Automated velocity estimation by deep learning based seismic-to-velocity mapping

We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5775
Acceso en línea:
http://hdl.handle.net/11407/5775
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_0e2d2df38fcf357a159c055e8f8379fc
oai_identifier_str oai:repository.udem.edu.co:11407/5775
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 20192020-04-29T14:53:58Z2020-04-29T14:53:58Z9789462822894http://hdl.handle.net/11407/5775We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved.engEAGE Publishing BVFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073599084&partnerID=40&md5=f022ea7847272e7a984047f35b0b574aAminzadeh, F., Jean, B., Kunz, T., 3-D salt and overthrust models (1997) Society of Exploration GeophysicistsAraya-Polo, M., Jennings, J., Adler, A., Dahlke, T., Deep-learning tomography (2018) The Leading Edge, 37 (1), pp. 58-66. , https://doi.org/10.1190/tle37010058.1Huang, Z., Shimeld, J., Williamson, M., Katsube, J., Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada (1996) Geophysics, 61 (2), pp. 422-436. , https://doi.org/10.1190/1.1443970Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., (2016) Image-to-Image Translation with Conditional Adversarial Networks, , arXiv preprintMichelsanti, D., Tan, Z.H., (2017) Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification, , arXiv preprintMurat, M.E., Rudman, A.J., Automated first arrival picking: A neural network approach (1992) Geophysical Prospecting, 40 (6), pp. 587-604. , https://doi.org/10.1111/j.13652478.1992.tb00543.xRöth, G., Tarantola, A., Neural networks and inversion of seismic data (1994) Journal of Geophysical Research: Solid Earth, 99 (B4), pp. 6753-6768. , https://doi.org/10.1029/93JB0156381st EAGE Conference and Exhibition 2019Automated velocity estimation by deep learning based seismic-to-velocity mappingConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Duque, L., Instituto Tecnológico Metropolitano, Colombia; Gutiérrez, G., MOONBLOCK; Arias, C., Instituto Tecnológico Metropolitano, Colombia; Rüger, A., Colorado School of Mines, United States; Jaramillo, H., University of Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecDuque L.Gutiérrez G.Arias C.Rüger A.Jaramillo H.11407/5775oai:repository.udem.edu.co:11407/57752020-05-27 16:38:06.749Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.none.fl_str_mv Automated velocity estimation by deep learning based seismic-to-velocity mapping
title Automated velocity estimation by deep learning based seismic-to-velocity mapping
spellingShingle Automated velocity estimation by deep learning based seismic-to-velocity mapping
title_short Automated velocity estimation by deep learning based seismic-to-velocity mapping
title_full Automated velocity estimation by deep learning based seismic-to-velocity mapping
title_fullStr Automated velocity estimation by deep learning based seismic-to-velocity mapping
title_full_unstemmed Automated velocity estimation by deep learning based seismic-to-velocity mapping
title_sort Automated velocity estimation by deep learning based seismic-to-velocity mapping
description We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:58Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:58Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9789462822894
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5775
identifier_str_mv 9789462822894
url http://hdl.handle.net/11407/5775
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073599084&partnerID=40&md5=f022ea7847272e7a984047f35b0b574a
dc.relation.references.none.fl_str_mv Aminzadeh, F., Jean, B., Kunz, T., 3-D salt and overthrust models (1997) Society of Exploration Geophysicists
Araya-Polo, M., Jennings, J., Adler, A., Dahlke, T., Deep-learning tomography (2018) The Leading Edge, 37 (1), pp. 58-66. , https://doi.org/10.1190/tle37010058.1
Huang, Z., Shimeld, J., Williamson, M., Katsube, J., Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada (1996) Geophysics, 61 (2), pp. 422-436. , https://doi.org/10.1190/1.1443970
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., (2016) Image-to-Image Translation with Conditional Adversarial Networks, , arXiv preprint
Michelsanti, D., Tan, Z.H., (2017) Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification, , arXiv preprint
Murat, M.E., Rudman, A.J., Automated first arrival picking: A neural network approach (1992) Geophysical Prospecting, 40 (6), pp. 587-604. , https://doi.org/10.1111/j.13652478.1992.tb00543.x
Röth, G., Tarantola, A., Neural networks and inversion of seismic data (1994) Journal of Geophysical Research: Solid Earth, 99 (B4), pp. 6753-6768. , https://doi.org/10.1029/93JB01563
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv EAGE Publishing BV
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv EAGE Publishing BV
dc.source.none.fl_str_mv 81st EAGE Conference and Exhibition 2019
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159163838693376