Solution of A P and S wave propagation model using high performance computation
The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial different...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5690
- Acceso en línea:
- http://hdl.handle.net/11407/5690
- Palabra clave:
- Asynchronous copies and executions
Elastic media
GPU constant memory
GPU shared memory
Modelling
PML
Graphics processing unit
Models
Shear waves
Wave propagation
Asynchronous copies and executions
Computational architecture
Constant memory
Differential equation systems
Elastic media
Finite differences methods
High performance computation
Shared memory
Memory architecture
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_068396a736d1471038c02e19b3edcd48 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5690 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Solution of A P and S wave propagation model using high performance computation |
title |
Solution of A P and S wave propagation model using high performance computation |
spellingShingle |
Solution of A P and S wave propagation model using high performance computation Asynchronous copies and executions Elastic media GPU constant memory GPU shared memory Modelling PML Graphics processing unit Models Shear waves Wave propagation Asynchronous copies and executions Computational architecture Constant memory Differential equation systems Elastic media Finite differences methods High performance computation Shared memory Memory architecture |
title_short |
Solution of A P and S wave propagation model using high performance computation |
title_full |
Solution of A P and S wave propagation model using high performance computation |
title_fullStr |
Solution of A P and S wave propagation model using high performance computation |
title_full_unstemmed |
Solution of A P and S wave propagation model using high performance computation |
title_sort |
Solution of A P and S wave propagation model using high performance computation |
dc.subject.none.fl_str_mv |
Asynchronous copies and executions Elastic media GPU constant memory GPU shared memory Modelling PML Graphics processing unit Models Shear waves Wave propagation Asynchronous copies and executions Computational architecture Constant memory Differential equation systems Elastic media Finite differences methods High performance computation Shared memory Memory architecture |
topic |
Asynchronous copies and executions Elastic media GPU constant memory GPU shared memory Modelling PML Graphics processing unit Models Shear waves Wave propagation Asynchronous copies and executions Computational architecture Constant memory Differential equation systems Elastic media Finite differences methods High performance computation Shared memory Memory architecture |
description |
The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial differential equation system representing the wave equation using the finite differences method to obtain the elastic media response, using an staggered grid. To prevent reflections in the computational regions, absorbent boundaries were used with the PML method. The implementation of the numerical scheme was made on two computational architectures (CPU and GPU) that share the same type of memory distribution. Finally, different code versions were created to take advantage of the architecture in the GPU memory, performing a detailed analysis of variables such as usage of bandwidth of the GPU internal memory, added to a version that is not limited by the internal memory in the graphic processing unit, but rather by the memory of the whole computational system. © 2019 Ecopetrol S.A.. All rights reserved. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:40Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:40Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
1225383 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5690 |
dc.identifier.doi.none.fl_str_mv |
10.29047/01225383.159 |
identifier_str_mv |
1225383 10.29047/01225383.159 |
url |
http://hdl.handle.net/11407/5690 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070404091&doi=10.29047%2f01225383.159&partnerID=40&md5=42a3d35af9e43f10678c11d8e8e6b812 |
dc.relation.citationvolume.none.fl_str_mv |
9 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
119 |
dc.relation.citationendpage.none.fl_str_mv |
130 |
dc.relation.references.none.fl_str_mv |
Komatitsch, D., Erlebacher, G., Goddeke, D., Michea, D., High-order finite-element seismic wave propagation modeling with MPI on a large CPU cluster (2010) Journal of Computational Physics, (229), pp. 7692-7714 Weiss, R., Shragge, J., Solving 3D anisotropic elastic wave equations on paralell GPU devices (2013) Geophysics, 78, pp. 1-9 Das, S., Chen, X., Hobson, M., Fast GPU-based seismogram simulation from microseismic events in marine environments using heterogeneous velocity models (2017) IEEE Transactions on Computational Imaging, 3 (2), pp. 316-329 Virieux, J., A p-sv wave propagation in heterogeneus media: Velocity-stress finite difference method (1986) Geophysics, 51, pp. 899-904 Fornberg, B., Generation of finite difference formulas on arbitrarily spaced grids (1988) Mathematics of Computation., 51, pp. 699-706 Bamberger, A., Chavent, G., Lailly, P., (2006) Étude de Schémas Numériques de l'Élastodynamique Linéaire., , https://hal.inria.fr/inria-00076520/document, Technical report, INRIA Berenger, A perfectly matched layer for the absorption of electromagnetic waves (1994) Journal of Computational Geophysics., 114, pp. 185-200 Zeng, Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media (2001) Geophysics, 66, pp. 1258-1266 Mahrer, An empirical study of instability and improvement of absorbing boundary conditions for elastic wave equation (1986) Geophysics, 51, pp. 1499-1507 Stacey, Improved transparent boundary formulations for the elastic wave equation (1988) Bulletin of Seismological Society of America., 78, pp. 2080-2097 (2017) CUDA NVIDIA Visual Profiler., , https://developer.nvidia.com/nvidia-visual-profiler |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Ecopetrol S.A. |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Ecopetrol S.A. |
dc.source.none.fl_str_mv |
CTyF - Ciencia, Tecnologia y Futuro |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159124174209024 |
spelling |
20192020-04-29T14:53:40Z2020-04-29T14:53:40Z1225383http://hdl.handle.net/11407/569010.29047/01225383.159The propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial differential equation system representing the wave equation using the finite differences method to obtain the elastic media response, using an staggered grid. To prevent reflections in the computational regions, absorbent boundaries were used with the PML method. The implementation of the numerical scheme was made on two computational architectures (CPU and GPU) that share the same type of memory distribution. Finally, different code versions were created to take advantage of the architecture in the GPU memory, performing a detailed analysis of variables such as usage of bandwidth of the GPU internal memory, added to a version that is not limited by the internal memory in the graphic processing unit, but rather by the memory of the whole computational system. © 2019 Ecopetrol S.A.. All rights reserved.engEcopetrol S.A.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070404091&doi=10.29047%2f01225383.159&partnerID=40&md5=42a3d35af9e43f10678c11d8e8e6b81291119130Komatitsch, D., Erlebacher, G., Goddeke, D., Michea, D., High-order finite-element seismic wave propagation modeling with MPI on a large CPU cluster (2010) Journal of Computational Physics, (229), pp. 7692-7714Weiss, R., Shragge, J., Solving 3D anisotropic elastic wave equations on paralell GPU devices (2013) Geophysics, 78, pp. 1-9Das, S., Chen, X., Hobson, M., Fast GPU-based seismogram simulation from microseismic events in marine environments using heterogeneous velocity models (2017) IEEE Transactions on Computational Imaging, 3 (2), pp. 316-329Virieux, J., A p-sv wave propagation in heterogeneus media: Velocity-stress finite difference method (1986) Geophysics, 51, pp. 899-904Fornberg, B., Generation of finite difference formulas on arbitrarily spaced grids (1988) Mathematics of Computation., 51, pp. 699-706Bamberger, A., Chavent, G., Lailly, P., (2006) Étude de Schémas Numériques de l'Élastodynamique Linéaire., , https://hal.inria.fr/inria-00076520/document, Technical report, INRIABerenger, A perfectly matched layer for the absorption of electromagnetic waves (1994) Journal of Computational Geophysics., 114, pp. 185-200Zeng, Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media (2001) Geophysics, 66, pp. 1258-1266Mahrer, An empirical study of instability and improvement of absorbing boundary conditions for elastic wave equation (1986) Geophysics, 51, pp. 1499-1507Stacey, Improved transparent boundary formulations for the elastic wave equation (1988) Bulletin of Seismological Society of America., 78, pp. 2080-2097(2017) CUDA NVIDIA Visual Profiler., , https://developer.nvidia.com/nvidia-visual-profilerCTyF - Ciencia, Tecnologia y FuturoAsynchronous copies and executionsElastic mediaGPU constant memoryGPU shared memoryModellingPMLGraphics processing unitModelsShear wavesWave propagationAsynchronous copies and executionsComputational architectureConstant memoryDifferential equation systemsElastic mediaFinite differences methodsHigh performance computationShared memoryMemory architectureSolution of A P and S wave propagation model using high performance computationArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jonathan, A., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, P., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, V.-C., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, P., Universidad de Pamplona, km 1 vía a Bucaramanga, Pamplona, Colombiahttp://purl.org/coar/access_right/c_16ecJonathan A.Carlos P.Carlos V.-C.Carlos P.11407/5690oai:repository.udem.edu.co:11407/56902020-05-27 15:57:07.079Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |