Optical properties of n-type asymmetric triple ?-doped quantum well under external fields
We present a theoretical investigation about the the influence of external electric, magnetic and non-resonant intense laser fields on intersubband-related second harmonics generation (SHG) and the nonlinear optical rectification (NOR) coefficients in n-type asymmetric triple ?-doped quantum wells (...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5739
- Acceso en línea:
- http://hdl.handle.net/11407/5739
- Palabra clave:
- Electric rectifiers
Magnetic field effects
Nonlinear optics
Optical properties
Quantum well lasers
Semiconductor quantum wells
Wave equations
Wave functions
Dipole approximation
Doping concentration
Electronic wave functions
Nonlinear optical rectification
Nonlinear optical response
Optical specifications
Theoretical investigations
Time-dependent wave equations
Harmonic generation
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_0a767012974f8992afc5a10eae100bd6 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5739 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
title |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
spellingShingle |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields Electric rectifiers Magnetic field effects Nonlinear optics Optical properties Quantum well lasers Semiconductor quantum wells Wave equations Wave functions Dipole approximation Doping concentration Electronic wave functions Nonlinear optical rectification Nonlinear optical response Optical specifications Theoretical investigations Time-dependent wave equations Harmonic generation |
title_short |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
title_full |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
title_fullStr |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
title_full_unstemmed |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
title_sort |
Optical properties of n-type asymmetric triple ?-doped quantum well under external fields |
dc.subject.none.fl_str_mv |
Electric rectifiers Magnetic field effects Nonlinear optics Optical properties Quantum well lasers Semiconductor quantum wells Wave equations Wave functions Dipole approximation Doping concentration Electronic wave functions Nonlinear optical rectification Nonlinear optical response Optical specifications Theoretical investigations Time-dependent wave equations Harmonic generation |
topic |
Electric rectifiers Magnetic field effects Nonlinear optics Optical properties Quantum well lasers Semiconductor quantum wells Wave equations Wave functions Dipole approximation Doping concentration Electronic wave functions Nonlinear optical rectification Nonlinear optical response Optical specifications Theoretical investigations Time-dependent wave equations Harmonic generation |
description |
We present a theoretical investigation about the the influence of external electric, magnetic and non-resonant intense laser fields on intersubband-related second harmonics generation (SHG) and the nonlinear optical rectification (NOR) coefficients in n-type asymmetric triple ?-doped quantum wells (QWs). A particular design of asymmetric triple ?-doped QW with L w = 200 Å width and, respectively, in the left side, central and right side, and doping concentrations is taken into account. For QWs under the combined effect of the external electric, magnetic and laser fields, the time-dependent wave equation is modified by using Kramers-Henneberger transformation and the dipole approximation. The subband energy spectra and the electronic wave functions are obtained by solving numerically the wave equation. The originality of this work can be presented as; (i) The results explain NOR and SHG characteristics of triple QW depending on external field effects in detail. The effects of the electric, magnetic and laser field on transition energies and NOR, SHG characteristics are presented detail. (ii) In addition to, the alternativeness to each other of the external fields is discussed by probing the features of SHG and NOR under the strong and weak regimes of external fields. (iii) These nonlinear optical responses to the external fields are compared, researching the optimum cases for these optical specifications. (iv) The control of SHG through the external fields in triple ?-doped QWs reveals to be easier and more precise. © 2020 IOP Publishing Ltd. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:50Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:50Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
318949 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5739 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1402-4896/ab7a37 |
identifier_str_mv |
318949 10.1088/1402-4896/ab7a37 |
url |
http://hdl.handle.net/11407/5739 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082308043&doi=10.1088%2f1402-4896%2fab7a37&partnerID=40&md5=2df37de5db4d9bc971d46ec9e5f12ba1 |
dc.relation.citationvolume.none.fl_str_mv |
95 |
dc.relation.citationissue.none.fl_str_mv |
5 |
dc.relation.references.none.fl_str_mv |
Dingle, R., Störmer, H.L., Gossard, A.C., Wiegman, W.W., (1978) Appl. Phys. Lett., 33, p. 665 Störmer, H.L., Dingle, R., Gossard, A.C., Wiegman, W.W., Sturge, M.D., (1979) J. Vac Sci. Technol., 16, p. 1517 Ke, M.L., Rimmer, J.S., Hamilton, B., Evans, J.H., Missous, M., Singer, K.E., Zalm, P., (1992) Phys. Rev., 45, p. 14114 Nakazato, K., Blaikie, R.J., Ahmed, H., (1994) J. Appl. Phys., 75, p. 5123 Osvald, J., (2004) Physica, 23, p. 147 Gaggero-Sager, L.M., Mora-Ramos, M.E., (2000) Solid-State Electron., 44, p. 1 Rodríguez-Vargas, I., Gaggero-Sager, L.M., (2005) Phys. Status Solidi, 2, p. 3634 Bahrami, A., (2019) Chin. Phys., 28 (4) Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, p. 76 Noverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Int. J. Mod. Phys., 33 Mohanty, S.S., Mishra, S., Mohanty, S., Mishra, G.P., (2019) Devices for Integrated Circuit (DevIC), p. 53 Dai, Q., (2009) Appl. Phys. Lett., 94 Lee, K.J., (2019) Nano Lett., 19, p. 3535 Tanimu, A., Muljarov, E.A., (2018) Journal of Physics Communications, 2 (11) Pacheco, M., Barticevic, Z., Latge, A., (2001) Physica B, 302, p. 77 Betancourt-Riera, R., Rosas, R., Marin-Enriquez, I., Riera, R., Marin, J.L., (2005) J. Phys. Condens. Matter, 17 (28), p. 4451 Fukuta, S., Goto, H., Sawaki, N., Suzuki, T., Ito, H., Hara, K., (1993) Semicond. Sci. Technol., 8 (10), p. 1881 Restrepo, R.L., Castano-Vanegas, L.F., Martínez-Orozco, J.C., Morales, A.L., Duque, C.A., (2019) Appl. Phys., 125, p. 31 Koechner, W., (1965) Solid-State Laser Engineering, p. 507 Mou, S., Guo, K., Liu, G., Xiao, B., (2014) Phys., 434, p. 84 Yuan, J.H., Chen, N., Mo, H., Zhang, Y., Zhang, Z.H., (2015) Superlatt. Micro., 88, p. 389 Nautiyal, V.V., Silotia, P., (2018) Phys. Lett., 382, p. 2061 Tonouchi, M., (2007) Nature Photon., 31, p. 97 Razzari, L., (2009) Phys. Rev., 79 Danielson, J.R., Lee, Y.S., Prineas, J.P., Steiner, J.T., Kira, M., Koch, S.W., (2007) Phys. Rev. Lett., 99 Yu, Q., Guo, K., Hu, M., (2019) Sci. Rep., 9, p. 2278 Ungan, F., Mora-Ramos, M.E., Yesilgul, U., Sari, H., Skmen, I., (2019) Phys., 111, p. 167 Villeneuve, A., Yang, C.C., Wigley, P.G.J., Stegeman, G.I., (1992) Appl. Phys. Lett., 61, p. 147 Eaton, D.F., (1991) Scien., 253, p. 281 Laud, B.B., (1992) Lasers and Nonlinear Optics Marciniak, M., Kowalewski, M., (2000) J. Telecommun. Infor. Tech., 1-2, p. 3 Ioriatti, L., (1990) Phys. Rev., 41, p. 8340 Gaggero-Sager, L.M., Perez-Alvarez, R., (1995) J. Appl. Phys., 78, p. 4566 Kramers, H.A., (1956) Collected Scientific Paper Henneberger, W.C., (1968) Phys. Rev. Lett., 21, p. 838 Bransden, B.H., Joachain, C.J., (2003) Physics of Atoms and Molecules Ehlotzky, F., (1985) Can. J. Phys., 63, p. 907 Ehlotzky, F., (1988) Phys. Lett., 126, p. 524 Gavrila, M., Kaminski, J.Z., (1984) Phys. Rev. Lett., 52, p. 613 Bahar, M.K., (2015) Phys. Plasmas, 22 Yu, Y.B., Wang, H.J., (2011) Superlatt. Microstr., 50, p. 252 Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K., Karimi, M.J., (2010) Superlatt. Microstr., 48, p. 450 Boyd, R.W., (2007) Nonlinear Optics Rodriguez-Magdaleno, K.A., Martinez-Orozco, J.C., Rodriguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., (2014) J. Luminescence, 147, p. 77 Soylu, A., (2012) Ann. Phys., 327, p. 3048 El-Said, M., (1995) J. Phys. i France, 5, p. 1027 Razeghi, M., (2010) Technology of Quantum Devices, pp. 271-321 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Physica Scripta |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159217843503104 |
spelling |
20202020-04-29T14:53:50Z2020-04-29T14:53:50Z318949http://hdl.handle.net/11407/573910.1088/1402-4896/ab7a37We present a theoretical investigation about the the influence of external electric, magnetic and non-resonant intense laser fields on intersubband-related second harmonics generation (SHG) and the nonlinear optical rectification (NOR) coefficients in n-type asymmetric triple ?-doped quantum wells (QWs). A particular design of asymmetric triple ?-doped QW with L w = 200 Å width and, respectively, in the left side, central and right side, and doping concentrations is taken into account. For QWs under the combined effect of the external electric, magnetic and laser fields, the time-dependent wave equation is modified by using Kramers-Henneberger transformation and the dipole approximation. The subband energy spectra and the electronic wave functions are obtained by solving numerically the wave equation. The originality of this work can be presented as; (i) The results explain NOR and SHG characteristics of triple QW depending on external field effects in detail. The effects of the electric, magnetic and laser field on transition energies and NOR, SHG characteristics are presented detail. (ii) In addition to, the alternativeness to each other of the external fields is discussed by probing the features of SHG and NOR under the strong and weak regimes of external fields. (iii) These nonlinear optical responses to the external fields are compared, researching the optimum cases for these optical specifications. (iv) The control of SHG through the external fields in triple ?-doped QWs reveals to be easier and more precise. © 2020 IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85082308043&doi=10.1088%2f1402-4896%2fab7a37&partnerID=40&md5=2df37de5db4d9bc971d46ec9e5f12ba1955Dingle, R., Störmer, H.L., Gossard, A.C., Wiegman, W.W., (1978) Appl. Phys. Lett., 33, p. 665Störmer, H.L., Dingle, R., Gossard, A.C., Wiegman, W.W., Sturge, M.D., (1979) J. Vac Sci. Technol., 16, p. 1517Ke, M.L., Rimmer, J.S., Hamilton, B., Evans, J.H., Missous, M., Singer, K.E., Zalm, P., (1992) Phys. Rev., 45, p. 14114Nakazato, K., Blaikie, R.J., Ahmed, H., (1994) J. Appl. Phys., 75, p. 5123Osvald, J., (2004) Physica, 23, p. 147Gaggero-Sager, L.M., Mora-Ramos, M.E., (2000) Solid-State Electron., 44, p. 1Rodríguez-Vargas, I., Gaggero-Sager, L.M., (2005) Phys. Status Solidi, 2, p. 3634Bahrami, A., (2019) Chin. Phys., 28 (4)Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, p. 76Noverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Int. J. Mod. Phys., 33Mohanty, S.S., Mishra, S., Mohanty, S., Mishra, G.P., (2019) Devices for Integrated Circuit (DevIC), p. 53Dai, Q., (2009) Appl. Phys. Lett., 94Lee, K.J., (2019) Nano Lett., 19, p. 3535Tanimu, A., Muljarov, E.A., (2018) Journal of Physics Communications, 2 (11)Pacheco, M., Barticevic, Z., Latge, A., (2001) Physica B, 302, p. 77Betancourt-Riera, R., Rosas, R., Marin-Enriquez, I., Riera, R., Marin, J.L., (2005) J. Phys. Condens. Matter, 17 (28), p. 4451Fukuta, S., Goto, H., Sawaki, N., Suzuki, T., Ito, H., Hara, K., (1993) Semicond. Sci. Technol., 8 (10), p. 1881Restrepo, R.L., Castano-Vanegas, L.F., Martínez-Orozco, J.C., Morales, A.L., Duque, C.A., (2019) Appl. Phys., 125, p. 31Koechner, W., (1965) Solid-State Laser Engineering, p. 507Mou, S., Guo, K., Liu, G., Xiao, B., (2014) Phys., 434, p. 84Yuan, J.H., Chen, N., Mo, H., Zhang, Y., Zhang, Z.H., (2015) Superlatt. Micro., 88, p. 389Nautiyal, V.V., Silotia, P., (2018) Phys. Lett., 382, p. 2061Tonouchi, M., (2007) Nature Photon., 31, p. 97Razzari, L., (2009) Phys. Rev., 79Danielson, J.R., Lee, Y.S., Prineas, J.P., Steiner, J.T., Kira, M., Koch, S.W., (2007) Phys. Rev. Lett., 99Yu, Q., Guo, K., Hu, M., (2019) Sci. Rep., 9, p. 2278Ungan, F., Mora-Ramos, M.E., Yesilgul, U., Sari, H., Skmen, I., (2019) Phys., 111, p. 167Villeneuve, A., Yang, C.C., Wigley, P.G.J., Stegeman, G.I., (1992) Appl. Phys. Lett., 61, p. 147Eaton, D.F., (1991) Scien., 253, p. 281Laud, B.B., (1992) Lasers and Nonlinear OpticsMarciniak, M., Kowalewski, M., (2000) J. Telecommun. Infor. Tech., 1-2, p. 3Ioriatti, L., (1990) Phys. Rev., 41, p. 8340Gaggero-Sager, L.M., Perez-Alvarez, R., (1995) J. Appl. Phys., 78, p. 4566Kramers, H.A., (1956) Collected Scientific PaperHenneberger, W.C., (1968) Phys. Rev. Lett., 21, p. 838Bransden, B.H., Joachain, C.J., (2003) Physics of Atoms and MoleculesEhlotzky, F., (1985) Can. J. Phys., 63, p. 907Ehlotzky, F., (1988) Phys. Lett., 126, p. 524Gavrila, M., Kaminski, J.Z., (1984) Phys. Rev. Lett., 52, p. 613Bahar, M.K., (2015) Phys. Plasmas, 22Yu, Y.B., Wang, H.J., (2011) Superlatt. Microstr., 50, p. 252Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K., Karimi, M.J., (2010) Superlatt. Microstr., 48, p. 450Boyd, R.W., (2007) Nonlinear OpticsRodriguez-Magdaleno, K.A., Martinez-Orozco, J.C., Rodriguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., (2014) J. Luminescence, 147, p. 77Soylu, A., (2012) Ann. Phys., 327, p. 3048El-Said, M., (1995) J. Phys. i France, 5, p. 1027Razeghi, M., (2010) Technology of Quantum Devices, pp. 271-321Physica ScriptaElectric rectifiersMagnetic field effectsNonlinear opticsOptical propertiesQuantum well lasersSemiconductor quantum wellsWave equationsWave functionsDipole approximationDoping concentrationElectronic wave functionsNonlinear optical rectificationNonlinear optical responseOptical specificationsTheoretical investigationsTime-dependent wave equationsHarmonic generationOptical properties of n-type asymmetric triple ?-doped quantum well under external fieldsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ungan, F., Department of Optical Engineering, Faculty of Technology, Sivas Cumhuriyet University, Sivas, 58140, Turkey; Bahar, M.K., Department of Physics, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey; Mora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma Del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca, CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecUngan F.Bahar M.K.Mora-Ramos M.E.11407/5739oai:repository.udem.edu.co:11407/57392020-05-27 18:29:37.02Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |