An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform

In this work, we perform an approach to emotion recognition from Electroencephalography (EEG) single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are decomposed by several types of wavelets and each subsignal are processe...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4354
Acceso en línea:
http://hdl.handle.net/11407/4354
Palabra clave:
EEG
Emotion
Features
KNN
QDA
RFC
Wavelet
Biomedical engineering
Electroencephalography
Electrophysiology
Signal processing
Speech recognition
Developmental psychology
Emotion
Emotion recognition
Emotional state
Features
Single channel eeg
Single-channel signals
Wavelet
Biomedical signal processing
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_108c4da8c05718c5e694805c0af292ee
oai_identifier_str oai:repository.udem.edu.co:11407/4354
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
title An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
spellingShingle An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
EEG
Emotion
Features
KNN
QDA
RFC
Wavelet
Biomedical engineering
Electroencephalography
Electrophysiology
Signal processing
Speech recognition
Developmental psychology
Emotion
Emotion recognition
Emotional state
Features
Single channel eeg
Single-channel signals
Wavelet
Biomedical signal processing
title_short An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
title_full An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
title_fullStr An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
title_full_unstemmed An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
title_sort An approach to emotion recognition in single-channel EEG signals using stationarywavelet transform
dc.contributor.affiliation.spa.fl_str_mv Gómez, A., Mathematical Modeling Research Group, GRIMMAT, Universidad EAFIT, Medellín, Colombia
Quintero, L., Mathematical Modeling Research Group, GRIMMAT, Universidad EAFIT, Medellín, Colombia
López, N., Medical Technology Laboratory, GATEME, Universidad Nacional de San Juan, San Juan, Argentina
Castro, J., Psychology, Education and Culture Research Group, Institución Universitaria Politécnico Grancolombiano, Bogotá, Colombia
Villa, L., System Engineering Research Group, ARKADIUS, Universidad de Medellín, Medellín, Colombia
Mejía, G., Functional Analysis and Aplications Research Group, Universidad EAFIT, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv EEG
Emotion
Features
KNN
QDA
RFC
Wavelet
Biomedical engineering
Electroencephalography
Electrophysiology
Signal processing
Speech recognition
Developmental psychology
Emotion
Emotion recognition
Emotional state
Features
Single channel eeg
Single-channel signals
Wavelet
Biomedical signal processing
topic EEG
Emotion
Features
KNN
QDA
RFC
Wavelet
Biomedical engineering
Electroencephalography
Electrophysiology
Signal processing
Speech recognition
Developmental psychology
Emotion
Emotion recognition
Emotional state
Features
Single channel eeg
Single-channel signals
Wavelet
Biomedical signal processing
description In this work, we perform an approach to emotion recognition from Electroencephalography (EEG) single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are decomposed by several types of wavelets and each subsignal are processed using several window sizes by performing a statistical analysis. Finally, three types of classifiers were used, obtaining accuracy rate between 50% to 87% for the emotional states such as happiness, sadness and neutrality. © Springer Nature Singapore Pte Ltd. 2017.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:50Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:50Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.isbn.none.fl_str_mv 9789811040856
dc.identifier.issn.none.fl_str_mv 16800737
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4354
dc.identifier.doi.none.fl_str_mv 10.1007/978-981-10-4086-3_164
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 9789811040856
16800737
10.1007/978-981-10-4086-3_164
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4354
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018372191&doi=10.1007%2f978-981-10-4086-3_164&partnerID=40&md5=2ff10283d5e0d903cdc3699c25094a24
dc.relation.ispartofes.spa.fl_str_mv IFMBE Proceedings
dc.relation.references.spa.fl_str_mv Michel, C., Michel, C., What is emotion Behavioural Processes, 60, pp. 69-83
Scherer, K.R., What are emotions And How Can they Be Measured?
