Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets

We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function i...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4272
Acceso en línea:
http://hdl.handle.net/11407/4272
Palabra clave:
Domain decomposition methods
Excited states
Geometry
Information theory
Ion sources
Quantum optics
Quantum theory
Wave functions
Electronic excitation
Hydrogen molecular ion
Non-Born Oppenheimer
Nonorthogonal basis
Nuclear wave functions
Quantum information theory
Schmidt decomposition
Vibrational motions
Quantum entanglement
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_05586fe04e00cf24d90f85d2e50b0ecb
oai_identifier_str oai:repository.udem.edu.co:11407/4272
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
spellingShingle Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
Domain decomposition methods
Excited states
Geometry
Information theory
Ion sources
Quantum optics
Quantum theory
Wave functions
Electronic excitation
Hydrogen molecular ion
Non-Born Oppenheimer
Nonorthogonal basis
Nuclear wave functions
Quantum information theory
Schmidt decomposition
Vibrational motions
Quantum entanglement
title_short Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_full Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_fullStr Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_full_unstemmed Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_sort Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
dc.contributor.affiliation.spa.fl_str_mv Sanz-Vicario, J.L., Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia
Pérez-Torres, J.F., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
Moreno-Polo, G., Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Domain decomposition methods
Excited states
Geometry
Information theory
Ion sources
Quantum optics
Quantum theory
Wave functions
Electronic excitation
Hydrogen molecular ion
Non-Born Oppenheimer
Nonorthogonal basis
Nuclear wave functions
Quantum information theory
Schmidt decomposition
Vibrational motions
Quantum entanglement
topic Domain decomposition methods
Excited states
Geometry
Information theory
Ion sources
Quantum optics
Quantum theory
Wave functions
Electronic excitation
Hydrogen molecular ion
Non-Born Oppenheimer
Nonorthogonal basis
Nuclear wave functions
Quantum information theory
Schmidt decomposition
Vibrational motions
Quantum entanglement
description We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. © 2017 American Physical Society.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:43Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:43Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 24699926
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4272
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevA.96.022503
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 24699926
10.1103/PhysRevA.96.022503
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4272
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028652124&doi=10.1103%2fPhysRevA.96.022503&partnerID=40&md5=f167f8f2d91e906abf6c02ab6b2bc1b0
dc.relation.ispartofes.spa.fl_str_mv Physical Review A
Physical Review A Volume 96, Issue 2, 2 August 2017
dc.relation.references.spa.fl_str_mv Bachau, H., Cormier, E., Decleva, P., Hansen, J. E., & Martín, F. (2001). Applications of B-splines in atomic and molecular physics. Reports on Progress in Physics, 64(12), 1815-1942. doi:10.1088/0034-4885/64/12/205
Bhatti, M. I., & Perger, W. F. (2006). Solutions of the radial dirac equation in a B-polynomial basis. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(3), 553-558. doi:10.1088/0953-4075/39/3/008
Born, M., & Huang, K. (1954). Dynamical Theory of Crystal Lattices,
Bouvrie, P. A., Majtey, A. P., Tichy, M. C., Dehesa, J. S., & Plastino, A. R. (2014). Eur.Phys.J., 68, 346.
Brosoio, M., Decleva, P., & Lisini, A. (1992). Accurate variational determination of continuum wavefunctions by a one-centre expansion in a spline basis. an application to (equation found) and heh2+photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(15), 3345-3356. doi:10.1088/0953-4075/25/15/015
De Boor, C. (1978). A Practical Guide to Splines.
Gerry, C. C., & Knight, P. L. (2005). Introductory Quantum Optics.
