Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots

In this paper we theoretically investigate the role of hydrostatic pressure by analyzing its influence on potential barrier's height in GaAs/AlxGa1?xAs core/shell spherical quantum dots. The values of hydrostatic pressure considered here are always below the ??X crossover. In addition, we take...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5802
Acceso en línea:
http://hdl.handle.net/11407/5802
Palabra clave:
Absorption coefficient
Intraband transitions
Spherical quantum dot
Terahertz
Aluminum
Blue shift
Electronic structure
Gallium arsenide
Hydraulics
Hydrostatic pressure
III-V semiconductors
Light absorption
Nanocrystals
Numerical methods
Red Shift
Semiconducting gallium
Semiconductor quantum dots
Spheres
Absorption co-efficient
Effective mass approximation
Electromagnetic spectra
Intersubband optical transitions
Intraband transitions
Optical absorption coefficients
Spherical quantum dot
Tera Hertz
Transfer matrix method
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_10662284eabde4516fd3d1f5cad0b8b1
oai_identifier_str oai:repository.udem.edu.co:11407/5802
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
title Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
spellingShingle Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
Absorption coefficient
Intraband transitions
Spherical quantum dot
Terahertz
Aluminum
Blue shift
Electronic structure
Gallium arsenide
Hydraulics
Hydrostatic pressure
III-V semiconductors
Light absorption
Nanocrystals
Numerical methods
Red Shift
Semiconducting gallium
Semiconductor quantum dots
Spheres
Absorption co-efficient
Effective mass approximation
Electromagnetic spectra
Intersubband optical transitions
Intraband transitions
Optical absorption coefficients
Spherical quantum dot
Tera Hertz
Transfer matrix method
title_short Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
title_full Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
title_fullStr Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
title_full_unstemmed Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
title_sort Effect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
dc.subject.none.fl_str_mv Absorption coefficient
Intraband transitions
Spherical quantum dot
Terahertz
Aluminum
Blue shift
Electronic structure
Gallium arsenide
Hydraulics
Hydrostatic pressure
III-V semiconductors
Light absorption
Nanocrystals
Numerical methods
Red Shift
Semiconducting gallium
Semiconductor quantum dots
Spheres
Absorption co-efficient
Effective mass approximation
Electromagnetic spectra
Intersubband optical transitions
Intraband transitions
Optical absorption coefficients
Spherical quantum dot
Tera Hertz
Transfer matrix method
topic Absorption coefficient
Intraband transitions
Spherical quantum dot
Terahertz
Aluminum
Blue shift
Electronic structure
Gallium arsenide
Hydraulics
Hydrostatic pressure
III-V semiconductors
Light absorption
Nanocrystals
Numerical methods
Red Shift
Semiconducting gallium
Semiconductor quantum dots
Spheres
Absorption co-efficient
Effective mass approximation
Electromagnetic spectra
Intersubband optical transitions
Intraband transitions
Optical absorption coefficients
Spherical quantum dot
Tera Hertz
Transfer matrix method
description In this paper we theoretically investigate the role of hydrostatic pressure by analyzing its influence on potential barrier's height in GaAs/AlxGa1?xAs core/shell spherical quantum dots. The values of hydrostatic pressure considered here are always below the ??X crossover. In addition, we take into account the barrier shell's size effects and the barrier's aluminum concentration, looking for a description of the features of the intraband optical absorption coefficient in the system. The electronic structure is calculated within the effective mass approximation. From the numerical point of view the hybrid matrix method was implemented to avoid numerical instability issues that appears in the conventional transfer matrix method. The main intersubband optical transition is considered to take place between the 1s and 1p computed electronic states. The results show that the absorption coefficient undergoes first a red-shift and later a more pronounced blue-shift, depending on the AlxGa1?xAs barrier width (wb1). The absorption coefficient experiences a blue-shift as the barrier's aluminum concentration increases, and it is non monotonically red-shifted as the hydrostatic pressure augments, due to the barrier's height pressure dependency. For the chosen system parameters, the absorption coefficient resonant peak lies within the range of 20 to 30 meV, that corresponds to the THz frequency region. Accordingly, this system can be proposed as a building block for photodetectors in the THz electromagnetic spectrum region. © 2019 Elsevier Ltd
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:05Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:05Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 13698001
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5802
dc.identifier.doi.none.fl_str_mv 10.1016/j.mssp.2019.104906
identifier_str_mv 13698001
10.1016/j.mssp.2019.104906
url http://hdl.handle.net/11407/5802
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077330152&doi=10.1016%2fj.mssp.2019.104906&partnerID=40&md5=578787255333f5f7bed14d0c24068be8
dc.relation.citationvolume.none.fl_str_mv 108
dc.relation.references.none.fl_str_mv Beattie, N.S., See, P., Zoppi, G., Ushasree, P.M., Duchamp, M., Farrer, I., Ritchie, D.A., Tomi?, S., Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells (2017) ACS Photonics, 4, p. 2745
Luque, A., Marti, A., Stanley, C., Understanding intermediate-band solar cells (2012) Nature Photon., 6, p. 146
Kim, Y., Cho, I.-W., Ryu, M.-Y., Kim, J.O., Lee, S.J., Ban, K.-Y., Honsberg, C.B., Stranski Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells (2017) Appl. Phys. Lett., 111, p. 073103
Dhomkar, S., Ji, H., Roy, B., Deligiannakis, V., Wang, A., Tamargo, M.C., Kuskovsky, I.L., Measurement and control of size and density of type-II ZnTe/ZnSe submonolayer quantum dots grown by migration enhanced epitaxy (2015) J. Cryst. Growth, 422, p. 8
Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V., Building devices from colloidal quantum dots (2016) Science, 353, p. 6302
Tronco-Jurado, U., Saucedo-Flores, E., Ruelas, R., López, R., Alvarez-Ramos, M.E., Ayón, A.A., Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance (2017) Microsyst. Technol., 23, p. 3945
Leontiadou, M.A., Tyrrell, E.J., Smith, C.T., Espinobarro-Velazquez, D., Page, R., O'Brien, P., Miloszewski, J., Tomi?, S., Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells (2017) Sol. Energy Mater. Sol. Cells, 159, p. 657
Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Pernas-Salomón, R., Multi-shell spherical quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels (2017) Physica E, 88, p. 142
Zhukova, E.S., Gorshunov, B.P., Yuryev, V.A., Arapkina, L.V., Chizh, K.V., Chapnin, V.A., Kalinushkin, V.P., Mikhailova, G.N., Absorption of terahertz radiation in Ge/Si(001) heterostructures with quantum dots (2010) JETP Lett., 92, p. 793
Presto, J.M.M., Prieto, E.A.P., Omambac, K.M., Afalla, J.P.C., Lumantas, D.A.O., Salvador, A.A., Somintac, A.S., Tani, M., Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy (2015) Opt. Express, 23, p. 14532
Stephan, D., Bhattacharyya, J., Huo, Y.H., Schmidt, O.G., Rastelli, A., Helm, M., Schneider, H., Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation (2016) Appl. Phys. Lett., 108, p. 082107
Sabaeian, M., Riyahi, M., Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption (2017) Physica E, 89, p. 105
Liu, W.H., Qu, Y., Ban, S.L., Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots (2017) Superlattices Microstruct., 102, p. 373
Ghazi, H.E., Jorio, A., Zorkani, I., Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure (2014) Opt. Commun., 331, pp. 73-76
Aouami, A.E., Feddi, E., Talbi, A., Dujardin, F., Duque, C.A., Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure (2018) Appl. Phys. A, 124, p. 442
M'zerd, S., Haouari, M.E., Talbi, A., Feddi, E., Mora-Ramos, M.E., Impact of electron-LO-phonon correction and donor impurity localization on the linear and nonlinear optical properties in spherical core/shell semiconductor quantum dots (2018) J. Alloys Compd., 753, p. 68
Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Intra-miniband absorption coefficient in GaAs/AlxGa1?xAs core/shell spherical quantum dot (2018) J. Alloys Compd., 736, p. 211
Pavlovi?, V., u njar, M., Petrovi?, K., Stevanovi?, L., Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity (2018) Opt. Mater., 78, p. 191
Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field (2015) Superlattices Microstruct., 85, p. 581
Feddi, E., Talbi, A., Mora-Ramos, M.E., Haouari, M.E., Dujardin, F., Duque, C.A., Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot (2017) Physica B., 524, p. 64
Imran, A., Jiang, J., Eric, D., Zahid, M.N., Yousaf, M., Shah, Z.H., Optical properties of InAs/GaAs quantum dot superlattice structures (2018) Results. Phys., 9, p. 297
Surrente, A., Felici, M., Gallo, P., Rudra, A., Dwir, B., Kapon, E., Dense arrays of site-controlled quantum dots with tailored emission wavelength: Growth mechanisms and optical properties (2017) Appl. Phys. Lett., 111, p. 221102
Wolford, D.J., Kuech, T.F., Bradley, J.A., Gell, M.A., Ninno, D., Jaros, M., Pressure dependence of GaAs/AlxGa1?xAs quantum-well bound states: The determination of valence-band offsets (1986) J. Vac. Sci. Technol. B, 4, p. 1043
Leburton, J.P., Kahen, K., GaAs-AlGaAs superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation (1985) Superlattices Microstruct., 1, p. 49
Elabsy, A.M., Band mixing dependence of the lowest energy states in uncoupled quantum wells (1993) Superlattices Microstruct., 14, p. 65
Elabsy, A.M., Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures (1993) Phys. Scr., 48, p. 376
Elabsy, A.M., Effect of the Gamma-X crossover on the binding energies of confined donors in single GaAs/AlxGa1?xAs quantum-well microstructures (1994) J. Phys.: Condens. Matter., 6, p. 10025
Burnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., ??X mixing in AlxGa1?xAs coupled double quantum wells under hydrostatic pressure (1993) Phys. Rev. B, 47, p. 1991
Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1?xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration (2014) J. Lumin., 145, p. 676
Bouzaiene, L., Alamri, H., Sfaxi, L., Maaref, H., Simultaneous effects of hydrostatic pressure, temperature and electric field on optical absorption in InAs/GaAs lens shape quantum dot (2016) J. Alloys Compd., 655, p. 172
Ortakaya, S., Kirak, M., Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement (2016) Chin. Phys. B, 25, p. 127302
Karimi, M.J., Rezaei, G., Nazari, M., Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature (2014) J. Lumin., 145, p. 55
BenDaniel, D.J., Duke, C.B., Space-charge effects on electron tunneling (1966) Phys. Rev., 152, p. 683
Ospina, D.A., Mora-Ramos, M.E., Duque, C.A., Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well (2017) J. Nanosci. Nanotechno., 17, p. 1247
Samara, G.A., Temperature and pressure dependences of the dielectric constants of semiconductors (1983) Phys. Rev. B, 27, p. 3494
Reyes-Gómez, E., Raigoza, N., Oliveira, L.E., Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields (2008) Phys. Rev. B, 77, p. 115308
Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), ninth Dover printing, tenth GPO printing Dover New York
Chuang, S.L., Physics of Optoelectronic Devices (2005), first ed. Wiley
Hosseini, M., Tailoring the terahertz absorption in the quantum wells (2016) Optik, 127, p. 4554
Williams, B.S., Terahertz quantum-cascade lasers (2007) Nat. Photonics, 1, p. 517
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Materials Science in Semiconductor Processing
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159270045810688
spelling 20202020-04-29T14:54:05Z2020-04-29T14:54:05Z13698001http://hdl.handle.net/11407/580210.1016/j.mssp.2019.104906In this paper we theoretically investigate the role of hydrostatic pressure by analyzing its influence on potential barrier's height in GaAs/AlxGa1?xAs core/shell spherical quantum dots. The values of hydrostatic pressure considered here are always below the ??X crossover. In addition, we take into account the barrier shell's size effects and the barrier's aluminum concentration, looking for a description of the features of the intraband optical absorption coefficient in the system. The electronic structure is calculated within the effective mass approximation. From the numerical point of view the hybrid matrix method was implemented to avoid numerical instability issues that appears in the conventional transfer matrix method. The main intersubband optical