Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law effici...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6069
- Acceso en línea:
- http://hdl.handle.net/11407/6069
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_0ba3f9a2f516fd320b85067fd43514ad |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6069 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
title |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
spellingShingle |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
title_short |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
title_full |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
title_fullStr |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
title_full_unstemmed |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
title_sort |
Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials |
description |
The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law efficiencies of concentrated solar collectors as a function of the absorber temperature and concentration ratio. The results are compared with the respective traditional collector configurations without TIM. In general, high concentration ratios are fundamental to maintain high efficiencies. The incorporation of a TIM into concentrated solar collectors leads to higher thermal efficiencies at high operating temperatures even at low concentration ratios. An equivalent second law efficiency to that of the reference collector configuration can be achieved at lower concentration ratios by incorporating a TIM in parabolic trough or a TIM and a glass envelope in central receiver collectors. The idea of using a TIM deserves further exploration as it seems to be a promising alternative that contributes to a more efficient and cost-effective technology. © 2019 Elsevier Ltd |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:06Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:06Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
22131388 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6069 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.seta.2019.01.005 |
identifier_str_mv |
22131388 10.1016/j.seta.2019.01.005 |
url |
http://hdl.handle.net/11407/6069 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061563054&doi=10.1016%2fj.seta.2019.01.005&partnerID=40&md5=d71bedf8f16ea8e88ceb6bbaf3f39d1b |
dc.relation.citationvolume.none.fl_str_mv |
32 |
dc.relation.citationstartpage.none.fl_str_mv |
58 |
dc.relation.citationendpage.none.fl_str_mv |
70 |
dc.relation.references.none.fl_str_mv |
Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R., A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends (2018) Renewable Sustainable Energy Rev, 91, pp. 987-1018 (2018), https://www.nrel.gov/csp/solarpaces/parabolic_trough.cfm, Parabolic Trough Projects. National Renewable Energy Laboratory – NREL., Accessed August 13 Behar, O., Khellaf, A., Mohammedi, K., A review of studies on central receiver solar thermal power plants (2013) Renewable Sustainable Energy Rev, 23, pp. 12-39 (2018), https://www.nrel.gov/csp/solarpaces/power_tower.cfm, Power Tower Projects. National Renewable Energy Laboratory – NREL., Accessed August 13 Kalogirou, S.A., Solar thermal collectors and applications (2004) Prog Energy Combust Sci, 30, pp. 231-295 Chacartegui, R., Muñoz de Escalona, J.M., Sánchez, D., Monje, B., Sánchez, T., Alternative cycles based on carbon dioxide for central receiver solar power plants (2011) Appl Therm Eng, 31, pp. 872-879 Vignarooban, K., Xu, X., Arvay, A., Hsu, K., Kannan, A.M., Heat transfer fluids for concentrating solar power systems – a review (2015) Appl Energy, 146, pp. 383-396 Marocco, L., Cammi, G., Flesch, J., Wetzel, T., Numerical analysis of a solar tower receiver tube operated with liquid metals (2016) Int J Therm Sci, 105, pp. 22-35 Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2 -based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368 Wang, Q., Yang, H., Huang, X., Li, J., Pei, G., Numerical investigation and experimental validation of the impacts of an inner radiation shield on parabolic trough solar receivers (2018) Appl Therm Eng, 132, pp. 381-392 