Gidopoulos, N. I., & Gross, E. K. U. (2014). Electronic non-adiabatic states: Towards a density functional theory beyond the born-oppenheimer approximation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2011) doi:10.1098/rsta.2013.0059
Haxton, D. J., Lawler, K. V., & McCurdy, C. W. (2011). Multiconfiguration time-dependent hartree-fock treatment of electronic and nuclear dynamics in diatomic molecules. Physical Review A - Atomic, Molecular, and Optical Physics, 83(6) doi:10.1103/PhysRevA.83.063416
Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPC: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019
Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9(2), 237-242. doi:10.1002/qua.560090205
Izmaylov, A. F., & Franco, I. (2017). Entanglement in the born-oppenheimer approximation. Journal of Chemical Theory and Computation, 13(1), 20-28. doi:10.1021/acs.jctc.6b00959
Karr, J. P., & Hilico, L. (2006). High accuracy results for the energy levels of the molecular ions H + 2, D+ 2 and HD+, up to J ≤ 2. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(8), 2095-2105. doi:10.1088/0953-4075/39/8/024
Landau, L. D., & Lifshitz, E. M. (1977). Quantum Mechanics.
Löwdin, P. -. (1950). On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18(3), 365-375.
Martín, F. (1999). Ionization and dissociation using B-splines: Photoionization of the hydrogen molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(16), R197-R231. doi:10.1088/0953-4075/32/16/201
McKemmish, L. K., McKenzie, R. H., Hush, N. S., & Reimers, J. R. (2015). Electron-vibration entanglement in the born-oppenheimer description of chemical reactions and spectroscopy. Physical Chemistry Chemical Physics, 17(38), 24666-24682. doi:10.1039/c5cp02239h
McKemmish, L. K., McKenzie, R. H., Hush, N. S., & Reimers, J. R. (2011). Quantum entanglement between electronic and vibrational degrees of freedom in molecules. Journal of Chemical Physics, 135(24) doi:10.1063/1.3671386
Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information.
Pérez-Torres, J. F. (2013). Electronic flux densities in vibrating H2+ in terms of vibronic eigenstates. Physical Review A - Atomic, Molecular, and Optical Physics, 87(6) doi:10.1103/PhysRevA.87.062512
Restrepo Cuartas, J. P., & Sanz-Vicario, J. L. (2015). Information and entanglement measures applied to the analysis of complexity in doubly excited states of helium. Physical Review A - Atomic, Molecular, and Optical Physics, 91(5) doi:10.1103/PhysRevA.91.052301
Schmidt, E. (1907). Zur theorie der linearen und nichtlinearen integralgleichungen - I. teil: Entwicklung willkürlicher funktionen nach systemen vorgeschriebener. Mathematische Annalen, 63(4), 433-476. doi:10.1007/BF01449770
Szabo, A., & Ostlund, N. S. (1989). Modern Quantum Chemistry.
Vatasescu, M. (2013). Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6) doi:10.1103/PhysRevA.88.063415
Vatasescu, M. (2015). Measures of electronic-vibrational entanglement and quantum coherence in a molecular system. Physical Review A, 92(4) doi:10.1103/PhysRevA.92.042323
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Physical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159267137060864
spelling 2017-12-19T19:36:43Z2017-12-19T19:36:43Z201724699926http://hdl.handle.net/11407/427210.1103/PhysRevA.96.022503reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínWe compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. © 2017 American Physical Society.engAmerican Physical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028652124&doi=10.1103%2fPhysRevA.96.022503&partnerID=40&md5=f167f8f2d91e906abf6c02ab6b2bc1b0Physical Review APhysical Review A Volume 96, Issue 2, 2 August 2017Bachau, H., Cormier, E., Decleva, P., Hansen, J. E., & Martín, F. (2001). Applications of B-splines in atomic and molecular physics. Reports on Progress in Physics, 64(12), 1815-1942. doi:10.1088/0034-4885/64/12/205Bhatti, M. I., & Perger, W. F. (2006). Solutions of the radial dirac equation in a B-polynomial basis. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(3), 553-558. doi:10.1088/0953-4075/39/3/008Born, M., & Huang, K. (1954). Dynamical Theory of Crystal Lattices,Bouvrie, P. A., Majtey, A. P., Tichy, M. C., Dehesa, J. S., & Plastino, A. R. (2014). Eur.Phys.J., 68, 346.Brosoio, M., Decleva, P., & Lisini, A. (1992). Accurate variational determination of continuum wavefunctions by a one-centre expansion in a spline basis. an application to (equation found) and heh2+photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(15), 3345-3356. doi:10.1088/0953-4075/25/15/015De Boor, C. (1978). A Practical Guide to Splines.Gerry, C. C., & Knight, P. L. (2005). Introductory Quantum Optics.Gidopoulos, N. I., & Gross, E. K. U. (2014). Electronic non-adiabatic states: Towards a density functional theory beyond the born-oppenheimer approximation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2011) doi:10.1098/rsta.2013.0059Haxton, D. J., Lawler, K. V., & McCurdy, C. W. (2011). Multiconfiguration time-dependent hartree-fock treatment of electronic and nuclear dynamics in diatomic molecules. Physical Review A - Atomic, Molecular, and Optical Physics, 83(6) doi:10.1103/PhysRevA.83.063416Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPC: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9(2), 237-242. doi:10.1002/qua.560090205Izmaylov, A. F., & Franco, I. (2017). Entanglement in the born-oppenheimer approximation. Journal of Chemical Theory and Computation, 13(1), 20-28. doi:10.1021/acs.jctc.6b00959Karr, J. P., & Hilico, L. (2006). High accuracy results for the energy levels of the molecular ions H + 2, D+ 2 and HD+, up to J ≤ 2. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(8), 2095-2105. doi:10.1088/0953-4075/39/8/024Landau, L. D., & Lifshitz, E. M. (1977). Quantum Mechanics.Löwdin, P. -. (1950). On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18(3), 365-375.Martín, F. (1999). Ionization and dissociation using B-splines: Photoionization of the hydrogen molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(16), R197-R231. doi:10.1088/0953-4075/32/16/201McKemmish, L. K., McKenzie, R. H., Hush, N. S., & Reimers, J. R. (2015). Electron-vibration entanglement in the born-oppenheimer description of chemical reactions and spectroscopy. Physical Chemistry Chemical Physics, 17(38), 24666-24682. doi:10.1039/c5cp02239hMcKemmish, L. K., McKenzie, R. H., Hush, N. S., & Reimers, J. R. (2011). Quantum entanglement between electronic and vibrational degrees of freedom in molecules. Journal of Chemical Physics, 135(24) doi:10.1063/1.3671386Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information.Pérez-Torres, J. F. (2013). Electronic flux densities in vibrating H2+ in terms of vibronic eigenstates. Physical Review A - Atomic, Molecular, and Optical Physics, 87(6) doi:10.1103/PhysRevA.87.062512Restrepo Cuartas, J. P., & Sanz-Vicario, J. L. (2015). Information and entanglement measures applied to the analysis of complexity in doubly excited states of helium. Physical Review A - Atomic, Molecular, and Optical Physics, 91(5) doi:10.1103/PhysRevA.91.052301Schmidt, E. (1907). Zur theorie der linearen und nichtlinearen integralgleichungen - I. teil: Entwicklung willkürlicher funktionen nach systemen vorgeschriebener. Mathematische Annalen, 63(4), 433-476. doi:10.1007/BF01449770Szabo, A., & Ostlund, N. S. (1989). Modern Quantum Chemistry.Vatasescu, M. (2013). Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6) doi:10.1103/PhysRevA.88.063415Vatasescu, M. (2015). Measures of electronic-vibrational entanglement and quantum coherence in a molecular system. Physical Review A, 92(4) doi:10.1103/PhysRevA.92.042323ScopusElectronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis setsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Sanz-Vicario, J.L., Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, ColombiaPérez-Torres, J.F., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, ColombiaMoreno-Polo, G., Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, ColombiaSanz-Vicario J.L.Pérez-Torres J.F.Moreno-Polo G.Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, ColombiaFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaEscuela de Química, Universidad Industrial de Santander, Bucaramanga, ColombiaDomain decomposition methodsExcited statesGeometryInformation theoryIon sourcesQuantum opticsQuantum theoryWave functionsElectronic excitationHydrogen molecular ionNon-Born OppenheimerNonorthogonal basisNuclear wave functionsQuantum information theorySchmidt decompositionVibrational motionsQuantum entanglementWe compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. © 2017 American Physical Society.http://purl.org/coar/access_right/c_16ec11407/4272oai:repository.udem.edu.co:11407/42722020-05-27 19:16:33.897Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co