Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center
We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/2281
- Acceso en línea:
- http://hdl.handle.net/11407/2281
- Palabra clave:
- Electric fields
Electromagnetic wave absorption
Gallium nitride
Hydraulics
Hydrostatic pressure
Light absorption
Nanocrystals
Point defects
Potential energy
Quantum optics
Quantum theory
Semiconductor quantum dots
Semiconductor quantum wells
Zinc sulfide
Cylindrical quantum dot
Dielectric susceptibility
Donor impurity state
Effective mass approximation
Nonlinear optical absorption
Nonlinear optical absorption coefficients
Nonlinear optical response
Rotating wave approximations
Nonlinear optics
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_00ed6a588cb9ac0ceac6ec5c0eb31659 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/2281 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2016-06-23T14:01:37Z2016-06-23T14:01:37Z20169214526http://hdl.handle.net/11407/228110.1016/j.physb.2015.12.038We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.engElsevierhttp://www.sciencedirect.com/science/article/pii/S0921452615303707Physica B: Condensed Matter Volume 484, 1 March 2016, Pages 73–82ScopusNonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity centerArticle in Pressinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDepartamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín, ColombiaCentro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, MexicoGrupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaHoyos J.H.Correa J.D.Mora-Ramos M.E.Duque C.A.Electric fieldsElectromagnetic wave absorptionGallium nitrideHydraulicsHydrostatic pressureLight absorptionNanocrystalsPoint defectsPotential energyQuantum opticsQuantum theorySemiconductor quantum dotsSemiconductor quantum wellsZinc sulfideCylindrical quantum dotDielectric susceptibilityDonor impurity stateEffective mass approximationNonlinear optical absorptionNonlinear optical absorption coefficientsNonlinear optical responseRotating wave approximationsNonlinear optics11407/2281oai:repository.udem.edu.co:11407/22812020-05-27 15:55:16.276Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
title |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
spellingShingle |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center Electric fields Electromagnetic wave absorption Gallium nitride Hydraulics Hydrostatic pressure Light absorption Nanocrystals Point defects Potential energy Quantum optics Quantum theory Semiconductor quantum dots Semiconductor quantum wells Zinc sulfide Cylindrical quantum dot Dielectric susceptibility Donor impurity state Effective mass approximation Nonlinear optical absorption Nonlinear optical absorption coefficients Nonlinear optical response Rotating wave approximations Nonlinear optics |
title_short |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
title_full |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
title_fullStr |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
title_full_unstemmed |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
title_sort |
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center |
dc.contributor.affiliation.spa.fl_str_mv |
Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín, Colombia Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, Mexico Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Electric fields Electromagnetic wave absorption Gallium nitride Hydraulics Hydrostatic pressure Light absorption Nanocrystals Point defects Potential energy Quantum optics Quantum theory Semiconductor quantum dots Semiconductor quantum wells Zinc sulfide Cylindrical quantum dot Dielectric susceptibility Donor impurity state Effective mass approximation Nonlinear optical absorption Nonlinear optical absorption coefficients Nonlinear optical response Rotating wave approximations Nonlinear optics |
topic |
Electric fields Electromagnetic wave absorption Gallium nitride Hydraulics Hydrostatic pressure Light absorption Nanocrystals Point defects Potential energy Quantum optics Quantum theory Semiconductor quantum dots Semiconductor quantum wells Zinc sulfide Cylindrical quantum dot Dielectric susceptibility Donor impurity state Effective mass approximation Nonlinear optical absorption Nonlinear optical absorption coefficients Nonlinear optical response Rotating wave approximations Nonlinear optics |
description |
We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-06-23T14:01:37Z |
dc.date.available.none.fl_str_mv |
2016-06-23T14:01:37Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.type.eng.fl_str_mv |
Article in Press |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9214526 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/2281 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.physb.2015.12.038 |
identifier_str_mv |
9214526 10.1016/j.physb.2015.12.038 |
url |
http://hdl.handle.net/11407/2281 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S0921452615303707 |
dc.relation.ispartofen.eng.fl_str_mv |
Physica B: Condensed Matter Volume 484, 1 March 2016, Pages 73–82 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159121767727104 |