Affrunti Nicholas, W., Janet, W.-B., The effect of maternal psychopathology on parentchild agreement of child anxiety symptoms: A hierarchical linear modeling approach Journal of Anxiety Disorders, 32, pp. 56-65
Kleiman Evan, M., Brooke, A., Look Amy, E., Berman Mitchell, E., McCloskey Michael, S., The role of emotion reactivity and gender in the relationship between psychopathology and self-injurious behavior Personality and Individual Differences, 69, pp. 150-155
Juan, M.-M., Arantza, A., Emotions in human and artificial intelligence Computers in Human Behavior, 21, pp. 323-341
Kreps Gary, L., Linda, N., Artificial intelligence and immediacy: Designing health communication to personally engage consumers and providers Patient Education and Counseling, 92, pp. 205-210
Milton, A., Selvi, S., Tamil. Class-Specific Multiple Classifiers Scheme to Recognize Emotions from Speech Signals, 28, pp. 727-742
Xiaoyan, F., Junzo, W., Building a Recognition System of Speech Emotion and Emotional States 2013 Second International Conference on Robot Vision and Signal Processing, pp. 253-258
Kenny, D.A., Kashy, D.A., Cook, W.L., Dyadic Data Analysis Methodology in the Social Sciencesguilford Press
Killeen Lauren, A., Understanding Parenting as a Process: Frontal EEG Alpha Asymmetry as a Measure of”online” Maternal Responsiveness to Infant Cues
Alberto, C.M.J., Neurodinámica Y autoorganización En La interacción Socioemocional Madre-Hijo: aproximación De Los Sistemas dinámicos a Los Principios Del Desarrollo Emocional Infantil, 2, p. 17
Alberto, C.M.J., Sistemas dinámicos En La interacción Emocional Madre-Hijo: Primera Fase, 9, pp. 129-138
Saeid, S., Jonathon, C., EEG Signal Processing, p. 1
Michal, T., Fundamentals of EEG Measurement Measurement Science Review, 2, pp. 1-11
Petrantonakis Panagiotis, C., Hadjileontiadis Leontios, J., Emotion recognition from EEG using higher order crossings IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 14, pp. 186-197
Yun, L.Y., Shulan, H., Classifying different emotional states by means of eegbased functional connectivity patterns Plos ONE, p. 9
Pachori, V.B.R.B., Classification of Human Emotions Based on Multiwavelet Transform of EEG Signals
Murugappan, M., Classification of Human Emotion from EEG Using Discrete Wavelet Transform
Alejandro, G., Lucia, Q., Natalia, L., Jaime, C., An approach to emotion recognition in single-channel EEG signals: A mother child interaction XX Congreso Argentino De Bioingeniera, SABI 2015
Nason, G.P., Silverman, B.W., The Stationary Wavelet Transform and Some Statistical Applications, pp. 281-300. , Springer-Verlag
Campo, D., Quintero, O.L., Bastidas, M., Multiresolution analysis (Discrete wavelet transform) through Daubechies family for emotion recognition in speech Journal of Physics: Conference Series, 705, p. 12034
Bustamante, P.A., Lopez, C.N.M., Perez, M.E., Quintero, M.O.L., Recognition and regionalization of emotions in the arousalvalence plane Conf Proc IEEE Eng Med Biol Soc, pp. 6042-6045
Kevin, P., Macgillivray, B.H.L., Kurtosis: A Critical Review The American Statistician, 42, pp. 111-119
Geoff, D., Pattern Recognition and Classification, 53
Gareth, J., Daniela, W., Trevor, H., Robert, T., An Introduction to Statistical Learning, p. 103
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Springer Verlag
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159169448574976
spelling 2017-12-19T19:36:50Z2017-12-19T19:36:50Z2017978981104085616800737http://hdl.handle.net/11407/435410.1007/978-981-10-4086-3_164reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínIn this work, we perform an approach to emotion recognition from Electroencephalography (EEG) single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are decomposed by several types of wavelets and each subsignal are processed using several window sizes by performing a statistical analysis. Finally, three types of classifiers were used, obtaining accuracy rate between 50% to 87% for the emotional states such as happiness, sadness and neutrality. © Springer Nature Singapore Pte Ltd. 2017.engSpringer VerlagFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018372191&doi=10.1007%2f978-981-10-4086-3_164&partnerID=40&md5=2ff10283d5e0d903cdc3699c25094a24IFMBE ProceedingsMichel, C., Michel, C., What is emotion Behavioural Processes, 60, pp. 69-83Scherer, K.R., What are emotions And How Can they Be Measured?Affrunti Nicholas, W., Janet, W.-B., The effect of maternal psychopathology on parentchild agreement of child anxiety symptoms: A hierarchical linear modeling approach Journal of Anxiety Disorders, 32, pp. 56-65Kleiman Evan, M., Brooke, A., Look Amy, E., Berman Mitchell, E., McCloskey Michael, S., The role of emotion reactivity and gender in the relationship between psychopathology and self-injurious behavior Personality and Individual Differences, 69, pp. 150-155Juan, M.