Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma

Purpose: To evaluate in patients with Primary Open Angle Glaucoma (POAG) the contribution of the inner and outer retinal photoreceptors to the pupillary light responses (PLRs) correlated with both functional (color vision and visual field (VF) perimetry) and morphological (optical coherence tomograp...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4870
Acceso en línea:
http://hdl.handle.net/11407/4870
Palabra clave:
Color vision
Intrinsically photosensitive retinal ganglion cell
Photoreceptors
Primary open-angle glaucoma
Psychophysics
Pupillary light response
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_01bc7d9f4b2ddc850f217d705ad0934f
oai_identifier_str oai:repository.udem.edu.co:11407/4870
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
title Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
spellingShingle Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
Color vision
Intrinsically photosensitive retinal ganglion cell
Photoreceptors
Primary open-angle glaucoma
Psychophysics
Pupillary light response
title_short Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
title_full Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
title_fullStr Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
title_full_unstemmed Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
title_sort Inner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in Glaucoma
dc.contributor.affiliation.spa.fl_str_mv Duque-Chica, G.L., University of Sao Paulo; Universidad de Medellín;Gracitelli, C.P.B., University of Sao Paulo;Moura, A.L.A., University of Sao Paulo; Federal University of Sao Paulo;Nagy, B.V., University of Sao Paulo; University of Technology and Economics;Vidal, K.S., University of Sao Paulo;A., Jr., Federal University of Sao Paulo;Ventura, D.F., University of Sao Paulo, Sao Paulo
dc.subject.spa.fl_str_mv Color vision
Intrinsically photosensitive retinal ganglion cell
Photoreceptors
Primary open-angle glaucoma
Psychophysics
Pupillary light response
topic Color vision
Intrinsically photosensitive retinal ganglion cell
Photoreceptors
Primary open-angle glaucoma
Psychophysics
Pupillary light response
description Purpose: To evaluate in patients with Primary Open Angle Glaucoma (POAG) the contribution of the inner and outer retinal photoreceptors to the pupillary light responses (PLRs) correlated with both functional (color vision and visual field (VF) perimetry) and morphological (optical coherence tomography-OCT) parameters. Methods: Forty-five patients with POAG and 25 healthy control participants were evaluated. The PLR was measured as pupil diameter with an eye tracker; stimuli were presented in a Ganzfeld. Pupil responses were measured monocularly, to 1 seconds blue (470?nm) and red (640?nm) flashes with ?3, ?2, ?1, 0, 1, 2, and 2.4?log cd/m2 luminance levels. Color vision was evaluated with the Cambridge Colour Test (CCT), VF was measured by standard automatic perimetry (SAP) and retinal nerve fiber layer (RNFL) thickness was evaluated by OCT. Results: Patients with moderate and severe POAG have a significantly decreased PLR that depends on the severity of POAG, for both the 470 and 640?nm stimuli, revealing the reduction of the contributions of the rods, cones and intrinsically photosensitive retinal ganglion cells (ipRGCs) to PLR. A significant loss of color discrimination along the blue-yellow axis was observed in all stages of POAG. Correlations among SAP, RNFL thickness, CCT, PLR and melanopsin parameters were found. Conclusions: The results provide evidence that in moderate and severe stages of POAG, both the inner and outer retinal contributions to PLR are affected. Also, a worsening in color vision was correlated with reduced PLR responses at high-intensity stimuli. These findings may enhance the clinical management of POAG patients. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:19Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:19Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article in Press
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 10570829
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4870
dc.identifier.doi.none.fl_str_mv 10.1097/IJG.0000000000001003
identifier_str_mv 10570829
10.1097/IJG.0000000000001003
url http://hdl.handle.net/11407/4870
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049156454&doi=10.1097%2fIJG.0000000000001003&partnerID=40&md5=f75f75a5f4b772d820c67bc81cbbb96e
dc.relation.ispartofes.spa.fl_str_mv Journal of Glaucoma
dc.relation.references.spa.fl_str_mv Tielsch, J.M., Sommer, A., Katz, J., Royall, R.M., Quigley, H.A., Javitt, J. Racial Variations in the Prevalence of Primary Open-angle Glaucoma: The Baltimore Eye Survey (1991) JAMA: The Journal of the American Medical Association, 266 (3), pp. 369-374. doi: 10.1001/jama.1991.03470030069026;Weinreb, R.N., Tee Khaw, P. Primary open-angle glaucoma (2004) Lancet, 363 (9422), pp. 1711-1720. doi: 10.1016/S0140-6736(04)16257-0;Quigley, H.A. Glaucoma (2011) The Lancet, 377 (9774), pp. 1367-1377. doi: 10.1016/S0140-6736(10)61423-7;Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F., Rollag, M.D. A novel human opsin in the inner retina (2000) Journal of Neuroscience, 20 (2), pp. 600-605.;Berson, D.M., Dunn, F.A., Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock (2002) Science, 295 (5557), pp. 1070-1073. doi: 10.1126/science.1067262;Dacey, D.M., Liao, H.-W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokomy, J., Yau, K.-W., (...), Gamlin, P.D. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN (2005) Nature, 433 (7027), pp. 749-754. doi: 10.1038/nature03387;Zaidi, F.H., Hull, J.T., Peirson, StuartN., Wulff, K., Aeschbach, D., Gooley, J.J., Brainard, GeorgeC., (...), Lockley, S.W. Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina (Open Access) (2007) Current Biology, 17 (24), pp. 2122-2128. doi: 10.1016/j.cub.2007.11.034;Brown, T.M., Gias, C., Hatori, M., Keding, S.R., Semo, M., Coffey, P.J., Gigg, J., (...), Lucas, R.J. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system (Open Access) (2010) PLoS Biology, 8 (12), art. no. e1000558.http://www.plosbiology.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.pbio.1000558&representation=PDF doi: 10.1371/journal.pbio.1000558;Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.-K., LeGates, T., Renna, J.M., (...), Hattar, S. Melanopsin-expressing retinal ganglion-cell photoreceptors: Cellular diversity and role in pattern vision (Open Access) (2010) Neuron, 67 (1), pp. 49-60.doi: 10.1016/j.neuron.2010.05.023;Schmidt, T., Alam, N., Chen, S., Kofuji, P., Li, W., Prusky, G., Hattar, S. A Role for Melanopsin in Alpha Retinal Ganglion Cells and Contrast Detection (Open Access) (2014) Neuron, 82 (4), pp. 781-788. www.neuron.org doi: 10.1016/j.neuron.2014.03.022;Bergamin, O., Bridget Zimmerman, M., Kardon, R.H. Pupil light reflex in normal and diseased eyes: Diagnosis of visual dysfunction using waveform partitioning (2003) Ophthalmology, 110 (1), pp. 106-114. doi: 10.1016/S0161-6420(02)01445-8;Kankipati, L., Girkin, C.A., Gamlin, P.D. Post-illumination pupil response in subjects without ocular disease (Open Access) (2010) Investigative Ophthalmology and Visual Science, 51 (5), pp. 2764-2769. http://www.iovs.org/content/51/5/2764.full.pdf+html doi: 10.1167/iovs.09-4717;Feigl, B., Mattes, D., Thomas, R., Zele, A.J. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma (Open Access) (2011) Investigative Ophthalmology and Visual Science, 52 (7), pp. 4362-4367. http://www.iovs.org/content/52/7/4362.full.pdf+html doi: 10.1167/iovs.10-7069;Park, J.C., Moura, A.L., Raza, A.S., Rhee, D.W., Kardon, R., Hood, D. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response (2011) Investigative Ophthalmology and Visual Science, 52 (9), pp. 6624-6635. http://www.iovs.org/content/52/9/6624.full.pdf+html doi: 10.1167/iovs.11-7586 ;Park, J.C., Chen, Y.-F., Blair, N.P., Chau, F.Y., Lim, J.I., Leiderman, Y.I., Shahidi, M., (...), Jason McAnany, J.Pupillary responses in non-proliferative diabetic retinopathy (Open Access) (2017) Scientific Reports, 7, art. no. 44987.www.nature.com/srep/index.html doi: 10.1038/srep44987;Moura, A.L.A., Nagy, B.V., la Morgia, C., Barboni, P., Oliveira, A.G.F., Salomaõ, S.R., Berezovsky, A., (...), Ventura, D.F. The Pupil light reflex in leber's hereditary optic neuropathy: Evidence for preservation of melanopsin- expressing retinal ganglion cells (Open Access) (2013) Investigative Ophthalmology and Visual Science, 54 (7), pp. 4471-4477.http://www.iovs.org/content/54/7/4471.full.pdf+html doi: 10.1167/iovs.12-11137;Duque-Chica, G.L., Gracitelli, C.P., Moura, A.L.A. The melanopsin, cone and rod components of the pupil light reflex and color discrimination in glaucomatous optic neuropathy (2014) Invest Ophthalmol Vis Sci., 55, p. 5613. (ARVO E-Abstract 5613);Duque-Chica, G.L., Gracitelli, C., Moura, A.L. Study of the pupil light reflex in patients with obstructive Sleep Apnea (2015) Invest Ophthalmol Vis Sci., 56, p. 576.(ARVO E-Abstract 576);Gracitelli, C.P.B., Duque-Chica, G.L., Moura, A.L., Nagy, B.V., de Melo, G.R., Roizenblatt, M., Borba, P.D., (...), Paranhos, A. A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma (Open Access) (2014) Investigative Ophthalmology and Visual Science, 55 (12), pp. 7997-8005. http://www.iovs.org/content/55/12/7997.full.pdf doi: 10.1167/iovs.14-15146;Gracitelli, C.P.B., Duque-Chica, G.L., Roizenblatt, M., Moura, A.L.D.A., Nagy, B.V., Ragot De Melo, G., Borba, P.D., (...), Paranhos, A.Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma (2015) Ophthalmology, 122 (6), pp. 1139-1148. www.elsevier.com/locate/ophtha doi: 10.1016/j.ophtha.2015.02.030;Kawasaki, A., Collomb, S., Léon, L., Münch, M. Pupil responses derived from outer and inner retinal photoreception are normal in patients with hereditary optic neuropathy (2014) Experimental Eye Research, 120, pp. 161-166.doi: 10.1016/j.exer.2013.11.005;Kardon, R., Anderson, S.C., Damarjian, T.G., Grace, E.M., Stone, E., Kawasaki, A. Chromatic Pupil Responses. Preferential Activation of the Melanopsin-mediated versus Outer Photoreceptor-mediated Pupil Light Reflex (2009) Ophthalmology, 116 (8), pp. 1564-1573.doi: 10.1016/j.ophtha.2009.02.007;Gamlin, P.D.R., McDougal, D.H., Pokorny, J., Smith, V.C., Yau, K.-W., Dacey, D.M. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells (Open Access) (2007) Vision Research, 47 (7), pp. 946-954. doi: 10.1016/j.visres.2006.12.015;Gooley, J.J., Mien, I.H., St. Hilaire, M.A., Yeo, S.-C., Chua, E.C.-P., van Reen, E., Hanley, C.J., (...), Lockley, S.W. Melanopsin and Rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans (2012) Journal of Neuroscience, 32 (41), pp. 14242-14253.http://www.jneurosci.org/content/32/41/14242.full.pdf doi: 10.1523/JNEUROSCI.1321-12.2012;Güler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.-W., Barnard, A.R., (...), Hattar, S. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision (2008) Nature, 453 (7191), pp. 102-105.http://www.nature.com/nature/index.html doi: 10.1038/nature06829;Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., (...), Yau, K.-W. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice (2003) Nature, 424 (6944), pp. 76-81. doi: 10.1038/nature01761;Léon, L., Crippa, S.V., Borruat, F.-X., Kawasaki, A. Differential effect of long versus short wavelength light exposure on pupillary re-dilation in patients with outer retinal disease (Open Access) (2012) Clinical and Experimental Ophthalmology, 40 (1), pp. e16-e24.doi: 10.1111/j.1442-9071.2011.02665.x;Lucas, R.J., Freedman, M.S., Lupi, D., Munoz, M., David-Gray, Z.K., Foster, R.G. Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice (2001) Behavioural Brain Research, 125 (1-2), pp. 97-102. doi: 10.1016/S0166-4328(01)00274-1;Kostic, C., Crippa, S.V., Martin, C., Kardon, R.H., Biel, M., Arsenijevic, Y., Kawasaki, A. Determination of rod and cone influence to the early and late dynamic of the pupillary light response (Open Access) (2016) Investigative Ophthalmology and Visual Science, 57 (6), pp. 2501-2508.http://iovs.arvojournals.org/data/Journals/IOVS/935270/i1552-5783-57-6-2501.pdf doi: 10.1167/iovs.16-19150;Kankipati, L., Girkin, C.A., Gamlin, P.D. The post-illumination pupil response is reduced in glaucoma patients (Open Access) (2011) Investigative Ophthalmology and Visual Science, 52 (5), pp. 2287-2292. http://www.iovs.org/content/52/5/2287.full.pdf+html doi: 10.1167/iovs.10-6023;Adhikari, P., Zele, A.J., Thomas, R., Feigl, B.Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma (Open Access) (2016) Scientific Reports, 6, art. No. 33373. www.nature.com/srep/index.html doi: 10.1038/srep33373;Duque-Chica, G.L., Gracitelli, C.P., De Araujo, M.A.L. Losses in ipRGC function are accompanied by losses in contrast sensitivity in patients with different stages of glaucoma (2016) Invest Ophthalmol Vis Sci., 57, p. 4657. (ARVO E-Abstract 4657);Carle, C.F., James, A.C., Kolic, M., Essex, R.W., Maddess, T.Luminance and colour variant pupil perimetry in glaucoma (2014) Clinical and Experimental Ophthalmology, 42 (9), pp. 815-824. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1442-9071/issues doi: 10.1111/ceo.12346;Munch, M., Leon, L., Collomb, S., Kawasaki, A.Comparison of acute non-visual bright light responses in patients with optic nerve disease, glaucoma and healthy controls (2015) Scientific Reports, 5, art. No. 15185. www.nature.com/srep/index.html doi: 10.1038/srep15185;Agudo-Barriuso, M., Villegas-Pérez, M.P., De Imperial, J.M., Vidal-Sanz, M. Anatomical and functional damage in experimental glaucoma (2013) Current Opinion in Pharmacology, 13 (1), pp. 5-11.doi: 10.1016/j.coph.2012.09.006;Aldebasi, Y.H., Drasdo, N.,Morgan, J.E., North, R.V. S-cone, L + M-cone, and pattern, electroretinograms in ocular hypertension and glaucoma (Open Access) (2004) Vision Research, 44 (24), pp. 2749-2756.doi: 10.1016/j.visres.2004.06.015;Choi, S.S., Zawadzki, R.J., Lim, M.C., Brandt, J.D., Keltner, J.L., Doble, N., Werner, J.S. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging (2011) British Journal of Ophthalmology, 95 (1), pp. 131-141. http://bjo.bmj.com/content/95/1/131.full.pdf doi: 10.1136/bjo.2010.183756;Fazio, D.T., Heckenlively, J.R., Martin, D.A., Christensen, R.E. The electroretinogram in advanced open-angle glaucoma (1986) Documenta Ophthalmologica, 63 (1), pp. 45-54.doi: 10.1007/BF00153011;Holopigian, K., Seiple, W., Mayron, C., Koty, R., Lorenzo, M.Electrophysiological and psychophysical flicker sensitivity in patients with primary open-angle glaucoma and ocular hypertension (1990) Investigative Ophthalmology and Visual Science, 31 (9), pp. 1863-1868.;Kelbsch, C., Maeda, F., Strasser, T., Blumenstock, G., Wilhelm, B., Wilhelm, H., Peters, T. Pupillary responses driven by ipRGCs and classical photoreceptors are impaired in glaucoma (2016) Graefe's Archive for Clinical and Experimental Ophthalmology, 254 (7), pp. 1361-1370. link.springer.de/link/service/journals/00417/index.htm doi: 10.1007/s00417-016-3351-9;Rukmini, A.V., Milea, D., Baskaran, M., How, A.C., Perera, S.A., Aung, T., Gooley, J.J.Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity (Open Access) (2015) Ophthalmology, 122 (9), pp. 1777-1785. www.elsevier.com/locate/ophtha doi:10.1016/j.ophtha.2015.06.002;Mills, R.P., Budenz, D.L., Lee, P.P., Noecker, R.J., Walt, J.G., Siegartel, L.R., Evans, S.J., (...), Doyle, J.J.Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease (2006) American Journal of Ophthalmology, 141 (1), pp. 24-30. doi: 10.1016/j.ajo.2005.07.044;Chylack, L.T., Wolfe, J.K., Singer, D.M., Leske, M.C., Bullimore, M.A., Bailey, I.L., Friend, J., (...), Wu, S.-Y.The Lens Opacities Classification System III (1993) Archives of Ophthalmology, 111 (6), pp. 831-836. doi: 10.1001/archopht.1993.01090060119035;Ba-Ali, S., Sander, B., Brøndsted, A.E., Lund-Andersen, H. Effect of topical anti-glaucoma medications on late pupillary light reflex, as evaluated by pupillometry (Open Access) (2015) Frontiers in Neurology, 6 (APR), art. no. 00093.http://journal.frontiersin.org/article/10.3389/fneur.2015.00093/full doi: 10.3389/fneur.2015.00093;McDougal, D.H., Gamlin, P.D. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex (Open Access) (2010) Vision Research, 50 (1), pp. 72-87. doi: 10.1016/j.visres.2009.10.012;Altimus, C.M., Güler, A.D., Alam, N.M., Arman, A.C., Prusky, G.T., Sampath, A.P., Hattar, S. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities (2010) Nature Neuroscience, 13 (9), pp. 1107-1112. doi: 10.1038/nn.2617;Keenan, W.T., Rupp, A.C., Ross, R.A., Somasundaram, P., Hiriyanna, S., Wu, Z., Badea, T.C., (...), Hattar, S.S.A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction (Open Access)(2016) eLife, 5 (September2016), art. no. e15392. https://elifesciences.org/content/5/e15392-download.pdf doi: 10.7554/eLife.15392;Barrionuevo, P.A., Nicandro, N., McAnany, J.J., Zele, A.J., Gamlin, P., Cao, D. Assessing rod, cone, and melanopsin contributions to human pupil flicker responses (Open Access) (2014) Investigative Ophthalmology and Visual Science, 55 (2), pp. 719-727.http://www.iovs.org/content/55/2/719.full.pdf doi: 10.1167/iovs.13-13252;Münch, M., Léon, L., Crippa, S.V., Kawasaki, A. Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses (Open Access) (2012) Investigative Ophthalmology and Visual Science, 53 (8), pp. 4546-4555. http://www.iovs.org/content/53/8/4546.full.pdf+html doi: 10.1167/iovs.12-9494;Vural, A.D., Kara, N., Sayin, N., Pirhan, D., Ersan, H.B.A.Choroidal thickness changes after a single administration of coffee in healthy subjects (2014) Retina, 34 (6), pp. 1223-1228. http://journals.lww.com/retinajournal doi: 10.1097/IAE.0000000000000043;Bardak, H., Gunay, M., Mumcu, U., Bardak, Y. Effect of Single Administration of Coffee on Pupil Size and Ocular Wavefront Aberration Measurements in Healthy Subjects (Open Access) (2016) BioMed Research International, 2016, art. no. 9578308.http://www.hindawi.com/journals/biomed/doi: 10.1155/2016/9578308;Duarte, A.A.M., Mostarda, C., Irigoyen, M.C., Rigatto, K.A single dose of dark chocolate increases parasympathetic modulation and heart rate variability in healthy subjects (2016) Revista de Nutricao, 29 (6), pp. 765-773. http://www.scielo.br/pdf/rn/v29n6/1415-5273-rn-29-06-00765.pdf doi: 10.1590/1678-98652016000600002;Sae-Teaw, M., Johns, J., Johns, N.P., Subongkot, S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers (2013) Journal of Pineal Research, 55 (1), pp. 58-64. doi: 10.1111/jpi.12025;Mollon, J.D., Reffin, J.P. A computer-controlled colour vision test that combines the principles of Chibret and of Stilling (1989) Proc Physiol Soc., 414, p. 5. ;Regan, B.C., Reffin, J.P., Mollon, J.D. Luminance noise and the rapid determination of discrimination ellipses in colour deficiency (1994) Vision Research, 34 (10), pp. 1279-1299.doi: 10.1016/0042-6989(94)90203-8;Zeger, S.L., Liang, K.Y.Longitudinal data analysis for discrete and continuous outcomes. (1986) Biometrics, 42 (1), pp. 121-130. doi: 10.2307/2531248;Murdoch, I.E., Morris, S.S., Cousens, S.N.People and eyes: Statistical approaches in ophthalmology (Open Access) (1998) British Journal of Ophthalmology, 82 (8), pp. 971-973. http://bjo.bmj.com/doi: 10.1136/bjo.82.8.971;Pacheco-Cutillas, M., Sahraie, A., Edgar, D.F.Acquired colour vision defects in glaucoma - Their detection and clinical significance (1999) British Journal of Ophthalmology, 83 (12), pp. 1396-1402. http://bjo.bmj.com/doi: 10.1136/bjo.83.12.1396;Papaconstantinou, D., Georgalas, I., Kalantzis, G., Karmiris, E., Koutsandrea, C., Diagourtas, A., Ladas, I., (...), Georgopoulos, G.Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma (2009) Clinical Ophthalmology, 3 (1), pp. 251-257. http://www.dovepress.com/getfile.php?fileID=4580;Carle, C.F., James, A.C., Kolic, M., Essex, R.W., Maddess, T. Blue multifocal pupillographic objective perimetry in glaucoma (2015) Investigative Ophthalmology and Visual Science, 56 (11), pp. 6394-6403. http://iovs.arvojournals.org/data/Journals/IOVS/934564/i1552-5783-56-11-6394.pdf doi: 10.1167/iovs.14-16029;Lall, G.S., Revell, V.L., Momiji, H., Al Enezi, J., Altimus, C.M., Güler, A.D., Aguilar, C., (...), Lucas, R.J. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance (Open Access) (2010) Neuron, 66 (3), pp. 417-428.doi: 10.1016/j.neuron.2010.04.037;Racette, L., Sample, P.A. Short-wavelength automated perimetry (2003) Ophthalmology Clinics of North America, 16 (2), pp. 227-236. http://www.elsevier.com/inca/publications/store/6/2/3/1/6/8/index.htt doi: 10.1016/S0896-1549(03)00010-5;Castelo-Branco, M., Faria, P., Forjaz, V., Kozak, L.R., Azevedo, H. Simultaneous Comparison of Relative Damage to Chromatic Pathways in Ocular Hypertension and Glaucoma: Correlation with Clinical Measures (2004) Investigative Ophthalmology and Visual Science, 45 (2), pp. 499-505.doi: 10.1167/iovs.03-0815;Drance, S.M., Lakowski, R., Schulzer, M., Douglas, G.R. Acquired color vision changes in glaucoma: Use of 100-hue Test and Pickford Anomaloscope as Predictors of Glaucomatous Field Change (1981) Archives of Ophthalmology, 99 (5), pp. 829-831.doi: 10.1001/archopht.1981.03930010829007;Barbur, J.L., Harlow, A.J., Plant, G.T.Insights into the different exploits of colour in the visual cortex (1994) Proceedings of the Royal Society B: Biological Sciences, 258 (1353), pp. 327-334. http://rspb.royalsocietypublishing.org/ doi: 10.1098/rspb.1994.0181;Vickers, J.C., Schumer, R.A., Podos, S.M., Wang, R.F., Riederer, B.M., Morrison, J.H. Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma (1995) Brain Research, 680 (1-2), pp. 23-35. doi: 10.1016/0006-8993(95)00211-8;Ortín-Martínez, A., Salinas-Navarro, M., Nadal-Nicolás, F.M., Jiménez-López, M., Valiente-Soriano, F.J., García-Ayuso, D., Bernal-Garro, J.M., (...), Vidal-Sanz, M. Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors (Open Access) (2015) Experimental Eye Research, 132, pp. 17-33. http://www.elsevier.com/inca/publications/store/6/2/2/8/2/7/index.htt doi: 10.1016/j.exer.2015.01.006;Drasdo, N., Aldebasi, Y.H., Chiti, Z., Mortlock, K.E., Morgan, J.E., North, R.V. The S-cone PhNR and pattern ERG in primary open angle glaucoma (2001) Investigative Ophthalmology and Visual Science, 42 (6), pp. 1266-1272.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Lippincott Williams and Wilkins
