers, A., Richer, N., Lajoie, Y., Cognitive tasks promote automatization of postural control in young and older adults (2017) Gait & Posture, 57, pp. 40-45. , https://doi.org/10.1016/j.gaitpost.2017.05.019Quaresima, V., Ferrari, M., A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? (2019) Photonics, 6 (3). , https://doi.org/10.3390/photonics6030087Reuter-Lorenz, P., Park, D., How does it STAC up? Revisiting the scaffolding theory of aging and cognition (2014) Neuropsychology Review, 24 (3), pp. 355-370. , https://doi.org/10.1007/s11065-014-9270-9Richer, N., Saunders, D., Polskaia, N., Lajoie, Y., The effects of attentional focus and cognitive tasks on postural sway may be the result of automaticity (2017) Gait & Posture, 54, pp. 45-49. , https://doi.org/10.1016/j.gaitpost.2017.02.022Rosso, A., Cenciarini, M., Sparto, P., Loughlin, P., Furman, J., Huppert, T., Neuroimaging of an attention demanding dual-task during dynamic postural control (2017) Gait & Posture, 57, pp. 193-198. , https://doi.org/10.1016/j.gaitpost.2017.06.013Schneider, W., Shiffrin, R., Controlled and automatic human information processing: I. detection, search, and attention (1977) Psychological Review, 84 (1)Scholkmann, F., Wolf, M., General equation for the differential pathlength factor of the frontal human head depending on wavelength and age (2013) Journal of Biomedical Optics, 18 (10). , https://doi.org/10.1117/1.JBO.18.10.105004Shumway-Cook, A., Woollacott, M., Kerns, K., Baldwin, M., The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls (1997) The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52A (4), pp. M232-M240. , https://doi.org/10.1093/gerona/52A.4.M232Smith, E., Cusack, T., Blake, C., The effect of a dual task on gait speed in community dwelling older adults: A systematic review and meta-analysis (2016) Gait & Posture, 44, pp. 250-258. , https://doi.org/10.1016/j.gaitpost.2015.12.017Sorond, F., Kiely, D., Galica, A., Moscufo, N., Serrador, J., Iloputaife, I., Egorova, S., Lipsitz, L., Neurovascular coupling is impaired in slow walkers: The MOBILIZE Boston Study (2011) Annals of Neurology, 70 (2), pp. 213-220. , https://doi.org/10.1002/ana.22433Srygley, J., Mirelman, A., Herman, T., Giladi, N., Hausdorff, J., When does walking alter thinking? Age and task associated findings (2009) Brain Research, 1253, pp. 92-99. , https://doi.org/10.1016/j.brainres.2008.11.067St-Amant, G., Rahman, T., Polskaia, N., Fraser, S., Lajoie, Y., Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing (2020) Human Movement Science, 70. , https://doi.org/10.1016/j.humov.2020.102587Strauss, P., Sherman, N., Spreen, O., (2006) A compendium of neuropsychological tests: Administration, norms, and commentary, , Oxford University PressVerghese, J., Wang, C., Ayers, E., Izzetoglu, M., Holtzer, R., Brain activation in high-functioning older adults and falls: Prospective cohort study (2017) Neurology, 88 (2), pp. 191-197. , https://doi.org/10.1212/WNL.0000000000003421Vermeij, A., van Beek, A., Olde Rikkert, M., Claassen, J., Kessels, R., Effects of aging on cerebral oxygenation during working-memory performance: A functional near-infrared spectroscopy study (2012) PLoS One, 7 (9). , https://doi.org/10.1371/journal.pone.0046210Wechsler, D., (1981) Wechsler adult intelligence scale-revised (WAIS-R), , Psychological CorporationWoollacott, M., Shumway-Cook, A., Attention and the control of posture and gait: A review of an emerging area of research (2002) Gait & Posture, 16 (1), pp. 1-14. , https://doi.org/10.1016/S0966-6362(01)00156-4Wu, T., Kansaku, K., Hallett, M., How Self-Initiated Memorized Movements Become Automatic: A Functional MRI Study (2004) Journal of Neurophysiology, 91 (4), pp. 1690-1698. , https://doi.org/10.1152/jn.01052.2003Wulf, G., Shea, C., Park, J., Attention and motor performance: Preferences for and advantages of an external focus (2001) Research Quarterly for Exercise and Sport, 72 (4), pp. 335-344. , https://doi.org/10.1080/02701367.2001.10608970Yesavage, J., Sheikh, A., Geriatric depression scale (GDS) (1986) Clinical Gerontologist, 5 (1-2), pp. 165-173. , https://doi.org/10.1300/J018v05n01_09Yogev, G., Hausdorff, J., Giladi, N., The role of executive function and attention in gait (2008) Movement Disorders: Official Journal of the Movement Disorder Society, 23 (3), pp. 329-472. , https://doi.org/10.1002/mds.21720Yogev-Seligmann, G., Hausdorff, J., Giladi, N., Do we always prioritize balance when walking? Towards an integrated model of task prioritization (2012) Movement Disorders, 27 (6), pp. 765-770. , https://doi.org/10.1002/mds.24963Brain and BehaviorAgingCognitive sciencedual-task walkingexecutive demandsfNIRSGaitNear Infra-red spectroscopyTask Performance and AnalysisHemodynamic and behavioral changes in older adults during cognitively demanding dual tasksArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Salzman, T., Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, CanadaTobón Vallejo, D., Faculty of Engineering, Universidad de Medellín, Medellín, ColombiaPolskaia, N., School of Human Kinetics, University of Ottawa, Ottawa, ON, CanadaMichaud, L., School of Human Kinetics, University of Ottawa, Ottawa, ON, CanadaSt-Amant, G., School of Human Kinetics, University of Ottawa, Ottawa, ON, CanadaLajoie, Y., School of Human Kinetics, University of Ottawa, Ottawa, ON, CanadaFraser, S., Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canadahttp://purl.org/coar/access_right/c_16ecSalzman T.Tobón Vallejo D.Polskaia N.Michaud L.St-Amant G.Lajoie Y.Fraser S.11407/5886oai:repository.udem.edu.co:11407/58862021-02-05 09:57:32.912Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |