Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants

Gráficas, tablas

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/21744
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/21744
Palabra clave:
590 - Animales::599 - Mamíferos
590 - Animales
4. Ciencias Agrícolas::4C. Ciencias Veterinarias
Platelet-rich plasma
Platelet-rich gel
Dog
Firocoxib
Carprofen
Osteoarthritis
Growth factors
Cytokines
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_fb2a2e5406fb2100a9464ba5c71af41d
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/21744
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
title Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
spellingShingle Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
590 - Animales::599 - Mamíferos
590 - Animales
4. Ciencias Agrícolas::4C. Ciencias Veterinarias
Platelet-rich plasma
Platelet-rich gel
Dog
Firocoxib
Carprofen
Osteoarthritis
Growth factors
Cytokines
title_short Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
title_full Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
title_fullStr Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
title_full_unstemmed Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
title_sort Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants
dc.contributor.none.fl_str_mv LOPEZ VILLEGAS, CATALINA
Patología Clínica Veterinaria
González Corrales, Juan Carlos
Muñoz Rodríguez, Luis Carlos
dc.subject.none.fl_str_mv 590 - Animales::599 - Mamíferos
590 - Animales
4. Ciencias Agrícolas::4C. Ciencias Veterinarias
Platelet-rich plasma
Platelet-rich gel
Dog
Firocoxib
Carprofen
Osteoarthritis
Growth factors
Cytokines
topic 590 - Animales::599 - Mamíferos
590 - Animales
4. Ciencias Agrícolas::4C. Ciencias Veterinarias
Platelet-rich plasma
Platelet-rich gel
Dog
Firocoxib
Carprofen
Osteoarthritis
Growth factors
Cytokines
description Gráficas, tablas
publishDate 2024
dc.date.none.fl_str_mv 2024-12-05T02:45:23Z
2024-12-05T02:45:23Z
2024-06-12
dc.type.none.fl_str_mv Trabajo de grado - Maestría
http://purl.org/coar/resource_type/c_6501
Text
info:eu-repo/semantics/article
info:eu-repo/semantics/masterThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/21744
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/21744
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Apostolakis, S.; Kapetanakis, S. Platelet-Rich Plasma for Degenerative Spine Disease: A Brief Overview. Spine Surg. Relat. Res. 2024, 8, 10–21. [CrossRef]
Giannotti, L.; Di Chiara Stanca, B.; Spedicato, F.; Nitti, P.; Damiano, F.; Demitri, C.; Calabriso, N.; Carluccio, M.A.; Palermo, A.; Siculella, L.; et al. Progress in Regenerative Medicine: Exploring Autologous Platelet Concentrates and Their Clinical Applications. Genes 2023, 14, 1669. [CrossRef]
Liang, W.; Zhou, C.; Bai, J.; Zhang, H.; Jiang, B.; Wang, J.; Fu, L.; Long, H.; Huang, X.; Zhao, J.; et al. Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front. Bioeng. Biotechnol. 2024, 12, 1328997. [CrossRef]
Pineda-Cortel, M.R.; Suarez, C.; Cabrera, J.T.; Daya, M.; Bernardo-Bueno, M.M.; Vergara, R.C.; Villavieja, A. Biotherapeutic Applications of Platelet-Rich Plasma in Regenerative Medicine. Tissue Eng. Regen. Med. 2023, 20, 811–828. [CrossRef]
Pretorius, J.; Habash, M.; Ghobrial, B.; Alnajjar, R.; Ellanti, P. Current Status and Advancements in Platelet-Rich Plasma Therapy. Cureus 2023, 15, e47176. [CrossRef]
Vladulescu, D.; Scurtu, L.G.; Simionescu, A.A.; Scurtu, F.; Popescu, M.I.; Simionescu, O. Platelet-Rich Plasma (PRP) in Dermatology: Cellular and Molecular Mechanisms of Action. Biomedicines 2023, 12, 7. [CrossRef]
