Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability

Silver nanoparticles (AgNPs) were synthesized by chemical reduction of Ag+ ions (from silver nitrate AgNO3), using aqueous or ethanolic Aloe vera extracts as reducing, stabilizing, and size control agent. The nanop articles' sizes were between 2 and 7nm for ethanolic extract and between 3 and 1...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4896
Acceso en línea:
http://hdl.handle.net/11407/4896
Palabra clave:
Absorption spectroscopy
Atomic absorption spectrometry
Environmental Protection Agency
Metal nanoparticles
Silver compounds
Silver nanoparticles
Surface morphology
Synthesis (chemical)
Anti-bacterial activity
Atomic absorption spectroscopy
Bacterial colonies
Effective concentration
Gram-positive cocci
High-resolution transmission electron microscopes
Silver nanoparticles (AgNps)
World Health Organization
Mercury compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_0542d0646ab438f1e14faec5c6577ecb
oai_identifier_str oai:repository.udem.edu.co:11407/4896
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
title Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
spellingShingle Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
Absorption spectroscopy
Atomic absorption spectrometry
Environmental Protection Agency
Metal nanoparticles
Silver compounds
Silver nanoparticles
Surface morphology
Synthesis (chemical)
Anti-bacterial activity
Atomic absorption spectroscopy
Bacterial colonies
Effective concentration
Gram-positive cocci
High-resolution transmission electron microscopes
Silver nanoparticles (AgNps)
World Health Organization
Mercury compounds
title_short Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
title_full Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
title_fullStr Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
title_full_unstemmed Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
title_sort Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
dc.contributor.affiliation.spa.fl_str_mv Vélez, E., Universidad de Medellín;Campillo, G., Universidad de Medellín;Morales, G., Universidad DeMedellín;Hincapié, C., Universidad de Medellín;Osorio, J., Universidad de Antioquia;Arnache, O., Universidad de Antioquia
dc.subject.spa.fl_str_mv Absorption spectroscopy
Atomic absorption spectrometry
Environmental Protection Agency
Metal nanoparticles
Silver compounds
Silver nanoparticles
Surface morphology
Synthesis (chemical)
Anti-bacterial activity
Atomic absorption spectroscopy
Bacterial colonies
Effective concentration
Gram-positive cocci
High-resolution transmission electron microscopes
Silver nanoparticles (AgNps)
World Health Organization
Mercury compounds
topic Absorption spectroscopy
Atomic absorption spectrometry
Environmental Protection Agency
Metal nanoparticles
Silver compounds
Silver nanoparticles
Surface morphology
Synthesis (chemical)
Anti-bacterial activity
Atomic absorption spectroscopy
Bacterial colonies
Effective concentration
Gram-positive cocci
High-resolution transmission electron microscopes
Silver nanoparticles (AgNps)
World Health Organization
Mercury compounds
description Silver nanoparticles (AgNPs) were synthesized by chemical reduction of Ag+ ions (from silver nitrate AgNO3), using aqueous or ethanolic Aloe vera extracts as reducing, stabilizing, and size control agent. The nanop articles' sizes were between 2 and 7nm for ethanolic extract and between 3 and 14nm for aqueous extract, as measured by High-Resolution Transmission Electron Microscope (HRTEM). The antibacterial activity against a mesophilic microorganism, Kocuria varians, a Gram-positive coccus, was measured by counting bacterial colonies in agar plate for both extracts. We found that 4% effective concentration is the lowest concentration that completely inhibited visible growth. Mercury removal was investigated by Atomic Absorption Spectroscopy (AAS) measurements, where it was shown that it is not necessary to use high concentrations of nano particles for effective removal of mercury inasmuch as with a 20% V/V concentration of both extracts; the Hg(II) removal percentage was above 95%. These results show that the mercury remaining un removed from the different essays is below the level allowed by World Health Organization (WHO) and the Environmental Protection Agency (EPA). © 2018 Ederley Vélez et al.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:22Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:22Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 16874110
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4896
dc.identifier.doi.none.fl_str_mv 10.1155/2018/7215210
identifier_str_mv 16874110
10.1155/2018/7215210
url http://hdl.handle.net/11407/4896
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048382425&doi=10.1155%2f2018%2f7215210&partnerID=40&md5=d6e037c6959487df5f19e0b572130bf5
dc.relation.citationvolume.spa.fl_str_mv 2018
dc.relation.ispartofes.spa.fl_str_mv Journal of Nanomaterials
dc.relation.references.spa.fl_str_mv Bhui, D.K., Misra, A., Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity (2012) Carbohydrate Polymers, 89 (3), pp. 830-835;Mohapatra, B., Kuriakose, S., Mohapatra, S., Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract (2015) Journal of Alloys and Compounds, 637, pp. 119-126;Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise (2016) Journal of Advanced Research, 7 (1), pp. 17-28;Narayanan, K.B., Park, H.H., Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens (2014) European Journal of Plant Pathology, 140 (2), pp. 185-192;Logeswari, P., Silambarasan, S., Abraham, J., Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property (2015) Journal of Saudi Chemical Society, 19 (3), pp. 311-317;Shameli, K., Ahmad, M.B., Al-Mulla, E.A.J., Green biosynthesis of silver nanoparticles using Callicarpamaingayi stem bark extraction (2012) Molecules, 17 (7), pp. 8506-8517;Edison, T.N.J.I., Lee, Y.R., Sethuraman, M.G., Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye (2016) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161, pp. 122-129;Luna, C., Chávez, V.H.G., Barriga-Castro, E.D., Núñez, N.O., Mendoza-Reséndez, R., Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds (2015) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, pp. 43-50;Edison, T.N.J.I., Sethuraman, M.G., Electrocatalytic reduction of benzyl chloride by green synthesized silver nanop articles using pod extract of Acacia nilotica (2013) ACS Sustainable Chemistry & Engineering, 1 (10), pp. 1326-1332;Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract (2006) Biotechnology Progress, 22 (2), pp. 577-583;Medda, S., Hajra, A., Dey, U., Bose, P., Mondal, N.K., Biosynthesis of silver nanoparticles fromAloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp (2015) Applied Nanoscience, 5 (7), pp. 875-880;Dinesh, D., Murugan, K., Madhiyazhagan, P., Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? (2015) Parasitology Research, 114 (4), pp. 1519-1529;Zhang, Y., Yang, D., Kong, Y., Wang, X., Pandoli, O., Gao, G., Synergetic antibacterial effects of silver Nanoparticles@Aloe vera prepared via a greenmethod (2010) Nano Biomedicine and Engineering, 2 (4), pp. 252-257;Dang, T.M.D., Le, T.T.T., Fribourg-Blanc, E., Dang, M.C., Synthesis and optical properties of copper nanoparticles prepared by a chemical reductionmethod (2011) Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (1);Nandal, U., Bhardwaj, R.L., Aloe vera: A valuable wonder plant for food, medicine and cosmetic use-A review (2012) International Journal of Pharmaceutical Sciences Review and Research, 13 (1), pp. 59-67;Theivasanthi, T., Alagar, M., Electrolytic synthesis and characterization of silver nanopowder (2012) Nano Biomedicine and Engineering, 4 (2), pp. 58-65;Wang, J.-X., Wen, L.-X., Wang, Z.-H., Chen, J.-F., Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects (2006) Materials Chemistry and Physics, 96 (1), pp. 90-97;Marambio-Jones, C., Hoek, E.M.V., Areviewof the antibacterial effects of silver nanomaterials and potential implications for human health and the environment (2010) Journal of Nanoparticle Research, 12 (5), pp. 1531-1551;Shenashen, M.A., El-Safty, S.A., Elshehy, E.A., Synthesis, morphological control, and properties of silver nanoparticles in potential applications (2014) Particle & Particle Systems Characterization, 31 (3), pp. 293-316;Pradeep, T., Anshup, Noble metal nanoparticles for water purification: A critical review (2009) Thin Solid Films, 517 (24), pp. 6441-6478;Becaro, A.A., Puti, F.C., Panosso, A.R., Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles (2016) Food and Bioprocess Technology, 9 (4), pp. 637-649;Durán, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E., Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment (2007) Journal of Biomedical Nanotechnology, 3 (2), pp. 203-208;Zhang, S., Tang, Y., Vlahovic, B., A review on preparation and applications of silver-containing nanofibers (2016) Nanoscale Research Letters, 11 (1);Contescu, C.I., Putyera, K., (2008) Dekker Encyclopedia of Nanoscience and Nanotechnology, 6. , CRC Press, 2nd edition;Rajaram, K., Aiswarya, D.C., Sureshkumar, P., Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity (2015) Materials Letters, 138, pp. 251-254;Manimegalai, G., Shantha Kumar, S., Sharma, C., Pesticide mineralization in water using silver nanoparticles (2011) International Journal of Chemical Sciences, 9 (3), pp. 1463-1471;Bootharaju, M.S., Pradeep, T., Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: An x-ray photoelectron spectroscopic investigation (2010) The Journal of Physical Chemistry C, 114 (18), pp. 8328-8336;Sumesh, E., Bootharaju, M.S., Pradeep, T., A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water (2011) Journal of Hazardous Materials, 189 (1-2), pp. 450-457;Katok, K.V., Whitby, R.L.D., Fukuda, T., Hyperstoichiometric interaction between silver and mercury at the nanoscale (2012) Angewandte Chemie International Edition, 51 (11), pp. 2632-2635;Esmaielzadeh Kandjani, A., Sabri, Y.M., Mohammad-Taheri, M., Bansal, V., Bhargava, S.K., Detect, remove and reuse:Anew paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays (2015) Environmental Science & Technology, 49 (3), pp. 1578-1584;Gloria, E.C., Ederley, V., Gladis, M., Synthesis of silver nanoparticles (AgNPs) with antibacterial activity (2017) Journal of Physics: Conference Series, 850 (1);Rasband, W.S., (1997) Image J, , http://imagej.nih.gov/ij/, U.S. National Institutes of Health, Bethesda, Md, USA;Siegert, I., Banks, C., The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors (2005) Process Biochemistry, 40 (11), pp. 3412-3418;Purty, S., Saranathan, R., Prashanth, K., The expanding spectrum of human infections caused by Kocuria species: A case report and literature review (2013) Emerging Microbes & Infections, 2 (10);Kandi, V., Palange, P., Vaish, R., Emerging bacterial infection: Identification and clinical significance of Kocuria species (2016) Cureus, 8;Tsai, C.-Y., Su, S.-H., Cheng, Y.-H., Chou, Y.-L., Tsai, T.-H., Lieu, A.-S., Kocuria varians infection associated with brain abscess: A case report (2010) BMC Infectious Diseases, 10;Benites, J., Ayala, Z., Málaga, J., Reporte de un caso de infección urinaria por kocuria varians (2015) Revista de Investigación de la Universidad Norbert Wiener, (4), pp. 33-36;Sobhani, S., Pakdin-Parizi, Z., Palladium-DABCO complex supported on ?-Fe2O3 magnetic nanoparticles: A new catalyst for CC bond formation viaMizoroki-Heck cross-coupling reaction (2014) Applied Catalysis A: General, 479, pp. 112-120;(2010) National Recommended Water Quality Criteria for Priority Toxic Pollutants, Document EPA-Z-99-01, , U.S. Environmental Protection Agency
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Hindawi Limited
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
Ciencias Básicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/4896/1/portada.JPG
bitstream.checksum.fl_str_mv e9c0792819ada5012f265cd0737d22cc
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159188700430336
spelling 2018-10-31T13:44:22Z2018-10-31T13:44:22Z201816874110http://hdl.handle.net/11407/489610.1155/2018/7215210Silver nanoparticles (AgNPs) were synthesized by chemical reduction of Ag+ ions (from silver nitrate AgNO3), using aqueous or ethanolic Aloe vera extracts as reducing, stabilizing, and size control agent. The nanop articles' sizes were between 2 and 7nm for ethanolic extract and between 3 and 14nm for aqueous extract, as measured by High-Resolution Transmission Electron Microscope (HRTEM). The antibacterial activity against a mesophilic microorganism, Kocuria varians, a Gram-positive coccus, was measured by counting bacterial colonies in agar plate for both extracts. We found that 4% effective concentration is the lowest concentration that completely inhibited visible growth. Mercury removal was investigated by Atomic Absorption Spectroscopy (AAS) measurements, where it was shown that it is not necessary to use high concentrations of nano particles for effective removal of mercury inasmuch as with a 20% V/V concentration of both extracts; the Hg(II) removal percentage was above 95%. These results show that the mercury remaining un removed from the different essays is below the level allowed by World Health Organization (WHO) and the Environmental Protection Agency (EPA). © 2018 Ederley Vélez et al.engHindawi LimitedIngeniería AmbientalCiencias BásicasFacultad de IngenieríasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048382425&doi=10.1155%2f2018%2f7215210&partnerID=40&md5=d6e037c6959487df5f19e0b572130bf52018Journal of NanomaterialsBhui, D.K., Misra, A., Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity (2012) Carbohydrate Polymers, 89 (3), pp. 830-835;Mohapatra, B., Kuriakose, S., Mohapatra, S., Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract (2015) Journal of Alloys and Compounds, 637, pp. 119-126;Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise (2016) Journal of Advanced Research, 7 (1), pp. 17-28;Narayanan, K.B., Park, H.H., Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens (2014) European Journal of Plant Pathology, 140 (2), pp. 185-192;Logeswari, P., Silambarasan, S., Abraham, J., Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property (2015) Journal of Saudi Chemical Society, 19 (3), pp. 311-317;Shameli, K., Ahmad, M.B., Al-Mulla, E.A.J., Green biosynthesis of silver nanoparticles using Callicarpamaingayi stem bark extraction (2012) Molecules, 17 (7), pp. 8506-8517;Edison, T.N.J.I., Lee, Y.R., Sethuraman, M.G., Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye (2016) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161, pp. 122-129;Luna, C., Chávez, V.H.G., Barriga-Castro, E.D., Núñez, N.O., Mendoza-Reséndez, R., Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds (2015) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, pp. 43-50;Edison, T.N.J.I., Sethuraman, M.G., Electrocatalytic reduction of benzyl chloride by green synthesized silver nanop articles using pod extract of Acacia nilotica (2013) ACS Sustainable Chemistry & Engineering, 1 (10), pp. 1326-1332;Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract (2006) Biotechnology Progress, 22 (2), pp. 577-583;Medda, S., Hajra, A., Dey, U., Bose, P., Mondal, N.K., Biosynthesis of silver nanoparticles fromAloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp (2015) Applied Nanoscience, 5 (7), pp. 875-880;Dinesh, D., Murugan, K., Madhiyazhagan, P., Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? (2015) Parasitology Research, 114 (4), pp. 1519-1529;Zhang, Y., Yang, D., Kong, Y., Wang, X., Pandoli, O., Gao, G., Synergetic antibacterial effects of silver Nanoparticles@Aloe vera prepared via a greenmethod (2010) Nano Biomedicine and Engineering, 2 (4), pp. 252-257;Dang, T.M.D., Le, T.T.T., Fribourg-Blanc, E., Dang, M.C., Synthesis and optical properties of copper nanoparticles prepared by a chemical reductionmethod (2011) Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (1);Nandal, U., Bhardwaj, R.L., Aloe vera: A valuable wonder plant for food, medicine and cosmetic use-A review (2012) International Journal of Pharmaceutical Sciences Review and Research, 13 (1), pp. 59-67;Theivasanthi, T., Alagar, M., Electrolytic synthesis and characterization of silver nanopowder (2012) Nano Biomedicine and Engineering, 4 (2), pp. 58-65;Wang, J.-X., Wen, L.-X., Wang, Z.-H., Chen, J.-F., Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects (2006) Materials Chemistry and Physics, 96 (1), pp. 90-97;Marambio-Jones, C., Hoek, E.M.V., Areviewof the antibacterial effects of silver nanomaterials and potential implications for human health and the environment (2010) Journal of Nanoparticle Research, 12 (5), pp. 1531-1551;Shenashen, M.A., El-Safty, S.A., Elshehy, E.A., Synthesis, morphological control, and properties of silver nanoparticles in potential applications (2014) Particle & Particle Systems Characterization, 31 (3), pp. 293-316;Pradeep, T., Anshup, Noble metal nanoparticles for water purification: A critical review (2009) Thin Solid Films, 517 (24), pp. 6441-6478;Becaro, A.A., Puti, F.C., Panosso, A.R., Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles (2016) Food and Bioprocess Technology, 9 (4), pp. 637-649;Durán, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E., Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment (2007) Journal of Biomedical Nanotechnology, 3 (2), pp. 203-208;Zhang, S., Tang, Y., Vlahovic, B., A review on preparation and applications of silver-containing nanofibers (2016) Nanoscale Research Letters, 11 (1);Contescu, C.I., Putyera, K., (2008) Dekker Encyclopedia of Nanoscience and Nanotechnology, 6. , CRC Press, 2nd edition;Rajaram, K., Aiswarya, D.C., Sureshkumar, P., Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity (2015) Materials Letters, 138, pp. 251-254;Manimegalai, G., Shantha Kumar, S., Sharma, C., Pesticide mineralization in water using silver nanoparticles (2011) International Journal of Chemical Sciences, 9 (3), pp. 1463-1471;Bootharaju, M.S., Pradeep, T., Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: An x-ray photoelectron spectroscopic investigation (2010) The Journal of Physical Chemistry C, 114 (18), pp. 8328-8336;Sumesh, E., Bootharaju, M.S., Pradeep, T., A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water (2011) Journal of Hazardous Materials, 189 (1-2), pp. 450-457;Katok, K.V., Whitby, R.L.D., Fukuda, T., Hyperstoichiometric interaction between silver and mercury at the nanoscale (2012) Angewandte Chemie International Edition, 51 (11), pp. 2632-2635;Esmaielzadeh Kandjani, A., Sabri, Y.M., Mohammad-Taheri, M., Bansal, V., Bhargava, S.K., Detect, remove and reuse:Anew paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays (2015) Environmental Science & Technology, 49 (3), pp. 1578-1584;Gloria, E.C., Ederley, V., Gladis, M., Synthesis of silver nanoparticles (AgNPs) with antibacterial activity (2017) Journal of Physics: Conference Series, 850 (1);Rasband, W.S., (1997) Image J, , http://imagej.nih.gov/ij/, U.S. National Institutes of Health, Bethesda, Md, USA;Siegert, I., Banks, C., The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors (2005) Process Biochemistry, 40 (11), pp. 3412-3418;Purty, S., Saranathan, R., Prashanth, K., The expanding spectrum of human infections caused by Kocuria species: A case report and literature review (2013) Emerging Microbes & Infections, 2 (10);Kandi, V., Palange, P., Vaish, R., Emerging bacterial infection: Identification and clinical significance of Kocuria species (2016) Cureus, 8;Tsai, C.-Y., Su, S.-H., Cheng, Y.-H., Chou, Y.-L., Tsai, T.-H., Lieu, A.-S., Kocuria varians infection associated with brain abscess: A case report (2010) BMC Infectious Diseases, 10;Benites, J., Ayala, Z., Málaga, J., Reporte de un caso de infección urinaria por kocuria varians (2015) Revista de Investigación de la Universidad Norbert Wiener, (4), pp. 33-36;Sobhani, S., Pakdin-Parizi, Z., Palladium-DABCO complex supported on ?-Fe2O3 magnetic nanoparticles: A new catalyst for CC bond formation viaMizoroki-Heck cross-coupling reaction (2014) Applied Catalysis A: General, 479, pp. 112-120;(2010) National Recommended Water Quality Criteria for Priority Toxic Pollutants, Document EPA-Z-99-01, , U.S. Environmental Protection AgencyScopusAbsorption spectroscopyAtomic absorption spectrometryEnvironmental Protection AgencyMetal nanoparticlesSilver compoundsSilver nanoparticlesSurface morphologySynthesis (chemical)Anti-bacterial activityAtomic absorption spectroscopyBacterial coloniesEffective concentrationGram-positive cocciHigh-resolution transmission electron microscopesSilver nanoparticles (AgNps)World Health OrganizationMercury compoundsSilver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capabilityArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vélez, E., Universidad de Medellín;Campillo, G., Universidad de Medellín;Morales, G., Universidad DeMedellín;Hincapié, C., Universidad de Medellín;Osorio, J., Universidad de Antioquia;Arnache, O., Universidad de AntioquiaVélez E.Campillo G.Morales G.Hincapié C.Osorio J.Arnache O.http://purl.org/coar/access_right/c_16ecTHUMBNAILportada.JPGportada.JPGimage/jpeg14685http://repository.udem.edu.co/bitstream/11407/4896/1/portada.JPGe9c0792819ada5012f265cd0737d22ccMD5111407/4896oai:repository.udem.edu.co:11407/48962020-05-27 17:50:33.108Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co