Automated velocity estimation by deep learning based seismic-to-velocity mapping
We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5775
- Acceso en línea:
- http://hdl.handle.net/11407/5775
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_0e2d2df38fcf357a159c055e8f8379fc |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5775 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
20192020-04-29T14:53:58Z2020-04-29T14:53:58Z9789462822894http://hdl.handle.net/11407/5775We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved.engEAGE Publishing BVFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073599084&partnerID=40&md5=f022ea7847272e7a984047f35b0b574aAminzadeh, F., Jean, B., Kunz, T., 3-D salt and overthrust models (1997) Society of Exploration GeophysicistsAraya-Polo, M., Jennings, J., Adler, A., Dahlke, T., Deep-learning tomography (2018) The Leading Edge, 37 (1), pp. 58-66. , https://doi.org/10.1190/tle37010058.1Huang, Z., Shimeld, J., Williamson, M., Katsube, J., Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada (1996) Geophysics, 61 (2), pp. 422-436. , https://doi.org/10.1190/1.1443970Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., (2016) Image-to-Image Translation with Conditional Adversarial Networks, , arXiv preprintMichelsanti, D., Tan, Z.H., (2017) Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification, , arXiv preprintMurat, M.E., Rudman, A.J., Automated first arrival picking: A neural network approach (1992) Geophysical Prospecting, 40 (6), pp. 587-604. , https://doi.org/10.1111/j.13652478.1992.tb00543.xRöth, G., Tarantola, A., Neural networks and inversion of seismic data (1994) Journal of Geophysical Research: Solid Earth, 99 (B4), pp. 6753-6768. , https://doi.org/10.1029/93JB0156381st EAGE Conference and Exhibition 2019Automated velocity estimation by deep learning based seismic-to-velocity mappingConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Duque, L., Instituto Tecnológico Metropolitano, Colombia; Gutiérrez, G., MOONBLOCK; Arias, C., Instituto Tecnológico Metropolitano, Colombia; Rüger, A., Colorado School of Mines, United States; Jaramillo, H., University of Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecDuque L.Gutiérrez G.Arias C.Rüger A.Jaramillo H.11407/5775oai:repository.udem.edu.co:11407/57752020-05-27 16:38:06.749Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.none.fl_str_mv |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
title |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
spellingShingle |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
title_short |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
title_full |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
title_fullStr |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
title_full_unstemmed |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
title_sort |
Automated velocity estimation by deep learning based seismic-to-velocity mapping |
description |
We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:58Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:58Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.isbn.none.fl_str_mv |
9789462822894 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5775 |
identifier_str_mv |
9789462822894 |
url |
http://hdl.handle.net/11407/5775 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073599084&partnerID=40&md5=f022ea7847272e7a984047f35b0b574a |
dc.relation.references.none.fl_str_mv |
Aminzadeh, F., Jean, B., Kunz, T., 3-D salt and overthrust models (1997) Society of Exploration Geophysicists Araya-Polo, M., Jennings, J., Adler, A., Dahlke, T., Deep-learning tomography (2018) The Leading Edge, 37 (1), pp. 58-66. , https://doi.org/10.1190/tle37010058.1 Huang, Z., Shimeld, J., Williamson, M., Katsube, J., Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada (1996) Geophysics, 61 (2), pp. 422-436. , https://doi.org/10.1190/1.1443970 Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., (2016) Image-to-Image Translation with Conditional Adversarial Networks, , arXiv preprint Michelsanti, D., Tan, Z.H., (2017) Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification, , arXiv preprint Murat, M.E., Rudman, A.J., Automated first arrival picking: A neural network approach (1992) Geophysical Prospecting, 40 (6), pp. 587-604. , https://doi.org/10.1111/j.13652478.1992.tb00543.x Röth, G., Tarantola, A., Neural networks and inversion of seismic data (1994) Journal of Geophysical Research: Solid Earth, 99 (B4), pp. 6753-6768. , https://doi.org/10.1029/93JB01563 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
EAGE Publishing BV |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
EAGE Publishing BV |
dc.source.none.fl_str_mv |
81st EAGE Conference and Exhibition 2019 |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159163838693376 |