Zhu, L.; Li, P.; Qin, Y.; Xiao, B.; Li, J.; Xu, W.; Yu, B. Platelet-rich plasma in orthopedics: Bridging innovation and clinical applications for bone repair. J. Orthop. Surg. 2024, 32, 10225536231224952. [CrossRef]
Martínez, C.E.; Smith, P.C.; Palma Alvarado, V.A. The influence of platelet-derived products on angiogenesis and tissue repair: A concise update. Front. Physiol. 2015, 6, 290. [CrossRef]
Schär, M.O.; Diaz-Romero, J.; Kohl, S.; Zumstein, M.A.; Nesic, D. Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clin. Orthop. Relat. Res. 2015, 473, 1635–1643. [CrossRef]
Herber, A.; Covarrubias, O.; Daher, M.; Tung, W.S.; Gianakos, A.L. Platelet rich plasma therapy versus other modalities for treatment of plantar fasciitis: A systematic review and meta-analysis. Foot Ankle Surg. 2024, 30, 285–293. [CrossRef]
Tao, X.; Aw, A.A.L.; Leeu, J.J.; Bin Abd Razak, H.R. Three Doses of Platelet-Rich Plasma Therapy Are More Effective Than One Dose of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-analysis. Arthroscopy 2023, 39, 2568–2576.e2562. [CrossRef]
Xu, Y.; Li, T.; Wang, L.; Yao, L.; Li, J.; Tang, X. Platelet-Rich Plasma Has Better Results for Long-term Functional Improvement and Pain Relief for Lateral Epicondylitis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2024, 2024, 3635465231213087. [CrossRef]
Carr, B.J.; Miller, A.V.; Colbath, A.C.; Peralta, S.; Frye, C.W. Literature review details and supports the application of platelet-rich plasma products in canine medicine, particularly as an orthobiologic agent for osteoarthritis. J. Am. Vet. Med. Assoc. 2024, 262, 1–8. [CrossRef]
Gines, J.A. Effect of Leukoreduced Platelet Rich Plasma on Intra-Articular Pro-Inflammatory Cytokines in a Canine Pilot Study. Animals 2022, 12, 2163. [CrossRef]
. Kaneps, A.J. A one-health perspective: Use of hemoderivative regenerative therapies in canine and equine patients. J. Am. Vet. Med. Assoc. 2023, 261, 301–308. [CrossRef]
Peng, C.; Yang, L.; Labens, R.; Gao, Y.; Zhu, Y.; Li, J. A systematic review and meta-analysis of the efficacy of platelet-rich plasma products for treatment of equine joint disease. Equine Vet. J. 2024; early view. [CrossRef]
Pérez Fraile, A.; González-Cubero, E.; Martínez-Flórez, S.; Olivera, E.R.; Villar-Suárez, V. Regenerative Medicine Applied to Musculoskeletal Diseases in Equines: A Systematic Review. Vet. Sci. 2023, 10, 666. [CrossRef]
Jayaram, P.; Yeh, P.; Patel, S.J.; Cela, R.; Shybut, T.B.; Grol, M.W.; Lee, B.H. Effects of Aspirin on Growth Factor Release From Freshly Isolated Leukocyte-Rich Platelet-Rich Plasma in Healthy Men: A Prospective Fixed-Sequence Controlled Laboratory Study. Am. J. Sports Med. 2019, 47, 1223–1229. [CrossRef]
Mannava, S.; Whitney, K.E.; Kennedy, M.I.; King, J.; Dornan, G.J.; Klett, K.; Chahla, J.; Evans, T.A.; Huard, J.; La Prade, R.F. The Influence of Naproxen on Biological Factors in Leukocyte-Rich Platelet-Rich Plasma: A Prospective Comparative Study. Arthroscopy 2019, 35, 201–210. [CrossRef]
Brown, K.A.; Gregorio, E.N.; Barot, D.; Usimaki, A.; Linardi, R.L.; Missanelli, J.R.; You, Y.; Robinson, M.A.; Ortved, K.F. Single-dose nonsteroidal anti-inflammatory drugs in horses have no impact on concentrations of cytokines or growth factors in autologous protein solution and platelet-rich plasma. Am. J. Vet. Res. 2024, 85, 1–9. [CrossRef]
Meeson, R.L.; Todhunter, R.J.; Blunn, G.; Nuki, G.; Pitsillides, A.A. Spontaneous dog osteoarthritis—A One Medicine vision. Nat. Rev. Rheumatol. 2019, 15, 273–287. [CrossRef]
McCoy, A.M. Animal Models of Osteoarthritis: Comparisons and Key Considerations. Vet. Pathol. 2015, 52, 803–818. [CrossRef] [PubMed]
Baranowski, D.C.; Buchanan, B.; Dwyer, H.C.; Gabriele, J.P.; Kelly, S.; Araujo, J.A. Penetration and efficacy of transdermal NSAIDs in a model of acute joint inflammation. J. Pain Res. 2018, 11, 2809–2819. [CrossRef] [PubMed]
Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [CrossRef] [PubMed]
Dohan Ehrenfest, D.M.; Andia, I.; Zumstein, M.A.; Zhang, C.Q.; Pinto, N.R.; Bielecki, T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 2014, 4, 3–9. [CrossRef] [PubMed]
Zimmermann, R.; Arnold, D.; Strasser, E.; Ringwald, J.; Schlegel, A.; Wiltfang, J.; Eckstein, R. Sample preparation technique and white cell content influence the detectable levels of growth factors in platelet concentrates. Vox Sang. 2003, 85, 283–289. [CrossRef] [PubMed]
Tambella, A.M.; Martin, S.; Cantalamessa, A.; Serri, E.; Attili, A.R. Platelet-rich Plasma and Other Hemocomponents in Veterinary Regenerative Medicine. Wounds 2018, 30, 329–336. [PubMed]
Marx, R.E. Platelet-rich plasma (PRP): What is PRP and what is not PRP? Implant. Dent. 2001, 10, 225–228. [CrossRef] [PubMed]
Carmona, J.U.; López, C.; Ceballos-Márquez, A. Temporal Release and Denature of Several Mediators in Pure Platelet-Rich Plasma and Temperature-Induced Platelet Lysates Derived from a Similar Bovine Platelet Concentrate. Vet. Med. Int. 2022, 2022, 2609508. [CrossRef] [PubMed]
Cecerska-Hery´c, E.; Goszka, M.; Gli´zniewicz, M.; Grygorcewicz, B.; Serwin, N.; Stodolak, P.; Słodzi ´nska, W.; Birger, R.; Polikowska, A.; Budkowska, M.; et al. The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets. Int. J. Mol. Sci. 2024, 25, 3644. [CrossRef]
Warin, R.; Vongchan, P.; Suriyasathaporn, W.; Boripun, R. In Vitro Assessment of Lyophilized Advanced Platelet-Rich Fibrin from Dogs in Promotion of Growth Factor Release and Wound Healing. Vet. Sci. 2022, 9, 566. [CrossRef]
Lai, F.; Dai, S.; Zhao, Y.; Sun, Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023, 54, 1451–1461. [CrossRef] [PubMed]
Gumede, D.B.; Abrahamse, H.; Houreld, N.N. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun. Signal. 2024, 22, 244. [CrossRef] [PubMed]
Kang, X.; Qian, M.; Qin, T.; Liu, M.; Xu, H.; Xu, B. Increased Expression of Inflammatory Cytokines and Discogenic Neck Pain. Orthop. Surg. 2024, 16, 227–233. [CrossRef] [PubMed]
Smith, E.J.; Beaumont, R.E.; McClellan, A.; Sze, C.; Palomino Lago, E.; Hazelgrove, L.; Dudhia, J.; Smith, R.K.W.; Guest, D.J. Tumour necrosis factor alpha, interleukin 1 beta and interferon gamma have detrimental effects on equine tenocytes that cannot be rescued by IL-1RA or mesenchymal stromal cell-derived factors. Cell Tissue Res. 2023, 391, 523–544. [CrossRef] [PubMed]
. Zhang, J.; Li, K.; Qiu, X. Exploring causal correlations between inflammatory cytokines and knee osteoarthritis: A two-sample Mendelian randomization. Front. Immunol. 2024, 15, 1362012. [CrossRef] [PubMed]
Hazewinkel, H.A.; van den Brom, W.E.; Theyse, L.F.; Pollmeier, M.; Hanson, P.D. Comparison of the effects of firocoxib, carprofen and vedaprofen in a sodium urate crystal induced synovitis model of arthritis in dogs. Res. Vet. Sci. 2008, 84, 74–79. [CrossRef] [PubMed]
Pollmeier, M.; Toulemonde, C.; Fleishman, C.; Hanson, P.D. Clinical evaluation of firocoxib and carprofen for the treatment of dogs with osteoarthritis. Vet. Rec. 2006, 159, 547–551. [CrossRef] [PubMed]
Macpherson, M.L.; Giguère, S.; Pozor, M.A.; Burden, C.A.; Berghaus, L.J.; Berghaus, R.D.; Varner, J.C.; Hayna, J.T.; Benson, S.M.; Randell, S.A.; et al. Evidence for anti-inflammatory effects of firocoxib administered to mares with experimentally induced placentitis. Am. J. Reprod. Immunol. 2021, 86, e13396. [CrossRef] [PubMed]
Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [CrossRef]
Gallego, M.; López, C.; Carmona, J.U. Evaluation of the Pro-, Anti-Inflammatory, and Anabolic Effects of Autologous Platelet-Rich Gel Supernatants in an in vitro Coculture System of Canine Osteoarthritis. Vet. Med. Int. 2022, 2022, 3377680. [CrossRef]
Okumo, T.; Sato, A.; Izukashi, K.; Ohta, M.; Oike, J.; Yagura, S.; Okuma, N.; Koya, T.; Sunagawa, M.; Kanzaki, K. Multifactorial Comparative Analysis of Platelet-Rich Plasma and Serum Prepared Using a Commercially Available Centrifugation Kit. Cureus 2023, 15, e48918. [CrossRef] [PubMed]
Heiser, A.; McCarthy, A.; Wedlock, N.; Meier, S.; Kay, J.; Walker, C.; Crookenden, M.A.; Mitchell, M.D.; Morgan, S.; Watkins, K.; et al. Grazing dairy cows had decreased interferon-γ, tumor necrosis factor, and interleukin-17, and increased expression of interleukin-10 during the first week after calving. J. Dairy Sci. 2015, 98, 937–946. [CrossRef] [PubMed]
Silva, R.F.; Carmona, J.U.; Rezende, C.M. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates. BMC Vet. Res. 2012, 8, 121. [CrossRef] [PubMed]
Manning, A.M.; Auchampach, J.A.; Drong, R.F.; Slightom, J.L. Cloning of a canine cDNA homologous to the human transforming growth factor-beta 1-encoding gene. Gene 1995, 155, 307–308. [CrossRef] [PubMed]
Moreira, M.L.; Dorneles, E.M.; Soares, R.P.; Magalhães, C.P.; Costa-Pereira, C.; Lage, A.P.; Teixeira-Carvalho, A.; MartinsFilho, O.A.; Araújo, M.S. Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: Establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. Acta Vet. Scand. 2015, 57, 51. [CrossRef] [PubMed]
Giraldo, C.E.; Álvarez, M.E.; Carmona, J.U. Influence of calcium salts and bovine thrombin on growth factor release from equine platelet-rich gel supernatants. Vet. Comp. Orthop. Traumatol. 2017, 30, 1–7. [CrossRef]
Textor, J.A.; Willits, N.H.; Tablin, F. Synovial fluid growth factor and cytokine concentrations after intra-articular injection of a platelet-rich product in horses. Vet. J. 2013, 198, 217–223. [CrossRef]
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 13 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Gels
Universidad de Caldas
Facultad de Ciencias Agropecuarias
Suiza
Maestría en Ciencias Veterinarias
publisher.none.fl_str_mv Gels
Universidad de Caldas
Facultad de Ciencias Agropecuarias
Suiza
Maestría en Ciencias Veterinarias
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145059417817088
spelling Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants590 - Animales::599 - Mamíferos590 - Animales4. Ciencias Agrícolas::4C. Ciencias VeterinariasPlatelet-rich plasmaPlatelet-rich gelDogFirocoxibCarprofenOsteoarthritisGrowth factorsCytokinesGráficas, tablasBackground: There is a lack of knowledge about how a single dose of COX-2 selective non-steroidal anti-inflammatory drugs (NSAIDs) might affect the release of growth factors (GFs) and cytokines from canine platelet-rich gels (PRGs) and other hemocomponents. (2) Methods: A crossover study was conducted in six adult mongrel dogs. Animals were randomized to receive a single dose of either carprofen or firocoxib. PRG, temperature-induced platelet lysate (TIPL), chemically induced PL (CIPL), and plasma hemocomponents were obtained from each dog before (1 h) and after (6 h) the treatments. Platelet and leukocyte counts and determination of the concentrations of platelet derived growth factor-BB, (PDGF-BB), transforming growth factor beta-1 (TGF-β1), interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and IL-10 concentrations were assayed by ELISA in all hemocomponents. (3) Results: Both platelet and leukocyte counts and PDGF-BB concentrations were not affected by NSAIDs and time. Total TGF-β1 concentrations were not affected by NSAIDs; however, the release of this GF was increased in PRG supernatants (PRGS) at 6 h. IL-1β and TNF α concentrations were significantly (p < 0.001) lower in both firocoxib PRGS and plasma at 6 h, respectively. IL-10 concentrations were significantly (p < 0.001) lower at 6 h in all hemocomponents treated with both NSAIDs. (4) Conclusions: The clinical implications of our findings could indicate that these drugs should be withdrawn from patients to allow their clearance before the clinical use of PRP/PRG. On the other hand, the prophylactic use of NSAIDs to avoid the inflammatory reactions that some patients might have after PRP/PRG treatment should be performed only in those animals with severe reactive inflammation to the treatment.Antecedentes: Existe una falta de conocimiento sobre cómo una única dosis de medicamentos antiinflamatorios no esteroideos (AINEs) selectivos para COX-2 podría afectar la liberación de factores de crecimiento (FC) y citoquinas de los geles ricos en plaquetas caninas (PRG) y otros hemocomponentes. Metodología: Se realizó un estudio cruzado en seis perros mestizos adultos. Los animales fueron aleatorizados para recibir una única dosis de carprofeno o firocoxib. Se obtuvieron hemocomponentes de geles ricos en plaquetas (PRG), lisado de plaquetas inducido por temperatura (TIPL), lisado de plaquetas inducido químicamente (CIPL) y plasma de cada perro antes (1 h) y después (6 h) de los tratamientos. Se realizaron recuentos de plaquetas y leucocitos y se determinaron las concentraciones de factor de crecimiento derivado de plaquetas-BB (PDGF-BB), factor de crecimiento transformante beta-1 (TGF-β1), interleucina 1 beta (IL-1β), factor de necrosis tumoral alfa (TNF-α) y IL-10 mediante ELISA en todos los hemocomponentes. Resultados: Tanto los recuentos de plaquetas y leucocitos como las concentraciones de PDGF-BB no fueron afectados por los AINEs ni por el tiempo. Las concentraciones totales de TGF-β1 no fueron afectadas por los AINEs; sin embargo, la liberación de este FC aumentó en los sobrenadantes de PRG (PRGS) a las 6 h. Las concentraciones de IL-1β y TNF-α fueron significativamente (p < 0.001) más bajas en PRGS y plasma tratados con firocoxib a las 6 h, respectivamente. Las concentraciones de IL-10 fueron significativamente (p < 0.001) más bajas a las 6 h en todos los hemocomponentes tratados con ambos AINEs. Conclusiones: Las implicaciones clínicas de nuestros hallazgos podrían indicar que estos medicamentos deben retirarse de los pacientes para permitir su eliminación antes del uso clínico de PRP/PRG. Por otro lado, el uso profiláctico de AINEs para evitar las reacciones inflamatorias que algunos pacientes podrían tener después del tratamiento con PRP/PRG debería realizarse solo en aquellos animales con inflamación reactiva severa al tratamiento.Introduction / Results and Discussion / Platelet and Leukocyte Concentrations in Whole Blood and Hemocomponents / Growth Factor Release from Hemocomponents / Cytokine Release from Hemocomponents / ConclusionsMaestríaMagister en Ciencias VeterinariasGelsUniversidad de CaldasFacultad de Ciencias AgropecuariasSuizaMaestría en Ciencias VeterinariasLOPEZ VILLEGAS, CATALINAPatología Clínica VeterinariaGonzález Corrales, Juan CarlosMuñoz Rodríguez, Luis CarlosOspina, JulianCarmona, Jorge U.LOPEZ VILLEGAS, CATALINA2024-12-05T02:45:23Z2024-12-05T02:45:23Z2024-06-12Trabajo de grado - Maestríahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/masterThesishttp://purl.org/coar/resource_type/c_2df8fbb113 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/21744Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.coengApostolakis, S.; Kapetanakis, S. Platelet-Rich Plasma for Degenerative Spine Disease: A Brief Overview. Spine Surg. Relat. Res. 2024, 8, 10–21. [CrossRef]Giannotti, L.; Di Chiara Stanca, B.; Spedicato, F.; Nitti, P.; Damiano, F.; Demitri, C.; Calabriso, N.; Carluccio, M.A.; Palermo, A.; Siculella, L.; et al. Progress in Regenerative Medicine: Exploring Autologous Platelet Concentrates and Their Clinical Applications. Genes 2023, 14, 1669. [CrossRef]Liang, W.; Zhou, C.; Bai, J.; Zhang, H.; Jiang, B.; Wang, J.; Fu, L.; Long, H.; Huang, X.; Zhao, J.; et al. Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front. Bioeng. Biotechnol. 2024, 12, 1328997. [CrossRef]Pineda-Cortel, M.R.; Suarez, C.; Cabrera, J.T.; Daya, M.; Bernardo-Bueno, M.M.; Vergara, R.C.; Villavieja, A. Biotherapeutic Applications of Platelet-Rich Plasma in Regenerative Medicine. Tissue Eng. Regen. Med. 2023, 20, 811–828. [CrossRef]Pretorius, J.; Habash, M.; Ghobrial, B.; Alnajjar, R.; Ellanti, P. Current Status and Advancements in Platelet-Rich Plasma Therapy. Cureus 2023, 15, e47176. [CrossRef]Vladulescu, D.; Scurtu, L.G.; Simionescu, A.A.; Scurtu, F.; Popescu, M.I.; Simionescu, O. Platelet-Rich Plasma (PRP) in Dermatology: Cellular and Molecular Mechanisms of Action. Biomedicines 2023, 12, 7. [CrossRef]Zhu, L.; Li, P.; Qin, Y.; Xiao, B.; Li, J.; Xu, W.; Yu, B. Platelet-rich plasma in orthopedics: Bridging innovation and clinical applications for bone repair. J. Orthop. Surg. 2024, 32, 10225536231224952. [CrossRef]Martínez, C.E.; Smith, P.C.; Palma Alvarado, V.A. The influence of platelet-derived products on angiogenesis and tissue repair: A concise update. Front. Physiol. 2015, 6, 290. [CrossRef]Schär, M.O.; Diaz-Romero, J.; Kohl, S.; Zumstein, M.A.; Nesic, D. Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clin. Orthop. Relat. Res. 2015, 473, 1635–1643. [CrossRef]Herber, A.; Covarrubias, O.; Daher, M.; Tung, W.S.; Gianakos, A.L. Platelet rich plasma therapy versus other modalities for treatment of plantar fasciitis: A systematic review and meta-analysis. Foot Ankle Surg. 2024, 30, 285–293. [CrossRef]Tao, X.; Aw, A.A.L.; Leeu, J.J.; Bin Abd Razak, H.R. Three Doses of Platelet-Rich Plasma Therapy Are More Effective Than One Dose of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-analysis. Arthroscopy 2023, 39, 2568–2576.e2562. [CrossRef]Xu, Y.; Li, T.; Wang, L.; Yao, L.; Li, J.; Tang, X. Platelet-Rich Plasma Has Better Results for Long-term Functional Improvement and Pain Relief for Lateral Epicondylitis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2024, 2024, 3635465231213087. [CrossRef]Carr, B.J.; Miller, A.V.; Colbath, A.C.; Peralta, S.; Frye, C.W. Literature review details and supports the application of platelet-rich plasma products in canine medicine, particularly as an orthobiologic agent for osteoarthritis. J. Am. Vet. Med. Assoc. 2024, 262, 1–8. [CrossRef]Gines, J.A. Effect of Leukoreduced Platelet Rich Plasma on Intra-Articular Pro-Inflammatory Cytokines in a Canine Pilot Study. Animals 2022, 12, 2163. [CrossRef]. Kaneps, A.J. A one-health perspective: Use of hemoderivative regenerative therapies in canine and equine patients. J. Am. Vet. Med. Assoc. 