Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials

The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law effici...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6069
Acceso en línea:
http://hdl.handle.net/11407/6069
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_0ba3f9a2f516fd320b85067fd43514ad
oai_identifier_str oai:repository.udem.edu.co:11407/6069
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
title Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
spellingShingle Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
title_short Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
title_full Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
title_fullStr Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
title_full_unstemmed Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
title_sort Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
description The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law efficiencies of concentrated solar collectors as a function of the absorber temperature and concentration ratio. The results are compared with the respective traditional collector configurations without TIM. In general, high concentration ratios are fundamental to maintain high efficiencies. The incorporation of a TIM into concentrated solar collectors leads to higher thermal efficiencies at high operating temperatures even at low concentration ratios. An equivalent second law efficiency to that of the reference collector configuration can be achieved at lower concentration ratios by incorporating a TIM in parabolic trough or a TIM and a glass envelope in central receiver collectors. The idea of using a TIM deserves further exploration as it seems to be a promising alternative that contributes to a more efficient and cost-effective technology. © 2019 Elsevier Ltd
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:06Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:06Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 22131388
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6069
dc.identifier.doi.none.fl_str_mv 10.1016/j.seta.2019.01.005
identifier_str_mv 22131388
10.1016/j.seta.2019.01.005
url http://hdl.handle.net/11407/6069
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061563054&doi=10.1016%2fj.seta.2019.01.005&partnerID=40&md5=d71bedf8f16ea8e88ceb6bbaf3f39d1b
dc.relation.citationvolume.none.fl_str_mv 32
dc.relation.citationstartpage.none.fl_str_mv 58
dc.relation.citationendpage.none.fl_str_mv 70
dc.relation.references.none.fl_str_mv Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R., A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends (2018) Renewable Sustainable Energy Rev, 91, pp. 987-1018
(2018), https://www.nrel.gov/csp/solarpaces/parabolic_trough.cfm, Parabolic Trough Projects. National Renewable Energy Laboratory – NREL., Accessed August 13
Behar, O., Khellaf, A., Mohammedi, K., A review of studies on central receiver solar thermal power plants (2013) Renewable Sustainable Energy Rev, 23, pp. 12-39
(2018), https://www.nrel.gov/csp/solarpaces/power_tower.cfm, Power Tower Projects. National Renewable Energy Laboratory – NREL., Accessed August 13
Kalogirou, S.A., Solar thermal collectors and applications (2004) Prog Energy Combust Sci, 30, pp. 231-295
Chacartegui, R., Muñoz de Escalona, J.M., Sánchez, D., Monje, B., Sánchez, T., Alternative cycles based on carbon dioxide for central receiver solar power plants (2011) Appl Therm Eng, 31, pp. 872-879
Vignarooban, K., Xu, X., Arvay, A., Hsu, K., Kannan, A.M., Heat transfer fluids for concentrating solar power systems – a review (2015) Appl Energy, 146, pp. 383-396
Marocco, L., Cammi, G., Flesch, J., Wetzel, T., Numerical analysis of a solar tower receiver tube operated with liquid metals (2016) Int J Therm Sci, 105, pp. 22-35
Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2 -based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368
Wang, Q., Yang, H., Huang, X., Li, J., Pei, G., Numerical investigation and experimental validation of the impacts of an inner radiation shield on parabolic trough solar receivers (2018) Appl Therm Eng, 132, pp. 381-392
Wirz, M., Petit, J., Haselbacher, A., Steinfeld, A., Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators (2014) Sol Energy, 107, pp. 398-414
Osorio, J.D., Rivera-Alvarez, A., Performance analysis of parabolic trough collectors with double glass envelope Renewable Energy, 130, pp. 1092-1107. , 2019
Osorio, J.D., Rivera-Alvarez, A., Girurugwiro, P., Yang, S., Hovsapian, R., Ordonez, J.C., Integration of transparent insulation materials into solar collector devices (2017) Sol Energy, 147, pp. 8-21
Lewkowicz, M.K., Alsaqoor, S., Alahmer, A., Borowski, G., Modeling and optimization of transparent thermal insulation material (2018) J Sol Energy Eng, 140 (5)
Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl Energy, 133, pp. 206-223
Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol Energy, 107, pp. 202-209
Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol Energy, 97, pp. 305-313
Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renewable Energy, 28 (3), pp. 331-344
Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc, 49, pp. 538-550
Hafez, A.Z., Attia, A.M., Eltwab, H.S., ElKousy, A.O., Afifi, A.A., AbdElhamid, A.G., Design analysis of solar parabolic trough thermal collectors (2018) Renewable Sustainable Energy Rev, 82, pp. 1215-1260
Ho, C.K., Advances in central receivers for concentrating solar applications (2017) Sol Energy, 152, pp. 38-56
Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios (2014) Energy, 73, pp. 606-617
Zheng, H., Yu, X., Su, Y., Riffat, S., Xiong, J., Thermodynamic analysis of an idealised solar tower thermal power plant (2015) Appl Therm Eng, 81, pp. 271-278
Tyagi, S.K., Wang, S., Singhal, M.K., Kaushik, S.C., Park, S.R., Exergy analysis and parametric study of concentrating type solar collectors (2007) Int J Therm Sci, 46, pp. 1304-1310
Xu, C., Wang, Z., Li, X., Sun, F., Energy and exergy analysis of solar power tower plants (2011) Appl Therm Eng, 31, pp. 3904-3913
Li, L., Coventry, J., Bader, R., Pye, J., Lipiński, W., Optics of solar central receiver systems: a review (2016) Opt Express, 24 (14), pp. A985-A1007
Rodriguez-Sanchez, D., Rosengarten, G., Improving the concentration ratio of parabolic troughs using a second-stage flat mirror (2015) Appl Energy, 159, pp. 620-632
Forristall, R., Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver, NREL Report (2003), NREL/TP-550-34169
Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl Therm Eng, 63, pp. 428-438
Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renewable Sustainable Energy Rev, 29, pp. 835-846
Duffie, J.A., Beckman, W.A., Solar engineering of thermal processes (2013), 4th ed. Wiley
Bergman, T.L., Lavine, A.S., Incropera, F.P., D (2012) Fundamentals of heat and mass transfer, , P. DeWitt 7th ed. Wiley
Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO 2 Brayton cycles for solar-thermal energy (2013) Appl Energy, 111, pp. 957-970
Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl Energy, 88, pp. 5097-5110
Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc, 49, pp. 504-513
Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renewable Energy, 33, pp. 1275-1285
Chwieduk, D., Solar energy in buildings: thermal balance for efficient heating and cooling (2014), 1st ed. Academic Press
(2018), http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, Schott optical glass datasheet. 2017., Accessed: August 13
Pacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120 (2002), Sandia National Laboratories
Ho, C.Y., Chu, T.K., Electrical resistivity and thermal conductivity of nine selected AISI stainless steels (1977), American Iron and Steel Institute CINDAS report 45
(2018), http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107, MatWeb material property data, Schott D 263 thin borosilicate glass., Accessed August 13
Bejan, A., (2013), Convection Heat Transfer, Wiley, fourth edition
Dudley, V.E., Kolb, G.J., Sloan, M., Kearney, D., Test results: SGES LS-2 solar collector. Technical report SANDe94-1884 (1994), Sandia National Laboratory
Boudaoud, S., Khellaf, A., Mohammedi, K., Behar, O., Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria (2015) Energy Convers Manage, 89, pp. 655-664
Kolb, G.J., Ho, C., Mancini, T.R., Gary, J.A., Power tower technology roadmap and cost reduction plan. Sandia Report (2011)
Petela, R., Exergy of heat radiation (1964) J Heat Transfer, 86 (2), pp. 187-192
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.spa.fl_str_mv Ingeniería en Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Sustainable Energy Technologies and Assessments
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159103097831424
spelling 20192021-02-05T14:59:06Z2021-02-05T14:59:06Z22131388http://hdl.handle.net/11407/606910.1016/j.seta.2019.01.005The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law efficiencies of concentrated solar collectors as a function of the absorber temperature and concentration ratio. The results are compared with the respective traditional collector configurations without TIM. In general, high concentration ratios are fundamental to maintain high efficiencies. The incorporation of a TIM into concentrated solar collectors leads to higher thermal efficiencies at high operating temperatures even at low concentration ratios. An equivalent second law efficiency to that of the reference collector configuration can be achieved at lower concentration ratios by incorporating a TIM in parabolic trough or a TIM and a glass envelope in central receiver collectors. The idea of using a TIM deserves further exploration as it seems to be a promising alternative that contributes to a more efficient and cost-effective technology. © 2019 Elsevier LtdengElsevier LtdIngeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061563054&doi=10.1016%2fj.seta.2019.01.005&partnerID=40&md5=d71bedf8f16ea8e88ceb6bbaf3f39d1b325870Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R., A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends (2018) Renewable Sustainable Energy Rev, 91, pp. 987-1018(2018), https://www.nrel.gov/csp/solarpaces/parabolic_trough.cfm, Parabolic Trough Projects. National Renewable Energy Laboratory – NREL., Accessed August 13Behar, O., Khellaf, A., Mohammedi, K., A review of studies on central receiver solar thermal power plants (2013) Renewable Sustainable Energy Rev, 23, pp. 12-39(2018), https://www.nrel.gov/csp/solarpaces/power_tower.cfm, Power Tower Projects. National Renewable Energy Laboratory – NREL., Accessed August 13Kalogirou, S.A., Solar thermal collectors and applications (2004) Prog Energy Combust Sci, 30, pp. 231-295Chacartegui, R., Muñoz de Escalona, J.M., Sánchez, D., Monje, B., Sánchez, T., Alternative cycles based on carbon dioxide for central receiver solar power plants (2011) Appl Therm Eng, 31, pp. 872-879Vignarooban, K., Xu, X., Arvay, A., Hsu, K., Kannan, A.M., Heat transfer fluids for concentrating solar power systems – a review (2015) Appl Energy, 146, pp. 383-396Marocco, L., Cammi, G., Flesch, J., Wetzel, T., Numerical analysis of a solar tower receiver tube operated with liquid metals (2016) Int J Therm Sci, 105, pp. 22-35Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2 -based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368Wang, Q., Yang, H., Huang, X., Li, J., Pei, G., Numerical investigation and experimental validation of the impacts of an inner radiation shield on parabolic trough solar receivers (2018) Appl Therm Eng, 132, pp. 381-392Wirz, M., Petit, J., Haselbacher, A., Steinfeld, A., Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators (2014) Sol Energy, 107, pp. 398-414Osorio, J.D., Rivera-Alvarez, A., Performance analysis of parabolic trough collectors with double glass envelope Renewable Energy, 130, pp. 1092-1107. , 2019Osorio, J.D., Rivera-Alvarez, A., Girurugwiro, P., Yang, S., Hovsapian, R., Ordonez, J.C., Integration of transparent insulation materials into solar collector devices (2017) Sol Energy, 147, pp. 8-21Lewkowicz, M.K., Alsaqoor, S., Alahmer, A., Borowski, G., Modeling and optimization of transparent thermal insulation material (2018) J Sol Energy Eng, 140 (5)Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl Energy, 133, pp. 206-223Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol Energy, 107, pp. 202-209Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol Energy, 97, pp. 305-313Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renewable Energy, 28 (3), pp. 331-344Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc, 49, pp. 538-550Hafez, A.Z., Attia, A.M., Eltwab, H.S., ElKousy, A.O., Afifi, A.A., AbdElhamid, A.G., Design analysis of solar parabolic trough thermal collectors (2018) Renewable Sustainable Energy Rev, 82, pp. 1215-1260Ho, C.K., Advances in central receivers for concentrating solar applications (2017) Sol Energy, 152, pp. 38-56Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios (2014) Energy, 73, pp. 606-617Zheng, H., Yu, X., Su, Y., Riffat, S., Xiong, J., Thermodynamic analysis of an idealised solar tower thermal power plant (2015) Appl Therm Eng, 81, pp. 271-278Tyagi, S.K., Wang, S., Singhal, M.K., Kaushik, S.C., Park, S.R., Exergy analysis and parametric study of concentrating type solar collectors (2007) Int J Therm Sci, 46, pp. 1304-1310Xu, C., Wang, Z., Li, X., Sun, F., Energy and exergy analysis of solar power tower plants (2011) Appl Therm Eng, 31, pp. 3904-3913Li, L., Coventry, J., Bader, R., Pye, J., Lipiński, W., Optics of solar central receiver systems: a review (2016) Opt Express, 24 (14), pp. A985-A1007Rodriguez-Sanchez, D., Rosengarten, G., Improving the concentration ratio of parabolic troughs using a second-stage flat mirror (2015) Appl Energy, 159, pp. 620-632Forristall, R., Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver, NREL Report (2003), NREL/TP-550-34169Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl Therm Eng, 63, pp. 428-438Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renewable Sustainable Energy Rev, 29, pp. 835-846Duffie, J.A., Beckman, W.A., Solar engineering of thermal processes (2013), 4th ed. WileyBergman, T.L., Lavine, A.S., Incropera, F.P., D (2012) Fundamentals of heat and mass transfer, , P. DeWitt 7th ed. WileyIverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO 2 Brayton cycles for solar-thermal energy (2013) Appl Energy, 111, pp. 957-970Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl Energy, 88, pp. 5097-5110Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc, 49, pp. 504-513Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renewable Energy, 33, pp. 1275-1285Chwieduk, D., Solar energy in buildings: thermal balance for efficient heating and cooling (2014), 1st ed. Academic Press(2018), http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, Schott optical glass datasheet. 2017., Accessed: August 13Pacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120 (2002), Sandia National LaboratoriesHo, C.Y., Chu, T.K., Electrical resistivity and thermal conductivity of nine selected AISI stainless steels (1977), American Iron and Steel Institute CINDAS report 45(2018), http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107, MatWeb material property data, Schott D 263 thin borosilicate glass., Accessed August 13Bejan, A., (2013), Convection Heat Transfer, Wiley, fourth editionDudley, V.E., Kolb, G.J., Sloan, M., Kearney, D., Test results: SGES LS-2 solar collector. Technical report SANDe94-1884 (1994), Sandia National LaboratoryBoudaoud, S., Khellaf, A., Mohammedi, K., Behar, O., Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria (2015) Energy Convers Manage, 89, pp. 655-664Kolb, G.J., Ho, C., Mancini, T.R., Gary, J.A., Power tower technology roadmap and cost reduction plan. Sandia Report (2011)Petela, R., Exergy of heat radiation (1964) J Heat Transfer, 86 (2), pp. 187-192Sustainable Energy Technologies and AssessmentsEffect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materialsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Osorio, J.D., Power & Energy System Department, Idaho National Laboratory, Idaho Falls, ID 83402, United States, Ingeniería en Energía, Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaRivera-Alvarez, A., Ingeniería Térmica Ltda., Medellín, Colombia, Fundación Ergon, Medellín, ColombiaOrdonez, J.C., Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, and Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310, United Stateshttp://purl.org/coar/access_right/c_16ecOsorio J.D.Rivera-Alvarez A.Ordonez J.C.11407/6069oai:repository.udem.edu.co:11407/60692021-02-05 09:59:06.217Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co