-M., Arantza, A., Emotions in human and artificial intelligence Computers in Human Behavior, 21, pp. 323-341Kreps Gary, L., Linda, N., Artificial intelligence and immediacy: Designing health communication to personally engage consumers and providers Patient Education and Counseling, 92, pp. 205-210Milton, A., Selvi, S., Tamil. Class-Specific Multiple Classifiers Scheme to Recognize Emotions from Speech Signals, 28, pp. 727-742Xiaoyan, F., Junzo, W., Building a Recognition System of Speech Emotion and Emotional States 2013 Second International Conference on Robot Vision and Signal Processing, pp. 253-258Kenny, D.A., Kashy, D.A., Cook, W.L., Dyadic Data Analysis Methodology in the Social Sciencesguilford PressKilleen Lauren, A., Understanding Parenting as a Process: Frontal EEG Alpha Asymmetry as a Measure of”online” Maternal Responsiveness to Infant CuesAlberto, C.M.J., Neurodinámica Y autoorganización En La interacción Socioemocional Madre-Hijo: aproximación De Los Sistemas dinámicos a Los Principios Del Desarrollo Emocional Infantil, 2, p. 17Alberto, C.M.J., Sistemas dinámicos En La interacción Emocional Madre-Hijo: Primera Fase, 9, pp. 129-138Saeid, S., Jonathon, C., EEG Signal Processing, p. 1Michal, T., Fundamentals of EEG Measurement Measurement Science Review, 2, pp. 1-11Petrantonakis Panagiotis, C., Hadjileontiadis Leontios, J., Emotion recognition from EEG using higher order crossings IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 14, pp. 186-197Yun, L.Y., Shulan, H., Classifying different emotional states by means of eegbased functional connectivity patterns Plos ONE, p. 9Pachori, V.B.R.B., Classification of Human Emotions Based on Multiwavelet Transform of EEG SignalsMurugappan, M., Classification of Human Emotion from EEG Using Discrete Wavelet TransformAlejandro, G., Lucia, Q., Natalia, L., Jaime, C., An approach to emotion recognition in single-channel EEG signals: A mother child interaction XX Congreso Argentino De Bioingeniera, SABI 2015Nason, G.P., Silverman, B.W., The Stationary Wavelet Transform and Some Statistical Applications, pp. 281-300. , Springer-VerlagCampo, D., Quintero, O.L., Bastidas, M., Multiresolution analysis (Discrete wavelet transform) through Daubechies family for emotion recognition in speech Journal of Physics: Conference Series, 705, p. 12034Bustamante, P.A., Lopez, C.N.M., Perez, M.E., Quintero, M.O.L., Recognition and regionalization of emotions in the arousalvalence plane Conf Proc IEEE Eng Med Biol Soc, pp. 6042-6045Kevin, P., Macgillivray, B.H.L., Kurtosis: A Critical Review The American Statistician, 42, pp. 111-119Geoff, D., Pattern Recognition and Classification, 53Gareth, J., Daniela, W., Trevor, H., Robert, T., An Introduction to Statistical Learning, p. 103ScopusAn approach to emotion recognition in single-channel EEG signals using stationarywavelet transformConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fGómez, A., Mathematical Modeling Research Group, GRIMMAT, Universidad EAFIT, Medellín, ColombiaQuintero, L., Mathematical Modeling Research Group, GRIMMAT, Universidad EAFIT, Medellín, ColombiaLópez, N., Medical Technology Laboratory, GATEME, Universidad Nacional de San Juan, San Juan, ArgentinaCastro, J., Psychology, Education and Culture Research Group, Institución Universitaria Politécnico Grancolombiano, Bogotá, ColombiaVilla, L., System Engineering Research Group, ARKADIUS, Universidad de Medellín, Medellín, ColombiaMejía, G., Functional Analysis and Aplications Research Group, Universidad EAFIT, Medellín, ColombiaGómez A.Quintero L.López N.Castro J.Villa L.Mejía G.Mathematical Modeling Research Group, GRIMMAT, Universidad EAFIT, Medellín, ColombiaMedical Technology Laboratory, GATEME, Universidad Nacional de San Juan, San Juan, ArgentinaPsychology, Education and Culture Research Group, Institución Universitaria Politécnico Grancolombiano, Bogotá, ColombiaSystem Engineering Research Group, ARKADIUS, Universidad de Medellín, Medellín, ColombiaFunctional Analysis and Aplications Research Group, Universidad EAFIT, Medellín, ColombiaEEGEmotionFeaturesKNNQDARFCWaveletBiomedical engineeringElectroencephalographyElectrophysiologySignal processingSpeech recognitionDevelopmental psychologyEmotionEmotion recognitionEmotional stateFeaturesSingle channel eegSingle-channel signalsWaveletBiomedical signal processingIn this work, we perform an approach to emotion recognition from Electroencephalography (EEG) single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are decomposed by several types of wavelets and each subsignal are processed using several window sizes by performing a statistical analysis. Finally, three types of classifiers were used, obtaining accuracy rate between 50% to 87% for the emotional states such as happiness, sadness and neutrality. © Springer Nature Singapore Pte Ltd. 2017.http://purl.org/coar/access_right/c_16ec11407/4354oai:repository.udem.edu.co:11407/43542020-05-27 17:34:51.266Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co