2023, 261, 301–308. [CrossRef]Peng, C.; Yang, L.; Labens, R.; Gao, Y.; Zhu, Y.; Li, J. A systematic review and meta-analysis of the efficacy of platelet-rich plasma products for treatment of equine joint disease. Equine Vet. J. 2024; early view. [CrossRef]Pérez Fraile, A.; González-Cubero, E.; Martínez-Flórez, S.; Olivera, E.R.; Villar-Suárez, V. Regenerative Medicine Applied to Musculoskeletal Diseases in Equines: A Systematic Review. Vet. Sci. 2023, 10, 666. [CrossRef]Jayaram, P.; Yeh, P.; Patel, S.J.; Cela, R.; Shybut, T.B.; Grol, M.W.; Lee, B.H. Effects of Aspirin on Growth Factor Release From Freshly Isolated Leukocyte-Rich Platelet-Rich Plasma in Healthy Men: A Prospective Fixed-Sequence Controlled Laboratory Study. Am. J. Sports Med. 2019, 47, 1223–1229. [CrossRef]Mannava, S.; Whitney, K.E.; Kennedy, M.I.; King, J.; Dornan, G.J.; Klett, K.; Chahla, J.; Evans, T.A.; Huard, J.; La Prade, R.F. The Influence of Naproxen on Biological Factors in Leukocyte-Rich Platelet-Rich Plasma: A Prospective Comparative Study. Arthroscopy 2019, 35, 201–210. [CrossRef]Brown, K.A.; Gregorio, E.N.; Barot, D.; Usimaki, A.; Linardi, R.L.; Missanelli, J.R.; You, Y.; Robinson, M.A.; Ortved, K.F. Single-dose nonsteroidal anti-inflammatory drugs in horses have no impact on concentrations of cytokines or growth factors in autologous protein solution and platelet-rich plasma. Am. J. Vet. Res. 2024, 85, 1–9. [CrossRef]Meeson, R.L.; Todhunter, R.J.; Blunn, G.; Nuki, G.; Pitsillides, A.A. Spontaneous dog osteoarthritis—A One Medicine vision. Nat. Rev. Rheumatol. 2019, 15, 273–287. [CrossRef]McCoy, A.M. Animal Models of Osteoarthritis: Comparisons and Key Considerations. Vet. Pathol. 2015, 52, 803–818. [CrossRef] [PubMed]Baranowski, D.C.; Buchanan, B.; Dwyer, H.C.; Gabriele, J.P.; Kelly, S.; Araujo, J.A. Penetration and efficacy of transdermal NSAIDs in a model of acute joint inflammation. J. Pain Res. 2018, 11, 2809–2819. [CrossRef] [PubMed]Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [CrossRef] [PubMed]Dohan Ehrenfest, D.M.; Andia, I.; Zumstein, M.A.; Zhang, C.Q.; Pinto, N.R.; Bielecki, T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 2014, 4, 3–9. [CrossRef] [PubMed]Zimmermann, R.; Arnold, D.; Strasser, E.; Ringwald, J.; Schlegel, A.; Wiltfang, J.; Eckstein, R. Sample preparation technique and white cell content influence the detectable levels of growth factors in platelet concentrates. Vox Sang. 2003, 85, 283–289. [CrossRef] [PubMed]Tambella, A.M.; Martin, S.; Cantalamessa, A.; Serri, E.; Attili, A.R. Platelet-rich Plasma and Other Hemocomponents in Veterinary Regenerative Medicine. Wounds 2018, 30, 329–336. [PubMed]Marx, R.E. Platelet-rich plasma (PRP): What is PRP and what is not PRP? Implant. Dent. 2001, 10, 225–228. [CrossRef] [PubMed]Carmona, J.U.; López, C.; Ceballos-Márquez, A. Temporal Release and Denature of Several Mediators in Pure Platelet-Rich Plasma and Temperature-Induced Platelet Lysates Derived from a Similar Bovine Platelet Concentrate. Vet. Med. Int. 2022, 2022, 2609508. [CrossRef] [PubMed]Cecerska-Hery´c, E.; Goszka, M.; Gli´zniewicz, M.; Grygorcewicz, B.; Serwin, N.; Stodolak, P.; Słodzi ´nska, W.; Birger, R.; Polikowska, A.; Budkowska, M.; et al. The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets. Int. J. Mol. Sci. 2024, 25, 3644. [CrossRef]Warin, R.; Vongchan, P.; Suriyasathaporn, W.; Boripun, R. In Vitro Assessment of Lyophilized Advanced Platelet-Rich Fibrin from Dogs in Promotion of Growth Factor Release and Wound Healing. Vet. Sci. 2022, 9, 566. [CrossRef]Lai, F.; Dai, S.; Zhao, Y.; Sun, Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023, 54, 1451–1461. [CrossRef] [PubMed]Gumede, D.B.; Abrahamse, H.; Houreld, N.N. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun. Signal. 2024, 22, 244. [CrossRef] [PubMed]Kang, X.; Qian, M.; Qin, T.; Liu, M.; Xu, H.; Xu, B. Increased Expression of Inflammatory Cytokines and Discogenic Neck Pain. Orthop. Surg. 2024, 16, 227–233. [CrossRef] [PubMed]Smith, E.J.; Beaumont, R.E.; McClellan, A.; Sze, C.; Palomino Lago, E.; Hazelgrove, L.; Dudhia, J.; Smith, R.K.W.; Guest, D.J. Tumour necrosis factor alpha, interleukin 1 beta and interferon gamma have detrimental effects on equine tenocytes that cannot be rescued by IL-1RA or mesenchymal stromal cell-derived factors. Cell Tissue Res. 2023, 391, 523–544. [CrossRef] [PubMed]. Zhang, J.; Li, K.; Qiu, X. Exploring causal correlations between inflammatory cytokines and knee osteoarthritis: A two-sample Mendelian randomization. Front. Immunol. 2024, 15, 1362012. [CrossRef] [PubMed]Hazewinkel, H.A.; van den Brom, W.E.; Theyse, L.F.; Pollmeier, M.; Hanson, P.D. Comparison of the effects of firocoxib, carprofen and vedaprofen in a sodium urate crystal induced synovitis model of arthritis in dogs. Res. Vet. Sci. 2008, 84, 74–79. [CrossRef] [PubMed]Pollmeier, M.; Toulemonde, C.; Fleishman, C.; Hanson, P.D. Clinical evaluation of firocoxib and carprofen for the treatment of dogs with osteoarthritis. Vet. Rec. 2006, 159, 547–551. [CrossRef] [PubMed]Macpherson, M.L.; Giguère, S.; Pozor, M.A.; Burden, C.A.; Berghaus, L.J.; Berghaus, R.D.; Varner, J.C.; Hayna, J.T.; Benson, S.M.; Randell, S.A.; et al. Evidence for anti-inflammatory effects of firocoxib administered to mares with experimentally induced placentitis. Am. J. Reprod. Immunol. 2021, 86, e13396. [CrossRef] [PubMed]Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [CrossRef]Gallego, M.; López, C.; Carmona, J.U. Evaluation of the Pro-, Anti-Inflammatory, and Anabolic Effects of Autologous Platelet-Rich Gel Supernatants in an in vitro Coculture System of Canine Osteoarthritis. Vet. Med. Int. 2022, 2022, 3377680. [CrossRef]Okumo, T.; Sato, A.; Izukashi, K.; Ohta, M.; Oike, J.; Yagura, S.; Okuma, N.; Koya, T.; Sunagawa, M.; Kanzaki, K. Multifactorial Comparative Analysis of Platelet-Rich Plasma and Serum Prepared Using a Commercially Available Centrifugation Kit. Cureus 2023, 15, e48918. [CrossRef] [PubMed]Heiser, A.; McCarthy, A.; Wedlock, N.; Meier, S.; Kay, J.; Walker, C.; Crookenden, M.A.; Mitchell, M.D.; Morgan, S.; Watkins, K.; et al. Grazing dairy cows had decreased interferon-γ, tumor necrosis factor, and interleukin-17, and increased expression of interleukin-10 during the first week after calving. J. Dairy Sci. 2015, 98, 937–946. [CrossRef] [PubMed]Silva, R.F.; Carmona, J.U.; Rezende, C.M. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates. BMC Vet. Res. 2012, 8, 121. [CrossRef] [PubMed]Manning, A.M.; Auchampach, J.A.; Drong, R.F.; Slightom, J.L. Cloning of a canine cDNA homologous to the human transforming growth factor-beta 1-encoding gene. Gene 1995, 155, 307–308. [CrossRef] [PubMed]Moreira, M.L.; Dorneles, E.M.; Soares, R.P.; Magalhães, C.P.; Costa-Pereira, C.; Lage, A.P.; Teixeira-Carvalho, A.; MartinsFilho, O.A.; Araújo, M.S. Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: Establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. Acta Vet. Scand. 2015, 57, 51. [CrossRef] [PubMed]Giraldo, C.E.; Álvarez, M.E.; Carmona, J.U. Influence of calcium salts and bovine thrombin on growth factor release from equine platelet-rich gel supernatants. Vet. Comp. Orthop. Traumatol. 2017, 30, 1–7. [CrossRef]Textor, J.A.; Willits, N.H.; Tablin, F. Synovial fluid growth factor and cytokine concentrations after intra-articular injection of a platelet-rich product in horses. Vet. J. 2013, 198, 217–223. [CrossRef]https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/217442024-12-05T08:01:08Z