transition is considered to take place between the 1s and 1p computed electronic states. The results show that the absorption coefficient undergoes first a red-shift and later a more pronounced blue-shift, depending on the AlxGa1?xAs barrier width (wb1). The absorption coefficient experiences a blue-shift as the barrier's aluminum concentration increases, and it is non monotonically red-shifted as the hydrostatic pressure augments, due to the barrier's height pressure dependency. For the chosen system parameters, the absorption coefficient resonant peak lies within the range of 20 to 30 meV, that corresponds to the THz frequency region. Accordingly, this system can be proposed as a building block for photodetectors in the THz electromagnetic spectrum region. © 2019 Elsevier LtdengElsevier LtdFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077330152&doi=10.1016%2fj.mssp.2019.104906&partnerID=40&md5=578787255333f5f7bed14d0c24068be8108Beattie, N.S., See, P., Zoppi, G., Ushasree, P.M., Duchamp, M., Farrer, I., Ritchie, D.A., Tomi?, S., Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells (2017) ACS Photonics, 4, p. 2745Luque, A., Marti, A., Stanley, C., Understanding intermediate-band solar cells (2012) Nature Photon., 6, p. 146Kim, Y., Cho, I.-W., Ryu, M.-Y., Kim, J.O., Lee, S.J., Ban, K.-Y., Honsberg, C.B., Stranski Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells (2017) Appl. Phys. Lett., 111, p. 073103Dhomkar, S., Ji, H., Roy, B., Deligiannakis, V., Wang, A., Tamargo, M.C., Kuskovsky, I.L., Measurement and control of size and density of type-II ZnTe/ZnSe submonolayer quantum dots grown by migration enhanced epitaxy (2015) J. Cryst. Growth, 422, p. 8Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V., Building devices from colloidal quantum dots (2016) Science, 353, p. 6302Tronco-Jurado, U., Saucedo-Flores, E., Ruelas, R., López, R., Alvarez-Ramos, M.E., Ayón, A.A., Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance (2017) Microsyst. Technol., 23, p. 3945Leontiadou, M.A., Tyrrell, E.J., Smith, C.T., Espinobarro-Velazquez, D., Page, R., O'Brien, P., Miloszewski, J., Tomi?, S., Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells (2017) Sol. Energy Mater. Sol. Cells, 159, p. 657Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Pernas-Salomón, R., Multi-shell spherical quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels (2017) Physica E, 88, p. 142Zhukova, E.S., Gorshunov, B.P., Yuryev, V.A., Arapkina, L.V., Chizh, K.V., Chapnin, V.A., Kalinushkin, V.P., Mikhailova, G.N., Absorption of terahertz radiation in Ge/Si(001) heterostructures with quantum dots (2010) JETP Lett., 92, p. 793Presto, J.M.M., Prieto, E.A.P., Omambac, K.M., Afalla, J.P.C., Lumantas, D.A.O., Salvador, A.A., Somintac, A.S., Tani, M., Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy (2015) Opt. Express, 23, p. 14532Stephan, D., Bhattacharyya, J., Huo, Y.H., Schmidt, O.G., Rastelli, A., Helm, M., Schneider, H., Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation (2016) Appl. Phys. Lett., 108, p. 082107Sabaeian, M., Riyahi, M., Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption (2017) Physica E, 89, p. 105Liu, W.H., Qu, Y., Ban, S.L., Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots (2017) Superlattices Microstruct., 102, p. 373Ghazi, H.E., Jorio, A., Zorkani, I., Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure (2014) Opt. Commun., 331, pp. 73-76Aouami, A.E., Feddi, E., Talbi, A., Dujardin, F., Duque, C.A., Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure (2018) Appl. Phys. A, 124, p. 442M'zerd, S., Haouari, M.E., Talbi, A., Feddi, E., Mora-Ramos, M.E., Impact of electron-LO-phonon correction and donor impurity localization on the linear and nonlinear optical properties in spherical core/shell semiconductor quantum dots (2018) J. Alloys Compd., 753, p. 68Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Intra-miniband absorption coefficient in GaAs/AlxGa1?xAs core/shell spherical quantum dot (2018) J. Alloys Compd., 736, p. 211Pavlovi?, V., u njar, M., Petrovi?, K., Stevanovi?, L., Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity (2018) Opt. Mater., 78, p. 191Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field (2015) Superlattices Microstruct., 85, p. 581Feddi, E., Talbi, A., Mora-Ramos, M.E., Haouari, M.E., Dujardin, F., Duque, C.A., Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot (2017) Physica B., 524, p. 64Imran, A., Jiang, J., Eric, D., Zahid, M.N., Yousaf, M., Shah, Z.H., Optical properties of InAs/GaAs quantum dot superlattice structures (2018) Results. Phys., 9, p. 297Surrente, A., Felici, M., Gallo, P., Rudra, A., Dwir, B., Kapon, E., Dense arrays of site-controlled quantum dots with tailored emission wavelength: Growth mechanisms and optical properties (2017) Appl. Phys. Lett., 111, p. 221102Wolford, D.J., Kuech, T.F., Bradley, J.A., Gell, M.A., Ninno, D., Jaros, M., Pressure dependence of GaAs/AlxGa1?xAs quantum-well bound states: The determination of valence-band offsets (1986) J. Vac. Sci. Technol. B, 4, p. 1043Leburton, J.P., Kahen, K., GaAs-AlGaAs superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation (1985) Superlattices Microstruct., 1, p. 49Elabsy, A.M., Band mixing dependence of the lowest energy states in uncoupled quantum wells (1993) Superlattices Microstruct., 14, p. 65Elabsy, A.M., Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures (1993) Phys. Scr., 48, p. 376Elabsy, A.M., Effect of the Gamma-X crossover on the binding energies of confined donors in single GaAs/AlxGa1?xAs quantum-well microstructures (1994) J. Phys.: Condens. Matter., 6, p. 10025Burnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., ??X mixing in AlxGa1?xAs coupled double quantum wells under hydrostatic pressure (1993) Phys. Rev. B, 47, p. 1991Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1?xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration (2014) J. Lumin., 145, p. 676Bouzaiene, L., Alamri, H., Sfaxi, L., Maaref, H., Simultaneous effects of hydrostatic pressure, temperature and electric field on optical absorption in InAs/GaAs lens shape quantum dot (2016) J. Alloys Compd., 655, p. 172Ortakaya, S., Kirak, M., Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement (2016) Chin. Phys. B, 25, p. 127302Karimi, M.J., Rezaei, G., Nazari, M., Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature (2014) J. Lumin., 145, p. 55BenDaniel, D.J., Duke, C.B., Space-charge effects on electron tunneling (1966) Phys. Rev., 152, p. 683Ospina, D.A., Mora-Ramos, M.E., Duque, C.A., Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well (2017) J. Nanosci. Nanotechno., 17, p. 1247Samara, G.A., Temperature and pressure dependences of the dielectric constants of semiconductors (1983) Phys. Rev. B, 27, p. 3494Reyes-Gómez, E., Raigoza, N., Oliveira, L.E., Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields (2008) Phys. Rev. B, 77, p. 115308Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), ninth Dover printing, tenth GPO printing Dover New YorkChuang, S.L., Physics of Optoelectronic Devices (2005), first ed. WileyHosseini, M., Tailoring the terahertz absorption in the quantum wells (2016) Optik, 127, p. 4554Williams, B.S., Terahertz quantum-cascade lasers (2007) Nat. Photonics, 1, p. 517Materials Science in Semiconductor ProcessingAbsorption coefficientIntraband transitionsSpherical quantum dotTerahertzAluminumBlue shiftElectronic structureGallium arsenideHydraulicsHydrostatic pressureIII-V semiconductorsLight absorptionNanocrystalsNumerical methodsRed ShiftSemiconducting galliumSemiconductor quantum dotsSpheresAbsorption co-efficientEffective mass approximationElectromagnetic spectraIntersubband optical transitionsIntraband transitionsOptical absorption coefficientsSpherical quantum dotTera HertzTransfer matrix methodEffect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dotsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rodríguez-Magdaleno, K.A., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo La Bufa S/N, C.P. 98060, Zac., Zacatecas, Mexico; Mora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Pérez-Álvarez, R., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, CP 62209, Mexico; Martínez-Orozco, J.C., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo La Bufa S/N, C.P. 98060, Zac., Zacatecas, Mexicohttp://purl.org/coar/access_right/c_16ecRodríguez-Magdaleno K.A.Mora-Ramos M.E.Pérez-Álvarez R.Martínez-Orozco J.C.11407/5802oai:repository.udem.edu.co:11407/58022020-05-27 19:17:35.319Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co