dc.publisher.program.spa.fl_str_mv Psicología
dc.publisher.faculty.spa.fl_str_mv Facultad de Derecho
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159254952607744
spelling 2018-10-31T13:44:19Z2018-10-31T13:44:19Z201810570829http://hdl.handle.net/11407/487010.1097/IJG.0000000000001003Purpose: To evaluate in patients with Primary Open Angle Glaucoma (POAG) the contribution of the inner and outer retinal photoreceptors to the pupillary light responses (PLRs) correlated with both functional (color vision and visual field (VF) perimetry) and morphological (optical coherence tomography-OCT) parameters. Methods: Forty-five patients with POAG and 25 healthy control participants were evaluated. The PLR was measured as pupil diameter with an eye tracker; stimuli were presented in a Ganzfeld. Pupil responses were measured monocularly, to 1 seconds blue (470?nm) and red (640?nm) flashes with ?3, ?2, ?1, 0, 1, 2, and 2.4?log cd/m2 luminance levels. Color vision was evaluated with the Cambridge Colour Test (CCT), VF was measured by standard automatic perimetry (SAP) and retinal nerve fiber layer (RNFL) thickness was evaluated by OCT. Results: Patients with moderate and severe POAG have a significantly decreased PLR that depends on the severity of POAG, for both the 470 and 640?nm stimuli, revealing the reduction of the contributions of the rods, cones and intrinsically photosensitive retinal ganglion cells (ipRGCs) to PLR. A significant loss of color discrimination along the blue-yellow axis was observed in all stages of POAG. Correlations among SAP, RNFL thickness, CCT, PLR and melanopsin parameters were found. Conclusions: The results provide evidence that in moderate and severe stages of POAG, both the inner and outer retinal contributions to PLR are affected. Also, a worsening in color vision was correlated with reduced PLR responses at high-intensity stimuli. These findings may enhance the clinical management of POAG patients. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.engLippincott Williams and WilkinsPsicologíaFacultad de Derechohttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049156454&doi=10.1097%2fIJG.0000000000001003&partnerID=40&md5=f75f75a5f4b772d820c67bc81cbbb96eJournal of GlaucomaTielsch, J.M., Sommer, A., Katz, J., Royall, R.M., Quigley, H.A., Javitt, J. Racial Variations in the Prevalence of Primary Open-angle Glaucoma: The Baltimore Eye Survey (1991) JAMA: The Journal of the American Medical Association, 266 (3), pp. 369-374. doi: 10.1001/jama.1991.03470030069026;Weinreb, R.N., Tee Khaw, P. Primary open-angle glaucoma (2004) Lancet, 363 (9422), pp. 1711-1720. doi: 10.1016/S0140-6736(04)16257-0;Quigley, H.A. Glaucoma (2011) The Lancet, 377 (9774), pp. 1367-1377. doi: 10.1016/S0140-6736(10)61423-7;Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F., Rollag, M.D. A novel human opsin in the inner retina (2000) Journal of Neuroscience, 20 (2), pp. 600-605.;Berson, D.M., Dunn, F.A., Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock (2002) Science, 295 (5557), pp. 1070-1073. doi: 10.1126/science.1067262;Dacey, D.M., Liao, H.-W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokomy, J., Yau, K.-W., (...), Gamlin, P.D. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN (2005) Nature, 433 (7027), pp. 749-754. doi: 10.1038/nature03387;Zaidi, F.H., Hull, J.T., Peirson, StuartN., Wulff, K., Aeschbach, D., Gooley, J.J., Brainard, GeorgeC., (...), Lockley, S.W. Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina (Open Access) (2007) Current Biology, 17 (24), pp. 2122-2128. doi: 10.1016/j.cub.2007.11.034;Brown, T.M., Gias, C., Hatori, M., Keding, S.R., Semo, M., Coffey, P.J., Gigg, J., (...), Lucas, R.J. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system (Open Access) (2010) PLoS Biology, 8 (12), art. no. e1000558.http://www.plosbiology.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.pbio.1000558&representation=PDF doi: 10.1371/journal.pbio.1000558;Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.-K., LeGates, T., Renna, J.M., (...), Hattar, S. Melanopsin-expressing retinal ganglion-cell photoreceptors: Cellular diversity and role in pattern vision (Open Access) (2010) Neuron, 67 (1), pp. 49-60.doi: 10.1016/j.neuron.2010.05.023;Schmidt, T., Alam, N., Chen, S., Kofuji, P., Li, W., Prusky, G., Hattar, S. A Role for Melanopsin in Alpha Retinal Ganglion Cells and Contrast Detection (Open Access) (2014) Neuron, 82 (4), pp. 781-788. www.neuron.org doi: 10.1016/j.neuron.2014.03.022;Bergamin, O., Bridget Zimmerman, M., Kardon, R.H. Pupil light reflex in normal and diseased eyes: Diagnosis of visual dysfunction using waveform partitioning (2003) Ophthalmology, 110 (1), pp. 106-114. doi: 10.1016/S0161-6420(02)01445-8;Kankipati, L., Girkin, C.A., Gamlin, P.D. Post-illumination pupil response in subjects without ocular disease (Open Access) (2010) Investigative Ophthalmology and Visual Science, 51 (5), pp. 2764-2769. http://www.iovs.org/content/51/5/2764.full.pdf+html doi: 10.1167/iovs.09-4717;Feigl, B., Mattes, D., Thomas, R., Zele, A.J. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma (Open Access) (2011) Investigative Ophthalmology and Visual Science, 52 (7), pp. 4362-4367. http://www.iovs.org/content/52/7/4362.full.pdf+html doi: 10.1167/iovs.10-7069;Park, J.C., Moura, A.L., Raza, A.S., Rhee, D.W., Kardon, R., Hood, D. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response (2011) Investigative Ophthalmology and Visual Science, 52 (9), pp. 6624-6635. http://www.iovs.org/content/52/9/6624.full.pdf+html doi: 10.1167/iovs.11-7586 ;Park, J.C., Chen, Y.-F., Blair, N.P., Chau, F.Y., Lim, J.I., Leiderman, Y.I., Shahidi, M., (...), Jason McAnany, J.Pupillary responses in non-proliferative diabetic retinopathy (Open Access) (2017) Scientific Reports, 7, art. no. 44987.www.nature.com/srep/index.html doi: 10.1038/srep44987;Moura, A.L.A., Nagy, B.V., la Morgia, C., Barboni, P., Oliveira, A.G.F., Salomaõ, S.R., Berezovsky, A., (...), Ventura, D.F. The Pupil light reflex in leber's hereditary optic neuropathy: Evidence for preservation of melanopsin- expressing retinal ganglion cells (Open Access) (2013) Investigative Ophthalmology and Visual Science, 54 (7), pp. 4471-4477.http://www.iovs.org/content/54/7/4471.full.pdf+html doi: 10.1167/iovs.12-11137;Duque-Chica, G.L., Gracitelli, C.P., Moura, A.L.A. The melanopsin, cone and rod components of the pupil light reflex and color discrimination in glaucomatous optic neuropathy (2014) Invest Ophthalmol Vis Sci., 55, p. 5613. (ARVO E-Abstract 5613);Duque-Chica, G.L., Gracitelli, C., Moura, A.L. Study of the pupil light reflex in patients with obstructive Sleep Apnea (2015) Invest Ophthalmol Vis Sci., 56, p. 576.(ARVO E-Abstract 576);Gracitelli, C.P.B., Duque-Chica, G.L., Moura, A.L., Nagy, B.V., de Melo, G.R., Roizenblatt, M., Borba, P.D., (...), Paranhos, A. A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma (Open Access) (2014) Investigative Ophthalmology and Visual Science, 55 (12), pp. 7997-8005. http://www.iovs.org/content/55/12/7997.full.pdf doi: 10.1167/iovs.14-15146;Gracitelli, C.P.B., Duque-Chica, G.L., Roizenblatt, M., Moura, A.L.D.A., Nagy, B.V., Ragot De Melo, G., Borba, P.D., (...), Paranhos, A.Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma (2015) Ophthalmology, 122 (6), pp. 1139-1148. www.elsevier.com/locate/ophtha doi: 10.1016/j.ophtha.2015.02.030;Kawasaki, A., Collomb, S., Léon, L., Münch, M. Pupil responses derived from outer and inner retinal photoreception are normal in patients with hereditary optic neuropathy (2014) Experimental Eye Research, 120, pp. 161-166.doi: 10.1016/j.exer.2013.11.005;Kardon, R., Anderson, S.C., Damarjian, T.G., Grace, E.M., Stone, E., Kawasaki, A. Chromatic Pupil Responses. Preferential Activation of the Melanopsin-mediated versus Outer Photoreceptor-mediated Pupil Light Reflex (2009) Ophthalmology, 116 (8), pp. 1564-1573.doi: 10.1016/j.ophtha.2009.02.007;Gamlin, P.D.R., McDougal, D.H., Pokorny, J., Smith, V.C., Yau, K.-W., Dacey, D.M. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells (Open Access) (2007) Vision Research, 47 (7), pp. 946-954. doi: 10.1016/j.visres.2006.12.015;Gooley, J.J., Mien, I.H., St. Hilaire, M.A., Yeo, S.-C., Chua, E.C.-P., van Reen, E., Hanley, C.J., (...), Lockley, S.W. Melanopsin and Rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans (2012) Journal of Neuroscience, 32 (41), pp. 14242-14253.http://www.jneurosci.org/content/32/41/14242.full.pdf doi: 10.1523/JNEUROSCI.1321-12.2012;Güler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.-W., Barnard, A.R., (...), Hattar, S. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision (2008) Nature, 453 (7191), pp. 102-105.http://www.nature.com/nature/index.html doi: 10.1038/nature06829;Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., (...), Yau, K.-W. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice (2003) Nature, 424 (6944), pp. 76-81. doi: 10.1038/nature01761;Léon, L., Crippa, S.V., Borruat, F.-X., Kawasaki, A. Differential effect of long versus short wavelength light exposure on pupillary re-dilation in patients with outer retinal disease (Open Access) (2012) Clinical and Experimental Ophthalmology, 40 (1), pp. e16-e24.doi: 10.1111/j.1442-9071.2011.02665.x;Lucas, R.J., Freedman, M.S., Lupi, D., Munoz, M., David-Gray, Z.K., Foster, R.G. Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice (2001) Behavioural Brain Research, 125 (1-2), pp. 97-102. doi: 10.1016/S0166-4328(01)00274-1;Kostic, C., Crippa, S.V., Martin, C., Kardon, R.H., Biel, M., Arsenijevic, Y., Kawasaki, A. Determination of rod and cone influence to the early and late dynamic of the pupillary light response (Open Access) (2016) Investigative Ophthalmology and Visual Science, 57 (6), pp. 2501-2508.http://iovs.arvojournals.org/data/Journals/IOVS/935270/i1552-5783-57-6-2501.pdf doi: 10.1167/iovs.16-19150;Kankipati, L., Girkin, C.A., Gamlin, P.D. The post-illumination pupil response is reduced in glaucoma patients (Open Access) (2011) Investigative Ophthalmology and Visual Science, 52 (5), pp. 2287-2292. http://www.iovs.org/content/52/5/2287.full.pdf+html doi: 10.1167/iovs.10-6023;Adhikari, P., Zele, A.J., Thomas, R., Feigl, B.Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma (Open Access) (2016) Scientific Reports, 6, art. No. 33373. www.nature.com/srep/index.html doi: 10.1038/srep33373;Duque-Chica, G.L., Gracitelli, C.P., De Araujo, M.A.L. Losses in ipRGC function are accompanied by losses in contrast sensitivity in patients with different stages of glaucoma (2016) Invest Ophthalmol Vis Sci., 57, p. 4657. (ARVO E-Abstract 4657);Carle, C.F., James, A.C., Kolic, M., Essex, R.W., Maddess, T.Luminance and colour variant pupil perimetry in glaucoma (2014) Clinical and Experimental Ophthalmology, 42 (9), pp. 815-824. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1442-9071/issues doi: 10.1111/ceo.12346;Munch, M., Leon, L., Collomb, S., Kawasaki, A.Comparison of acute non-visual bright light responses in patients with optic nerve disease, glaucoma and healthy controls (2015) Scientific Reports, 5, art. No. 15185. www.nature.com/srep/index.html doi: 10.1038/srep15185;Agudo-Barriuso, M., Villegas-Pérez, M.P., De Imperial, J.M., Vidal-Sanz, M. Anatomical and functional damage in experimental glaucoma (2013) Current Opinion in Pharmacology, 13 (1), pp. 5-11.doi: 10.1016/j.coph.2012.09.006;Aldebasi, Y.H., Drasdo, N.,Morgan, J.E., North, R.V. S-cone, L + M-cone, and pattern, electroretinograms in ocular hypertension and glaucoma (Open Access) (2004) Vision Research, 44 (24), pp. 2749-2756.doi: 10.1016/j.visres.2004.06.015;Choi, S.S., Zawadzki, R.J., Lim, M.C., Brandt, J.D., Keltner, J.L., Doble, N., Werner, J.S. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging (2011) British Journal of Ophthalmology, 95 (1), pp. 131-141. http://bjo.bmj.com/content/95/1/131.full.pdf doi: 10.1136/bjo.2010.183756;Fazio, D.T., Heckenlively, J.R., Martin, D.A., Christensen, R.E. The electroretinogram in advanced open-angle glaucoma (1986) Documenta Ophthalmologica, 63 (1), pp. 45-54.doi: 10.1007/BF00153011;Holopigian, K., Seiple, W., Mayron, C., Koty, R., Lorenzo, M.Electrophysiological and psychophysical flicker sensitivity in patients with primary open-angle glaucoma and ocular hypertension (1990) Investigative Ophthalmology and Visual Science, 31 (9), pp. 1863-1868.;Kelbsch, C., Maeda, F., Strasser, T., Blumenstock, G., Wilhelm, B., Wilhelm, H., Peters, T. Pupillary responses driven by ipRGCs and classical photoreceptors are impaired in glaucoma (2016) Graefe's Archive for Clinical and Experimental Ophthalmology, 254 (7), pp. 1361-1370. link.springer.de/link/service/journals/00417/index.htm doi: 10.1007/s00417-016-3351-9;Rukmini, A.V., Milea, D., Baskaran, M., How, A.C., Perera, S.A., Aung, T., Gooley, J.J.Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity (Open Access) (2015) Ophthalmology, 122 (9), pp. 1777-1785. www.elsevier.com/locate/ophtha doi:10.1016/j.ophtha.2015.06.002;Mills, R.P., Budenz, D.L., Lee, P.P., Noecker, R.J., Walt, J.G., Siegartel, L.R., Evans, S.J., (...), Doyle, J.J.Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease (2006) American Journal of Ophthalmology, 141 (1), pp. 24-30. doi: 10.1016/j.ajo.2005.07.044;Chylack, L.T., Wolfe, J.K., Singer, D.M., Leske, M.C., Bullimore, M.A., Bailey, I.L., Friend, J., (...), Wu, S.-Y.The Lens Opacities Classification System III (1993) Archives of Ophthalmology, 111 (6), pp. 831-836. doi: 10.1001/archopht.1993.01090060119035;Ba-Ali, S., Sander, B., Brøndsted, A.E., Lund-Andersen, H. Effect of topical anti-glaucoma medications on late pupillary light reflex, as evaluated by pupillometry (Open Access) (2015) Frontiers in Neurology, 6 (APR), art. no. 00093.http://journal.frontiersin.org/article/10.3389/fneur.2015.00093/full doi: 10.3389/fneur.2015.00093;McDougal, D.H., Gamlin, P.D. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex (Open Access) (2010) Vision Research, 50 (1), pp. 72-87. doi: 10.1016/j.visres.2009.10.012;Altimus, C.M., Güler, A.D., Alam, N.M., Arman, A.C., Prusky, G.T., Sampath, A.P., Hattar, S. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities (2010) Nature Neuroscience, 13 (9), pp. 1107-1112. doi: 10.1038/nn.2617;Keenan, W.T., Rupp, A.C., Ross, R.A., Somasundaram, P., Hiriyanna, S., Wu, Z., Badea, T.C., (...), Hattar, S.S.A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction (Open Access)(2016) eLife, 5 (September2016), art. no. e15392. https://elifesciences.org/content/5/e15392-download.pdf doi: 10.7554/eLife.15392;Barrionuevo, P.A., Nicandro, N., McAnany, J.J., Zele, A.J., Gamlin, P., Cao, D. Assessing rod, cone, and melanopsin contributions to human pupil flicker responses (Open Access) (2014) Investigative Ophthalmology and Visual Science, 55 (2), pp. 719-727.http://www.iovs.org/content/55/2/719.full.pdf doi: 10.1167/iovs.13-13252;Münch, M., Léon, L., Crippa, S.V., Kawasaki, A. Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses (Open Access) (2012) Investigative Ophthalmology and Visual Science, 53 (8), pp. 4546-4555. http://www.iovs.org/content/53/8/4546.full.pdf+html doi: 10.1167/iovs.12-9494;Vural, A.D., Kara, N., Sayin, N., Pirhan, D., Ersan, H.B.A.Choroidal thickness changes after a single administration of coffee in healthy subjects (2014) Retina, 34 (6), pp. 1223-1228. http://journals.lww.com/retinajournal doi: 10.1097/IAE.0000000000000043;Bardak, H., Gunay, M., Mumcu, U., Bardak, Y. Effect of Single Administration of Coffee on Pupil Size and Ocular Wavefront Aberration Measurements in Healthy Subjects (Open Access) (2016) BioMed Research International, 2016, art. no. 9578308.http://www.hindawi.com/journals/biomed/doi: 10.1155/2016/9578308;Duarte, A.A.M., Mostarda, C., Irigoyen, M.C., Rigatto, K.A single dose of dark chocolate increases parasympathetic modulation and heart rate variability in healthy subjects (2016) Revista de Nutricao, 29 (6), pp. 765-773. http://www.scielo.br/pdf/rn/v29n6/1415-5273-rn-29-06-00765.pdf doi: 10.1590/1678-98652016000600002;Sae-Teaw, M., Johns, J., Johns, N.P., Subongkot, S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers (2013) Journal of Pineal Research, 55 (1), pp. 58-64. doi: 10.1111/jpi.12025;Mollon, J.D., Reffin, J.P. A computer-controlled colour vision test that combines the principles of Chibret and of Stilling (1989) Proc Physiol Soc., 414, p. 5. ;Regan, B.C., Reffin, J.P., Mollon, J.D. Luminance noise and the rapid determination of discrimination ellipses in colour deficiency (1994) Vision Research, 34 (10), pp. 1279-1299.doi: 10.1016/0042-6989(94)90203-8;Zeger, S.L., Liang, K.Y.Longitudinal data analysis for discrete and continuous outcomes. (1986) Biometrics, 42 (1), pp. 121-130. doi: 10.2307/2531248;Murdoch, I.E., Morris, S.S., Cousens, S.N.People and eyes: Statistical approaches in ophthalmology (Open Access) (1998) British Journal of Ophthalmology, 82 (8), pp. 971-973. http://bjo.bmj.com/doi: 10.1136/bjo.82.8.971;Pacheco-Cutillas, M., Sahraie, A., Edgar, D.F.Acquired colour vision defects in glaucoma - Their detection and clinical significance (1999) British Journal of Ophthalmology, 83 (12), pp. 1396-1402. http://bjo.bmj.com/doi: 10.1136/bjo.83.12.1396;Papaconstantinou, D., Georgalas, I., Kalantzis, G., Karmiris, E., Koutsandrea, C., Diagourtas, A., Ladas, I., (...), Georgopoulos, G.Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma (2009) Clinical Ophthalmology, 3 (1), pp. 251-257. http://www.dovepress.com/getfile.php?fileID=4580;Carle, C.F., James, A.C., Kolic, M., Essex, R.W., Maddess, T. Blue multifocal pupillographic objective perimetry in glaucoma (2015) Investigative Ophthalmology and Visual Science, 56 (11), pp. 6394-6403. http://iovs.arvojournals.org/data/Journals/IOVS/934564/i1552-5783-56-11-6394.pdf doi: 10.1167/iovs.14-16029;Lall, G.S., Revell, V.L., Momiji, H., Al Enezi, J., Altimus, C.M., Güler, A.D., Aguilar, C., (...), Lucas, R.J. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance (Open Access) (2010) Neuron, 66 (3), pp. 417-428.doi: 10.1016/j.neuron.2010.04.037;Racette, L., Sample, P.A. Short-wavelength automated perimetry (2003) Ophthalmology Clinics of North America, 16 (2), pp. 227-236. http://www.elsevier.com/inca/publications/store/6/2/3/1/6/8/index.htt doi: 10.1016/S0896-1549(03)00010-5;Castelo-Branco, M., Faria, P., Forjaz, V., Kozak, L.R., Azevedo, H. Simultaneous Comparison of Relative Damage to Chromatic Pathways in Ocular Hypertension and Glaucoma: Correlation with Clinical Measures (2004) Investigative Ophthalmology and Visual Science, 45 (2), pp. 499-505.doi: 10.1167/iovs.03-0815;Drance, S.M., Lakowski, R., Schulzer, M., Douglas, G.R. Acquired color vision changes in glaucoma: Use of 100-hue Test and Pickford Anomaloscope as Predictors of Glaucomatous Field Change (1981) Archives of Ophthalmology, 99 (5), pp. 829-831.doi: 10.1001/archopht.1981.03930010829007;Barbur, J.L., Harlow, A.J., Plant, G.T.Insights into the different exploits of colour in the visual cortex (1994) Proceedings of the Royal Society B: Biological Sciences, 258 (1353), pp. 327-334. http://rspb.royalsocietypublishing.org/ doi: 10.1098/rspb.1994.0181;Vickers, J.C., Schumer, R.A., Podos, S.M., Wang, R.F., Riederer, B.M., Morrison, J.H. Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma (1995) Brain Research, 680 (1-2), pp. 23-35. doi: 10.1016/0006-8993(95)00211-8;Ortín-Martínez, A., Salinas-Navarro, M., Nadal-Nicolás, F.M., Jiménez-López, M., Valiente-Soriano, F.J., García-Ayuso, D., Bernal-Garro, J.M., (...), Vidal-Sanz, M. Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors (Open Access) (2015) Experimental Eye Research, 132, pp. 17-33. http://www.elsevier.com/inca/publications/store/6/2/2/8/2/7/index.htt doi: 10.1016/j.exer.2015.01.006;Drasdo, N., Aldebasi, Y.H., Chiti, Z., Mortlock, K.E., Morgan, J.E., North, R.V. The S-cone PhNR and pattern ERG in primary open angle glaucoma (2001) Investigative Ophthalmology and Visual Science, 42 (6), pp. 1266-1272.ScopusColor visionIntrinsically photosensitive retinal ganglion cellPhotoreceptorsPrimary open-angle glaucomaPsychophysicsPupillary light responseInner and Outer Retinal Contributions to Pupillary Light Response: Correlation to Functional and Morphological Parameters in GlaucomaArticle in Pressinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Duque-Chica, G.L., University of Sao Paulo; Universidad de Medellín;Gracitelli, C.P.B., University of Sao Paulo;Moura, A.L.A., University of Sao Paulo; Federal University of Sao Paulo;Nagy, B.V., University of Sao Paulo; University of Technology and Economics;Vidal, K.S., University of Sao Paulo;A., Jr., Federal University of Sao Paulo;Ventura, D.F., University of Sao Paulo, Sao PauloDuque-Chica G.L.Gracitelli C.P.B.Moura A.L.A.Nagy B.V.Vidal K.S.Paranhos Paranhos A.Jr.Ventura D.F.http://purl.org/coar/access_right/c_16ec11407/4870oai:repository.udem.edu.co:11407/48702020-05-27 19:11:44.113Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co