Solution of A P and S wave propagation model using high performance computation

The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial different...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5690
Acceso en línea:
http://hdl.handle.net/11407/5690
Palabra clave:
Asynchronous copies and executions
Elastic media
GPU constant memory
GPU shared memory
Modelling
PML
Graphics processing unit
Models
Shear waves
Wave propagation
Asynchronous copies and executions
Computational architecture
Constant memory
Differential equation systems
Elastic media
Finite differences methods
High performance computation
Shared memory
Memory architecture
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_068396a736d1471038c02e19b3edcd48
oai_identifier_str oai:repository.udem.edu.co:11407/5690
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Solution of A P and S wave propagation model using high performance computation
title Solution of A P and S wave propagation model using high performance computation
spellingShingle Solution of A P and S wave propagation model using high performance computation
Asynchronous copies and executions
Elastic media
GPU constant memory
GPU shared memory
Modelling
PML
Graphics processing unit
Models
Shear waves
Wave propagation
Asynchronous copies and executions
Computational architecture
Constant memory
Differential equation systems
Elastic media
Finite differences methods
High performance computation
Shared memory
Memory architecture
title_short Solution of A P and S wave propagation model using high performance computation
title_full Solution of A P and S wave propagation model using high performance computation
title_fullStr Solution of A P and S wave propagation model using high performance computation
title_full_unstemmed Solution of A P and S wave propagation model using high performance computation
title_sort Solution of A P and S wave propagation model using high performance computation
dc.subject.none.fl_str_mv Asynchronous copies and executions
Elastic media
GPU constant memory
GPU shared memory
Modelling
PML
Graphics processing unit
Models
Shear waves
Wave propagation
Asynchronous copies and executions
Computational architecture
Constant memory
Differential equation systems
Elastic media
Finite differences methods
High performance computation
Shared memory
Memory architecture
topic Asynchronous copies and executions
Elastic media
GPU constant memory
GPU shared memory
Modelling
PML
Graphics processing unit
Models
Shear waves
Wave propagation
Asynchronous copies and executions
Computational architecture
Constant memory
Differential equation systems
Elastic media
Finite differences methods
High performance computation
Shared memory
Memory architecture
description The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial differential equation system representing the wave equation using the finite differences method to obtain the elastic media response, using an staggered grid. To prevent reflections in the computational regions, absorbent boundaries were used with the PML method. The implementation of the numerical scheme was made on two computational architectures (CPU and GPU) that share the same type of memory distribution. Finally, different code versions were created to take advantage of the architecture in the GPU memory, performing a detailed analysis of variables such as usage of bandwidth of the GPU internal memory, added to a version that is not limited by the internal memory in the graphic processing unit, but rather by the memory of the whole computational system. © 2019 Ecopetrol S.A.. All rights reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:40Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:40Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1225383
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5690
dc.identifier.doi.none.fl_str_mv 10.29047/01225383.159
identifier_str_mv 1225383
10.29047/01225383.159
url http://hdl.handle.net/11407/5690
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070404091&doi=10.29047%2f01225383.159&partnerID=40&md5=42a3d35af9e43f10678c11d8e8e6b812
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 119
dc.relation.citationendpage.none.fl_str_mv 130
dc.relation.references.none.fl_str_mv Komatitsch, D., Erlebacher, G., Goddeke, D., Michea, D., High-order finite-element seismic wave propagation modeling with MPI on a large CPU cluster (2010) Journal of Computational Physics, (229), pp. 7692-7714
Weiss, R., Shragge, J., Solving 3D anisotropic elastic wave equations on paralell GPU devices (2013) Geophysics, 78, pp. 1-9
Das, S., Chen, X., Hobson, M., Fast GPU-based seismogram simulation from microseismic events in marine environments using heterogeneous velocity models (2017) IEEE Transactions on Computational Imaging, 3 (2), pp. 316-329
Virieux, J., A p-sv wave propagation in heterogeneus media: Velocity-stress finite difference method (1986) Geophysics, 51, pp. 899-904
Fornberg, B., Generation of finite difference formulas on arbitrarily spaced grids (1988) Mathematics of Computation., 51, pp. 699-706
Bamberger, A., Chavent, G., Lailly, P., (2006) Étude de Schémas Numériques de l'Élastodynamique Linéaire., , https://hal.inria.fr/inria-00076520/document, Technical report, INRIA
Berenger, A perfectly matched layer for the absorption of electromagnetic waves (1994) Journal of Computational Geophysics., 114, pp. 185-200
Zeng, Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media (2001) Geophysics, 66, pp. 1258-1266
Mahrer, An empirical study of instability and improvement of absorbing boundary conditions for elastic wave equation (1986) Geophysics, 51, pp. 1499-1507
Stacey, Improved transparent boundary formulations for the elastic wave equation (1988) Bulletin of Seismological Society of America., 78, pp. 2080-2097
(2017) CUDA NVIDIA Visual Profiler., , https://developer.nvidia.com/nvidia-visual-profiler
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Ecopetrol S.A.
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Ecopetrol S.A.
dc.source.none.fl_str_mv CTyF - Ciencia, Tecnologia y Futuro
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481160306622464
spelling 20192020-04-29T14:53:40Z2020-04-29T14:53:40Z1225383http://hdl.handle.net/11407/569010.29047/01225383.159The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial differential equation system representing the wave equation using the finite differences method to obtain the elastic media response, using an staggered grid. To prevent reflections in the computational regions, absorbent boundaries were used with the PML method. The implementation of the numerical scheme was made on two computational architectures (CPU and GPU) that share the same type of memory distribution. Finally, different code versions were created to take advantage of the architecture in the GPU memory, performing a detailed analysis of variables such as usage of bandwidth of the GPU internal memory, added to a version that is not limited by the internal memory in the graphic processing unit, but rather by the memory of the whole computational system. © 2019 Ecopetrol S.A.. All rights reserved.engEcopetrol S.A.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070404091&doi=10.29047%2f01225383.159&partnerID=40&md5=42a3d35af9e43f10678c11d8e8e6b81291119130Komatitsch, D., Erlebacher, G., Goddeke, D., Michea, D., High-order finite-element seismic wave propagation modeling with MPI on a large CPU cluster (2010) Journal of Computational Physics, (229), pp. 7692-7714Weiss, R., Shragge, J., Solving 3D anisotropic elastic wave equations on paralell GPU devices (2013) Geophysics, 78, pp. 1-9Das, S., Chen, X., Hobson, M., Fast GPU-based seismogram simulation from microseismic events in marine environments using heterogeneous velocity models (2017) IEEE Transactions on Computational Imaging, 3 (2), pp. 316-329Virieux, J., A p-sv wave propagation in heterogeneus media: Velocity-stress finite difference method (1986) Geophysics, 51, pp. 899-904Fornberg, B., Generation of finite difference formulas on arbitrarily spaced grids (1988) Mathematics of Computation., 51, pp. 699-706Bamberger, A., Chavent, G., Lailly, P., (2006) Étude de Schémas Numériques de l'Élastodynamique Linéaire., , https://hal.inria.fr/inria-00076520/document, Technical report, INRIABerenger, A perfectly matched layer for the absorption of electromagnetic waves (1994) Journal of Computational Geophysics., 114, pp. 185-200Zeng, Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media (2001) Geophysics, 66, pp. 1258-1266Mahrer, An empirical study of instability and improvement of absorbing boundary conditions for elastic wave equation (1986) Geophysics, 51, pp. 1499-1507Stacey, Improved transparent boundary formulations for the elastic wave equation (1988) Bulletin of Seismological Society of America., 78, pp. 2080-2097(2017) CUDA NVIDIA Visual Profiler., , https://developer.nvidia.com/nvidia-visual-profilerCTyF - Ciencia, Tecnologia y FuturoAsynchronous copies and executionsElastic mediaGPU constant memoryGPU shared memoryModellingPMLGraphics processing unitModelsShear wavesWave propagationAsynchronous copies and executionsComputational architectureConstant memoryDifferential equation systemsElastic mediaFinite differences methodsHigh performance computationShared memoryMemory architectureSolution of A P and S wave propagation model using high performance computationArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jonathan, A., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, P., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, V.-C., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, P., Universidad de Pamplona, km 1 vía a Bucaramanga, Pamplona, Colombiahttp://purl.org/coar/access_right/c_16ecJonathan A.Carlos P.Carlos V.-C.Carlos P.11407/5690oai:repository.udem.edu.co:11407/56902020-05-27 15:57:07.079Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co