Wirz, M., Petit, J., Haselbacher, A., Steinfeld, A., Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators (2014) Sol Energy, 107, pp. 398-414 Osorio, J.D., Rivera-Alvarez, A., Performance analysis of parabolic trough collectors with double glass envelope Renewable Energy, 130, pp. 1092-1107. , 2019 Osorio, J.D., Rivera-Alvarez, A., Girurugwiro, P., Yang, S., Hovsapian, R., Ordonez, J.C., Integration of transparent insulation materials into solar collector devices (2017) Sol Energy, 147, pp. 8-21 Lewkowicz, M.K., Alsaqoor, S., Alahmer, A., Borowski, G., Modeling and optimization of transparent thermal insulation material (2018) J Sol Energy Eng, 140 (5) Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl Energy, 133, pp. 206-223 Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol Energy, 107, pp. 202-209 Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol Energy, 97, pp. 305-313 Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renewable Energy, 28 (3), pp. 331-344 Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc, 49, pp. 538-550 Hafez, A.Z., Attia, A.M., Eltwab, H.S., ElKousy, A.O., Afifi, A.A., AbdElhamid, A.G., Design analysis of solar parabolic trough thermal collectors (2018) Renewable Sustainable Energy Rev, 82, pp. 1215-1260 Ho, C.K., Advances in central receivers for concentrating solar applications (2017) Sol Energy, 152, pp. 38-56 Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios (2014) Energy, 73, pp. 606-617 Zheng, H., Yu, X., Su, Y., Riffat, S., Xiong, J., Thermodynamic analysis of an idealised solar tower thermal power plant (2015) Appl Therm Eng, 81, pp. 271-278 Tyagi, S.K., Wang, S., Singhal, M.K., Kaushik, S.C., Park, S.R., Exergy analysis and parametric study of concentrating type solar collectors (2007) Int J Therm Sci, 46, pp. 1304-1310 Xu, C., Wang, Z., Li, X., Sun, F., Energy and exergy analysis of solar power tower plants (2011) Appl Therm Eng, 31, pp. 3904-3913 Li, L., Coventry, J., Bader, R., Pye, J., Lipiński, W., Optics of solar central receiver systems: a review (2016) Opt Express, 24 (14), pp. A985-A1007 Rodriguez-Sanchez, D., Rosengarten, G., Improving the concentration ratio of parabolic troughs using a second-stage flat mirror (2015) Appl Energy, 159, pp. 620-632 Forristall, R., Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver, NREL Report (2003), NREL/TP-550-34169 Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl Therm Eng, 63, pp. 428-438 Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renewable Sustainable Energy Rev, 29, pp. 835-846 Duffie, J.A., Beckman, W.A., Solar engineering of thermal processes (2013), 4th ed. Wiley Bergman, T.L., Lavine, A.S., Incropera, F.P., D (2012) Fundamentals of heat and mass transfer, , P. DeWitt 7th ed. Wiley Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO 2 Brayton cycles for solar-thermal energy (2013) Appl Energy, 111, pp. 957-970 Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl Energy, 88, pp. 5097-5110 Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc, 49, pp. 504-513 Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renewable Energy, 33, pp. 1275-1285 Chwieduk, D., Solar energy in buildings: thermal balance for efficient heating and cooling (2014), 1st ed. Academic Press (2018), http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, Schott optical glass datasheet. 2017., Accessed: August 13 Pacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120 (2002), Sandia National Laboratories Ho, C.Y., Chu, T.K., Electrical resistivity and thermal conductivity of nine selected AISI stainless steels (1977), American Iron and Steel Institute CINDAS report 45 (2018), http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107, MatWeb material property data, Schott D 263 thin borosilicate glass., Accessed August 13 Bejan, A., (2013), Convection Heat Transfer, Wiley, fourth edition Dudley, V.E., Kolb, G.J., Sloan, M., Kearney, D., Test results: SGES LS-2 solar collector. Technical report SANDe94-1884 (1994), Sandia National Laboratory Boudaoud, S., Khellaf, A., Mohammedi, K., Behar, O., Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria (2015) Energy Convers Manage, 89, pp. 655-664 Kolb, G.J., Ho, C., Mancini, T.R., Gary, J.A., Power tower technology roadmap and cost reduction plan. Sandia Report (2011) Petela, R., Exergy of heat radiation (1964) J Heat Transfer, 86 (2), pp. 187-192 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.program.spa.fl_str_mv |
Ingeniería en Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Sustainable Energy Technologies and Assessments |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159103097831424 |
spelling |
20192021-02-05T14:59:06Z2021-02-05T14:59:06Z22131388http://hdl.handle.net/11407/606910.1016/j.seta.2019.01.005The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law efficiencies of concentrated solar collectors as a function of the absorber temperature and concentration ratio. The results are compared with the respective traditional collector configurations without TIM. In general, high concentration ratios are fundamental to maintain high efficiencies. The incorporation of a TIM into concentrated solar collectors leads to higher thermal efficiencies at high operating temperatures even at low concentration ratios. An equivalent second law efficiency to that of the reference collector configuration can be achieved at lower concentration ratios by incorporating a TIM in parabolic trough or a TIM and a glass envelope in central receiver collectors. The idea of using a TIM deserves further exploration as it seems to be a promising alternative that contributes to a more efficient and cost-effective technology. © 2019 Elsevier LtdengElsevier LtdIngeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061563054&doi=10.1016%2fj.seta.2019.01.005&partnerID=40&md5=d71bedf8f16ea8e88ceb6bbaf3f39d1b325870Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R., A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends (2018) Renewable Sustainable Energy Rev, 91, pp. 987-1018(2018), https://www.nrel.gov/csp/solarpaces/parabolic_trough.cfm, Parabolic Trough Projects. National Renewable Energy Laboratory – NREL., Accessed August 13Behar, O., Khellaf, A., Mohammedi, K., A review of studies on central receiver solar thermal power plants (2013) Renewable Sustainable Energy Rev, 23, pp. 12-39(2018), https://www.nrel.gov/csp/solarpaces/power_tower.cfm, Power Tower Projects. National Renewable Energy Laboratory – NREL., Accessed August 13Kalogirou, S.A., Solar thermal collectors and applications (2004) Prog Energy Combust Sci, 30, pp. 231-295Chacartegui, R., Muñoz de Escalona, J.M., Sánchez, D., Monje, B., Sánchez, T., Alternative cycles based on carbon dioxide for central receiver solar power plants (2011) Appl Therm Eng, 31, pp. 872-879Vignarooban, K., Xu, X., Arvay, A., Hsu, K., Kannan, A.M., Heat transfer fluids for concentrating solar power systems – a review (2015) Appl Energy, 146, pp. 383-396Marocco, L., Cammi, G., Flesch, J., Wetzel, T., Numerical analysis of a solar tower receiver tube operated with liquid metals (2016) Int J Therm Sci, 105, pp. 22-35Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2 -based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368Wang, Q., Yang, H., Huang, X., Li, J., Pei, G., Numerical investigation and experimental validation of the impacts of an inner radiation shield on parabolic trough solar receivers (2018) Appl Therm Eng, 132, pp. 381-392Wirz, M., Petit, J., Haselbacher, A., Steinfeld, A., Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators (2014) Sol Energy, 107, pp. 398-414Osorio, J.D., Rivera-Alvarez, A., Performance analysis of parabolic trough collectors with double glass envelope Renewable Energy, 130, pp. 1092-1107. , 2019Osorio, J.D., Rivera-Alvarez, A., Girurugwiro, P., Yang, S., Hovsapian, R., Ordonez, J.C., Integration of transparent insulation materials into solar collector devices (2017) Sol Energy, 147, pp. 8-21Lewkowicz, M.K., Alsaqoor, S., Alahmer, A., Borowski, G., Modeling and optimization of transparent thermal insulation material (2018) J Sol Energy Eng, 140 (5)Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl Energy, 133, pp. 206-223Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol Energy, 107, pp. 202-209Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol Energy, 97, pp. 305-313Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renewable Energy, 28 (3), pp. 331-344Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc, 49, pp. 538-550Hafez, A.Z., Attia, A.M., Eltwab, H.S., ElKousy, A.O., Afifi, A.A., AbdElhamid, A.G., Design analysis of solar parabolic trough thermal collectors (2018) Renewable Sustainable Energy Rev, 82, pp. 1215-1260Ho, C.K., Advances in central receivers for concentrating solar applications (2017) Sol Energy, 152, pp. 38-56Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios (2014) Energy, 73, pp. 606-617Zheng, H., Yu, X., Su, Y., Riffat, S., Xiong, J., Thermodynamic analysis of an idealised solar tower thermal power plant (2015) Appl Therm Eng, 81, pp. 271-278Tyagi, S.K., Wang, S., Singhal, M.K., Kaushik, S.C., Park, S.R., Exergy analysis and parametric study of concentrating type solar collectors (2007) Int J Therm Sci, 46, pp. 1304-1310Xu, C., Wang, Z., Li, X., Sun, F., Energy and exergy analysis of solar power tower plants (2011) Appl Therm Eng, 31, pp. 3904-3913Li, L., Coventry, J., Bader, R., Pye, J., Lipiński, W., Optics of solar central receiver systems: a review (2016) Opt Express, 24 (14), pp. A985-A1007Rodriguez-Sanchez, D., Rosengarten, G., Improving the concentration ratio of parabolic troughs using a second-stage flat mirror (2015) Appl Energy, 159, pp. 620-632Forristall, R., Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver, NREL Report (2003), NREL/TP-550-34169Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl Therm Eng, 63, pp. 428-438Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renewable Sustainable Energy Rev, 29, pp. 835-846Duffie, J.A., Beckman, W.A., Solar engineering of thermal processes (2013), 4th ed. WileyBergman, T.L., Lavine, A.S., Incropera, F.P., D (2012) Fundamentals of heat and mass transfer, , P. DeWitt 7th ed. WileyIverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO 2 Brayton cycles for solar-thermal energy (2013) Appl Energy, 111, pp. 957-970Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl Energy, 88, pp. 5097-5110Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc, 49, pp. 504-513Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renewable Energy, 33, pp. 1275-1285Chwieduk, D., Solar energy in buildings: thermal balance for efficient heating and cooling (2014), 1st ed. Academic Press(2018), http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, Schott optical glass datasheet. 2017., Accessed: August 13Pacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120 (2002), Sandia National LaboratoriesHo, C.Y., Chu, T.K., Electrical resistivity and thermal conductivity of nine selected AISI stainless steels (1977), American Iron and Steel Institute CINDAS report 45(2018), http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107, MatWeb material property data, Schott D 263 thin borosilicate glass., Accessed August 13Bejan, A., (2013), Convection Heat Transfer, Wiley, fourth editionDudley, V.E., Kolb, G.J., Sloan, M., Kearney, D., Test results: SGES LS-2 solar collector. Technical report SANDe94-1884 (1994), Sandia National LaboratoryBoudaoud, S., Khellaf, A., Mohammedi, K., Behar, O., Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria (2015) Energy Convers Manage, 89, pp. 655-664Kolb, G.J., Ho, C., Mancini, T.R., Gary, J.A., Power tower technology roadmap and cost reduction plan. Sandia Report (2011)Petela, R., Exergy of heat radiation (1964) J Heat Transfer, 86 (2), pp. 187-192Sustainable Energy Technologies and AssessmentsEffect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materialsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Osorio, J.D., Power & Energy System Department, Idaho National Laboratory, Idaho Falls, ID 83402, United States, Ingeniería en Energía, Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaRivera-Alvarez, A., Ingeniería Térmica Ltda., Medellín, Colombia, Fundación Ergon, Medellín, ColombiaOrdonez, J.C., Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, and Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310, United Stateshttp://purl.org/coar/access_right/c_16ecOsorio J.D.Rivera-Alvarez A.Ordonez J.C.11407/6069oai:repository.udem.edu.co:11407/60692021-02-05 09:59:06.217Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |