Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia

Mapas, gráficas, tablas

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/22324
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/22324
Palabra clave:
580 - Plantas
570 - Biología
1. Ciencias Naturales::1F. Ciencias biológicas::1F10. Botánica y ciencias de las plantas
1. Ciencias Naturales::1F. Ciencias biológicas
Perturbaciones antropogénicas
Páramo
Ganadería
Plantas invasoras
Anthropogenic disturbances
Paramo
Livestock
Invasive plants
Plantas
Ecosistema
Suelo
Biología
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_b98653087adcb8b381468aeea965776b
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/22324
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
title Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
spellingShingle Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
580 - Plantas
570 - Biología
1. Ciencias Naturales::1F. Ciencias biológicas::1F10. Botánica y ciencias de las plantas
1. Ciencias Naturales::1F. Ciencias biológicas
Perturbaciones antropogénicas
Páramo
Ganadería
Plantas invasoras
Anthropogenic disturbances
Paramo
Livestock
Invasive plants
Plantas
Ecosistema
Suelo
Biología
title_short Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
title_full Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
title_fullStr Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
title_full_unstemmed Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
title_sort Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia
dc.contributor.none.fl_str_mv Aguirre Acosta, Natalia
Feuillet Hurtado, Carolina
BIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)
dc.subject.none.fl_str_mv 580 - Plantas
570 - Biología
1. Ciencias Naturales::1F. Ciencias biológicas::1F10. Botánica y ciencias de las plantas
1. Ciencias Naturales::1F. Ciencias biológicas
Perturbaciones antropogénicas
Páramo
Ganadería
Plantas invasoras
Anthropogenic disturbances
Paramo
Livestock
Invasive plants
Plantas
Ecosistema
Suelo
Biología
topic 580 - Plantas
570 - Biología
1. Ciencias Naturales::1F. Ciencias biológicas::1F10. Botánica y ciencias de las plantas
1. Ciencias Naturales::1F. Ciencias biológicas
Perturbaciones antropogénicas
Páramo
Ganadería
Plantas invasoras
Anthropogenic disturbances
Paramo
Livestock
Invasive plants
Plantas
Ecosistema
Suelo
Biología
description Mapas, gráficas, tablas
publishDate 2025
dc.date.none.fl_str_mv 2025-06-06T02:33:13Z
2025-06-06T02:33:13Z
2025-06-05
2027-12-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/22324
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/22324
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Anzoategui, L. V., Gil-Leguizamón, P. A., & Sanabria-Marin, R. (2023). Frontera agrícola y multitemporalidad de cobertura vegetal en Páramo del Parque Regional Natural Cortadera (Boyacá, Colombia). Bosque (Valdivia), 44(1), 159-170. https://doi.org/10.4067/s0717-92002023000100159
Baselga, A. (2009). Partitioning the turnover and nestedness components of beta diversity. Global Ecology And Biogeography, 19(1), 134-143. https://doi.org/10.1111/j.1466- 8238.2009.00490.x
Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Martinez-Santalla S, Martin Devasa R, Gomez-Rodriguez C, Crujeiras R (2023). _betapart: Partitioning Beta Diversity into Turnover and Nestedness Components_. R package version 1.6, <https://CRAN.R-project.org/package=betapart>.
Beugnon, R., Guyader, N. L., Milcu, A., Lenoir, J., Puissant, J., Morin, X., & Hättenschwiler, S. (2024). Microclimate modulation: An overlooked mechanism influencing the impact of plant diversity on ecosystem functioning. Global Change Biology, 30(3). https://doi.org/10.1111/gcb.17214
Bidoglio, G. A., Schwarzmueller, F., & Kastner, T. (2024). A global multi-indicator assessment of the environmental impact of livestock products. Global Environmental Change, 87, 102853. https://doi.org/10.1016/j.gloenvcha.2024.102853
Braun-Blanquet, J. (1950). Sociología vegetal : estudio de las comunidades vegetales. Acme Agency.
Brück, S. A., Torres, B. D. M., & De Lourdes Teixeira de Moraes Polizeli, M. (2023). The Ecuadorian paramo in danger: What we know and what might be learned from northern wetlands. Global Ecology And Conservation, 47, e02639. https://doi.org/10.1016/j.gecco.2023.e02639
Cadotte, M. W., Campbell, S. E., Li, S., Sodhi, D. S., & Mandrak, N. E. (2018). Preadaptation and Naturalization of Nonnative Species: Darwin’s Two Fundamental Insights into Species Invasion. Annual Review Of Plant Biology, 69(1), 661-684. https://doi.org/10.1146/annurev-arplant-042817-040339
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67.
Chillo, V., Ojeda, R. A., Capmourteres, V., & Anand, M. (2016). Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. Journal Of Applied Ecology, 54(3), 986-996. https://doi.org/10.1111/1365-2664.12775
Cordeiro AAC, Klanderud K, Villa PM, Neri AV (2023) Patterns of species richness and beta diversity of vascular plants along elevation gradient in Brazilian páramo. Journal of Mountain Science 20(7). https://doi.org/10.1007/s11629-022 7480-9
Cultid-Medina, Carlos & Escobar, Federico. (2019). Pautas para la estimación y comparación estadística de la diversidad biológica (qD).
Dainese, M., Lepš, J., & De Bello, F. (2014). Different effects of elevation, habitat fragmentation and grazing management on the functional, phylogenetic and taxonomic structure of mountain grasslands. Perspectives In Plant Ecology Evolution And Systematics, 17(1), 44-53. https://doi.org/10.1016/j.ppees.2014.09.002
De Villalobos, A. E., & Long, M. A. (2024). Grasslands Response to Livestock Grazing Intensity in the Austral Pampas (Argentina): Testing the Intermediate Disturbance Hypothesis. Phyton, 93(8), 2037-2050. https://doi.org/10.32604/phyton.2024.053928
Dietrich, P., Ebeling, A., Meyer, S. T., Asato, A. E. B., Bröcher, M., Gleixner, G., Huang, Y., Roscher, C., Schmid, B., Vogel, A., & Eisenhauer, N. (2024). Plant diversity and community age stabilize ecosystem multifunctionality. Global Change Biology, 30(3). https://doi.org/10.1111/gcb.17225
Duchicela, S. A., Llambí, L. D., Bonnesoeur, V., & Román‐Dañobeytia, F. (2024). Pastoralism in the high tropical Andes: A review of the effect of grazing intensity on plant diversity and ecosystem services. Applied Vegetation Science, 27(3). https://doi.org/10.1111/avsc.12791
Franco, A. L., Sobral, B. W., Silva, A. L., & Wall, D. H. (2018). Amazonian deforestation and soil biodiversity. Conservation Biology, 33(3), 590-600. https://doi.org/10.1111/cobi.13234
Fuentes‐Lillo, E., Lembrechts, J. J., Barros, A., Aschero, V., Bustamante, R. O., Cavieres, L. A., Clavel, J., Herrera, I., Jiménez, A., Tecco, P. A., Hulme, P. E., Núñez, M. A., Rozzi, R., Garcı́A, R., Simberloff, D., Nijs, I., & Pauchard, A. (2023). Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients. Biodiversity And Conservation, 32(13), 4199-4219. https://doi.org/10.1007/s10531-023-02697-6
Gradstein, S. R. (2021). The Liverworts and Hornworts of Colombia and Ecuador. En Springer eBooks. https://doi.org/10.1007/978-3-030-49450-6
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J. A., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378- 381. https://doi.org/10.1038/nature10425
Gioria, M., Hulme, P. E., Richardson, D. M., & Pyšek, P. (2023). Why are invasive plants successful? Annual Review Of Plant Biology, 74(1), 635-670. https://doi.org/10.1146/annurev-arplant-070522-071021
Hald-Mortensen, C. (2023). The Main Drivers of Biodiversity Loss: A Brief Overview. Journal Of Ecology & Natural Resources, 7(3). https://doi.org/10.23880/jenr-16000346
Heinrichs, S., Pauchard, A., & Schall, P. (2018). Native Plant Diversity and Composition Across a Pinus radiata D.Don Plantation Landscape in South-Central Chile—The Impact of Plantation Age, Logging Roads and Alien Species. Forests, 9(9), 567. https://doi.org/10.3390/f9090567
Hibit, J., & Daehler, C. C. (2023). Plant functional, biogeographical and phylogenetic diversity are related to native and non-native plant abundance in invaded Hawaiian forests. Biological Invasions. https://doi.org/10.1007/s10530-023-03201-5
Hsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
IPBES (2023). Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Roy, H. E., Pauchard, A., Stoett, P., and Renard Truong, T. (eds.). IPBES secretariat, Bonn, Germany. https://doi.org/10.5281/zenodo.7430682
Jin, Y. & Qian, H. (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353–1359. doi:10.1111/ecog.04434
Kauffman, J. B., Beschta, R. L., Lacy, P. M., & Liverman, M. (2022). Livestock Use on Public Lands in the Western USA Exacerbates Climate Change: Implications for Climate Change Mitigation and Adaptation. Environmental Management, 69(6), 1137-1152. https://doi.org/10.1007/s00267-022-01633-8
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. In Bioinformatics (Vol. 26, pp. 1463–1464).
Lampinen, J. (2019). Disturbance, microclimate and historical habitat connectivity determine the population performance of the threatened grassland specialist Carex caryophyllea in remnant grasslands. Nordic Journal Of Botany, 37(6). https://doi.org/10.1111/njb.02175
Lisboa, S. N., Domingos, F., Vallius, E., Lensu, A., Macamo, E., & Sitoe, A. (2022). Assessing the Impact of Road and Land Use on Species Diversity of Trees, Shrubs, Herbs and Grasses in the Mountain Landscape in Southern Africa. Frontiers In Conservation Science, 3. https://doi.org/10.3389/fcosc.2022.829690
Llambí, L. D., Becerra, M. T., Peralvo, M., Avella, A., Baruffol, M., & Díaz, L. J. (2020). Monitoring Biodiversity and Ecosystem Services in Colombia’s High Andean Ecosystems: Toward an Integrated Strategy. Mountain Research And Development, 39(3). https://doi.org/10.1659/mrd-journal-d-19-00020.1
Lyseng, M. P., Bork, E. W., Hewins, D. B., Alexander, M. J., Carlyle, C. N., Chang, S. X., & Willms, W. D. (2018). Long-term grazing impacts on vegetation diversity, composition, and exotic species presence across an aridity gradient in northern temperate grasslands. Plant Ecology, 219(6), 649-663. https://doi.org/10.1007/s11258-018-0824-4
Ma, C., Li, S., Pu, Z., Tan, J., Liu, M., Zhou, J., Li, H., & Jiang, L. (2016). Different effects of invader–native phylogenetic relatedness on invasion success and impact: A metaanalysis of Darwin's natu ralization hypothesis. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20160663. https://doi.org/10.1098/rspb.2016.0663
Machaca, N. C., Condori, B., Pardo, A. R., Anthelme, F., Meneses, R., Weeda, C., & PerottoBaldivieso, H. (2018). Effects of grazing pressure on plant species composition and water presence on bofedales in the Andes mountain range of Bolivia. HAL (Le Centre Pour la Communication Scientifique Directe). https://doi.org/10.19189/map.2017.omb.303
Magnitskiy, S. (2023). Native plants from the genus Vaccinium in Colombia and their potential uses. A review. Revista Colombiana de Ciencias Hortícolas, 17(1). https://doi.org/10.17584/rcch.2023v17i1.15503
Manzoor, S. A., Griffiths, G., & Lukac, M. (2021). Land use and climate change interaction triggers contrasting trajectories of biological invasion. Ecological Indicators, 120, 106936. https://doi.org/10.1016/j.ecolind.2020.106936
Marini, L., Bertolli, A., Bona, E., Federici, G., Martini, F., Prosser, F., & Bommarco, R. (2012). Beta‐diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecology And Biogeography, 22(4), 450-460. https://doi.org/10.1111/geb.12006
Merdas, S., Kouba, Y., Mostephaoui, T., Farhi, Y., & Chenchouni, H. (2021). Livestock grazing‐induced large‐scale biotic homogenization in arid Mediterranean steppe rangelands. Land Degradation And Development, 32(17), 5099-5107. https://doi.org/10.1002/ldr.4095
Michaels, J., Batzer, E., Harrison, S., & Eviner, V. T. (2021). Grazing affects vegetation diversity and heterogeneity in California vernal pools. Ecology, 102(4). https://doi.org/10.1002/ecy.3295
Mungi, N. A., Qureshi, Q., & Jhala, Y. V. (2021). Role of species richness and human impacts in resisting invasive species in tropical forests. Journal Of Ecology, 109(9), 3308-3321. https://doi.org/10.1111/1365-2745.13751
Muñoz-Guerrero, D. A. (2017). Transformaciones y prospectiva del paisaje en el páramo de Paja Blanca, Nariño, Colombia. Perspectiva Geográfica, 22(2),47-66. doi: 10.19053/01233769.7598
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., A, R., Senior, Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., EcheverriaLondoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., . . . Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022). _vegan: Community Ecology Package_. R package version 2.6-4, <https://CRAN.R-project.org/package=vegan>
Oliver, T. H., Heard, M. S., Isaac, N. J., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., & Bullock, J. M. (2015). 36 Biodiversity and Resilience of Ecosystem Functions. Trends In Ecology & Evolution, 30(11), 673-684. https://doi.org/10.1016/j.tree.2015.08.009
Orrock, J. L., Dutra, H. P., Marquis, R. J., & Barber, N. (2015). Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species. Ecology, 96(4), 1052-1061. https://doi.org/10.1890/14-0732.1
Osorio-Castiblanco, D. F. (2024). Biomass and bioethanol production of the shrub Ulex europaeus (Fabaceae) estimated with remote sensor imagery in the Andean paramos. Revista de Biología Tropical, 72(1), e56364. https://doi.org/10.15517/rev.biol.trop..v72i1.56364
Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M., Oviedo-Ocaña, R., Buytaert, W., & Ochoa-Tocachi, B. (2021). Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. CATENA, 202, 105227. https://doi.org/10.1016/j.catena.2021.105227
Paudel, R., Shrestha, B. B., Sharma, L. N., Adhikari, B., & Siwakoti, M. (2022). Diversity of naturalized and invasive plant species across land use types in an inner Tarai Valley of Central Nepal. Tropical Ecology, 64(2), 201-210. https://doi.org/10.1007/s42965- 022-00263-9
Perea-Ardila, M. A., Vaquiro, J. R., & Rodríguez-Valenzuela, J. (2022). Determinación de la cobertura y uso del suelo utilizando RapidEye en el Parque Nacional Natural los Nevados y su zona amortiguadora en Colombia. Revista de Ciencias Ambientales, 56(2), 148-176. https://doi.org/10.15359/rca.56-2.8
Pinzón-Pinto, Á. (2016). Efecto en las propiedades físicas de un suelo de parámo por la accion antropica. Dialnet. https://dialnet.unirioja.es/servlet/articulo?codigo=7831494
Qian, H. (2023). Patterns of phylogenetic relatedness of non-native plants across the introduction–naturalization–invasion continuum in China. Plant Diversity, 45(2), 169- 176. https://doi.org/10.1016/j.pld.2022.12.005
Qian, H., Qian, S., & Sandel, B. (2022). Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Global Ecology And Biogeography, 31(9), 1864-1876. https://doi.org/10.1111/geb.13566
Qian, H., & Sandel, B. (2021). Darwin’s preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Global Ecology And Biogeography, 31(3), 531-545. https://doi.org/10.1111/geb.13445
R Core Team (2025). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>
Rangel-Ch., J.O. (ed.). 2018. Colombia Diversidad Biótica XVI. Patrones de riqueza y de diversidad de las plantas con flores en el bioma de Páramo. Universidad Nacional de Colombia - Instituto de Ciencias Naturales. 386 pp. Bogotá D.C
Raveloaritiana, E., Tscharntke, T., Martin, D. A., Wurz, A., Osen, K., Soazafy, M. R., Vorontsova, M. S., Kreft, H., Rakouth, B., & Grass, I. (2024). Land‐use intensity and relatedness to native plants promote exotic plant invasion in a tropical biodiversity hotspot. Journal Of Applied Ecology, 61(6), 1396-1410. https://doi.org/10.1111/1365-2664.14657
Richardson, David & Pyšek, Petr & Carlton, James. (2010). A Compendium of Essential Concepts and Terminology in Invasion Ecology. 10.1002/9781444329988.ch30.
Rincón, L. N. G. (2015). Los páramos en Colombia, un ecosistema en riesgo. Dialnet. https://dialnet.unirioja.es/servlet/articulo?codigo=5662382
Ríos Guarín, E. A. (2024). Análisis multitemporal de las coberturas del suelo con imágenes de radar años 2016, 2019 y 2021 PNN de los Nevados Villamaría Caldas - Colombia [Tesis de maestría, Universidad de Manizales]
Rojas‐Sandoval, J., Ackerman, J. D., Marcano‐Vega, H., & Willig, M. R. (2022). Alien species affect the abundance and richness of native species in tropical forests: The role of adaptive strategies. Ecosphere, 13(12). https://doi.org/10.1002/ecs2.4291
Sánchez-Ortiz, K., Taylor, K. J. M., De Palma, A., Essl, F., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., Van Kleunen, M., Weigelt, P., & Purvis, A. (2020). Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE, 15(12), e0227169. https://doi.org/10.1371/journal.pone.0227169
Sandoval-Calderon, A. P., Soons, M. B., Van Kuijk, M., Verweij, P. A., Barry, K. E., & Hautier, Y. (2024). Camelid herding may homogenize Andean grassland plant communities. Ecological Indicators, 167, 112590. https://doi.org/10.1016/j.ecolind.2024.112590
Sandoya, V., Pauchard, A., & Cavieres, L. A. (2017). Natives and non‐natives plants show different responses to elevation and disturbance on the tropical high Andes of Ecuador. Ecology And Evolution, 7(19), 7909-7919. https://doi.org/10.1002/ece3.3270
Siebert, F., Van Staden, N., Komape, D., Swemmer, A., & Siebert, S. (2021). Effects of landuse on herbaceous vegetation in a semi-arid Mopaneveld savanna. Bothalia, 51(1). https://doi.org/10.38201/btha.abc.v51.i1.8
Sievert, K. (2020). plotly: Interactive web-based data visualization with R. R package
Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302–314. DOI: 10.1002/ajb2.1019
Steinfeld H, et al. (2006) Livestock’s long shadow. United Nations Food and Agricultural Organization. http://www.fao.org/docrep/ 010/a0701e/a0701e00.HTM
Torres, M. C. D., Flórez, F. H., & Triana, F. A. (2014). Efecto del Uso del Suelo en la Capacidad de Almacenamiento Hídrico en el Páramo de Sumapaz - Colombia. Revista Facultad Nacional de Agronomía Medellín, 67(1), 7189-7200. https://doi.org/10.15446/rfnam.v67n1.42642
Urbina, J. C., & Benavides, J. C. (2015). Simulated Small Scale Disturbances Increase Decomposition Rates and Facilitates Invasive Species Encroachment in a High Elevation Tropical Andean Peatland. Biotropica, 47(2), 143-151. https://doi.org/10.1111/btp.12191
Valencia, J., Lassaletta, L., Velázquez, E., Nicolau, J. M., & Gómez‐Sal, A. (2012). Factors Controlling Compositional Changes in a Northern Andean Páramo (La Rusia, Colombia). Biotropica, 45(1), 18-26. https://doi.org/10.1111/j.1744- 7429.2012.00895.x
Vargas Ríos, O. (2013). Disturbios en los páramos andinos. En Visión socio-ecosistémica de los páramos (pp. 39-57). Red de Desarrollo Sostenible - Colombia
Vargas-Ríos O. (Ed.). (2021). Bases ecológicas y sociales para la restauración de los páramos. Facultad de Ciencias, Universidad Nacional de Colombia.
Zanne, A. E., Tank, D. C., Cornwell, W. K., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89–92. DOI: 10.1038/nature12872
Zhang, Z., Liu, Y., Hardrath, A., Jin, H., & Van Kleunen, M. (2022). Increases in multiple resources promote competitive ability of naturalized non-native plants. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-04113-1
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
dc.format.none.fl_str_mv 38 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145058237120512
spelling Efectos del uso del suelo sobre la diversidad de plantas nativas y exóticas en ecosistemas de alta montaña del centro de Colombia580 - Plantas570 - Biología1. Ciencias Naturales::1F. Ciencias biológicas::1F10. Botánica y ciencias de las plantas1. Ciencias Naturales::1F. Ciencias biológicasPerturbaciones antropogénicasPáramoGanaderíaPlantas invasorasAnthropogenic disturbancesParamoLivestockInvasive plantsPlantasEcosistemaSueloBiologíaMapas, gráficas, tablasLas perturbaciones antropogénicas como la ganadería pueden reducir la diversidad de especies nativas y favorecer el establecimiento de especies exóticas, algunas con potencial invasor. El páramo es un ecosistema que se caracteriza por tener altos niveles de endemismos y brindar servicios ecosistémicos fundamentales, sin embargo, ha sufrido transformaciones y cambios en el uso del suelo que han llevado a la alteración de sus condiciones iniciales. Por lo tanto, este trabajo tuvo como objetivo evaluar el efecto del cambio de uso de suelo en ecosistemas de alta montaña, sobre la diversidad taxonómica de plantas nativas y exóticas y las relaciones filogenéticas entre estos grupos. Para lograrlo, se establecieron un total de 54 parcelas en seis localidades, cada una con tres condiciones de uso del suelo (potreros en uso, potreros abandonados y bosques). Se encontró una menor diversidad de especies nativas a medida que el uso del suelo se intensifica, mientras que las especies exóticas no mostraron diferencias en su diversidad entre las tres condiciones de uso del suelo. Los bosques presentaron la mayor diversidad filogenética, seguido de los potreros abandonados, y finalmente los potreros en uso. Además, las especies nativas y exóticas en las parcelas de los potreros en uso mostraron un mayor parentesco. Estos resultados contribuyen a la comprensión de los procesos que influyen en la pérdida de diversidad nativa y en el establecimiento de especies exóticas algunas con potencial invasor, en ecosistemas de alta montaña, sensibles a cambios ambientales inducidos por el hombre.Anthropogenic disturbances such as livestock can reduce the diversity of native species and favor the establishment of exotic species, some of which have invasive potential. The paramo is an ecosystem characterized by high levels of endemism and the provision of essential ecosystem services. However, it has undergone transformations and land-use changes that have led to the alteration of its original conditions. Therefore, this study aimed to evaluate the effect of land-use change in high mountain ecosystems on the taxonomic diversity of native and exotic plant species, as well as the phylogenetic relationships between these groups. To achieve this, a total of 54 plots were established across six localities, each with three land-use conditions (active pastures, abandoned pastures, and forests). A lower diversity of native species was found as land-use intensity increased, whereas exotic species did not show significant differences in diversity across the three land-use conditions. Forests exhibited the highest phylogenetic diversity, followed by abandoned pastures and, lastly, active pastures. Furthermore, native and exotic species in the active pasture plots showed closer phylogenetic relationships. These results contribute to the understanding of the processes that influence the loss of native diversity and the establishment of exotic species—some with invasive potential—in high mountain ecosystems that are particularly sensitive to human-induced environmental changes.Agradecimientos / Resumen / Abstract / Introducción / Metodología / Área de estudio / Diseño de muestreo y toma de datos en campo / Procesamiento de muestras / Diversidad taxonómica / Diversidad filogenética / Resultados / Diversidad alfa / Diversidad beta / Diversidad filogenética / Discusión / Anexos / BibliografíaPregradoBiólogo(a)Ecología y Modelamiento de PaisajesUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesColombia, Caldas, ManizalesBiologíaAguirre Acosta, NataliaFeuillet Hurtado, CarolinaBIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)Rodríguez Mesa, Daniela2025-06-06T02:33:13Z2027-12-312025-06-06T02:33:13Z2025-06-05Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis38 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22324Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAnzoategui, L. V., Gil-Leguizamón, P. A., & Sanabria-Marin, R. (2023). Frontera agrícola y multitemporalidad de cobertura vegetal en Páramo del Parque Regional Natural Cortadera (Boyacá, Colombia). Bosque (Valdivia), 44(1), 159-170. https://doi.org/10.4067/s0717-92002023000100159Baselga, A. (2009). Partitioning the turnover and nestedness components of beta diversity. Global Ecology And Biogeography, 19(1), 134-143. https://doi.org/10.1111/j.1466- 8238.2009.00490.xBaselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Martinez-Santalla S, Martin Devasa R, Gomez-Rodriguez C, Crujeiras R (2023). _betapart: Partitioning Beta Diversity into Turnover and Nestedness Components_. R package version 1.6, <https://CRAN.R-project.org/package=betapart>.Beugnon, R., Guyader, N. L., Milcu, A., Lenoir, J., Puissant, J., Morin, X., & Hättenschwiler, S. (2024). Microclimate modulation: An overlooked mechanism influencing the impact of plant diversity on ecosystem functioning. Global Change Biology, 30(3). https://doi.org/10.1111/gcb.17214Bidoglio, G. A., Schwarzmueller, F., & Kastner, T. (2024). A global multi-indicator assessment of the environmental impact of livestock products. Global Environmental Change, 87, 102853. https://doi.org/10.1016/j.gloenvcha.2024.102853Braun-Blanquet, J. (1950). Sociología vegetal : estudio de las comunidades vegetales. Acme Agency.Brück, S. A., Torres, B. D. M., & De Lourdes Teixeira de Moraes Polizeli, M. (2023). The Ecuadorian paramo in danger: What we know and what might be learned from northern wetlands. Global Ecology And Conservation, 47, e02639. https://doi.org/10.1016/j.gecco.2023.e02639Cadotte, M. W., Campbell, S. E., Li, S., Sodhi, D. S., & Mandrak, N. E. (2018). Preadaptation and Naturalization of Nonnative Species: Darwin’s Two Fundamental Insights into Species Invasion. Annual Review Of Plant Biology, 69(1), 661-684. https://doi.org/10.1146/annurev-arplant-042817-040339Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67.Chillo, V., Ojeda, R. A., Capmourteres, V., & Anand, M. (2016). Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. Journal Of Applied Ecology, 54(3), 986-996. https://doi.org/10.1111/1365-2664.12775Cordeiro AAC, Klanderud K, Villa PM, Neri AV (2023) Patterns of species richness and beta diversity of vascular plants along elevation gradient in Brazilian páramo. Journal of Mountain Science 20(7). https://doi.org/10.1007/s11629-022 7480-9Cultid-Medina, Carlos & Escobar, Federico. (2019). Pautas para la estimación y comparación estadística de la diversidad biológica (qD).Dainese, M., Lepš, J., & De Bello, F. (2014). Different effects of elevation, habitat fragmentation and grazing management on the functional, phylogenetic and taxonomic structure of mountain grasslands. Perspectives In Plant Ecology Evolution And Systematics, 17(1), 44-53. https://doi.org/10.1016/j.ppees.2014.09.002De Villalobos, A. E., & Long, M. A. (2024). Grasslands Response to Livestock Grazing Intensity in the Austral Pampas (Argentina): Testing the Intermediate Disturbance Hypothesis. Phyton, 93(8), 2037-2050. https://doi.org/10.32604/phyton.2024.053928Dietrich, P., Ebeling, A., Meyer, S. T., Asato, A. E. B., Bröcher, M., Gleixner, G., Huang, Y., Roscher, C., Schmid, B., Vogel, A., & Eisenhauer, N. (2024). Plant diversity and community age stabilize ecosystem multifunctionality. Global Change Biology, 30(3). https://doi.org/10.1111/gcb.17225Duchicela, S. A., Llambí, L. D., Bonnesoeur, V., & Román‐Dañobeytia, F. (2024). Pastoralism in the high tropical Andes: A review of the effect of grazing intensity on plant diversity and ecosystem services. Applied Vegetation Science, 27(3). https://doi.org/10.1111/avsc.12791Franco, A. L., Sobral, B. W., Silva, A. L., & Wall, D. H. (2018). Amazonian deforestation and soil biodiversity. Conservation Biology, 33(3), 590-600. https://doi.org/10.1111/cobi.13234Fuentes‐Lillo, E., Lembrechts, J. J., Barros, A., Aschero, V., Bustamante, R. O., Cavieres, L. A., Clavel, J., Herrera, I., Jiménez, A., Tecco, P. A., Hulme, P. E., Núñez, M. A., Rozzi, R., Garcı́A, R., Simberloff, D., Nijs, I., & Pauchard, A. (2023). Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients. Biodiversity And Conservation, 32(13), 4199-4219. https://doi.org/10.1007/s10531-023-02697-6Gradstein, S. R. (2021). The Liverworts and Hornworts of Colombia and Ecuador. En Springer eBooks. https://doi.org/10.1007/978-3-030-49450-6Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J. A., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378- 381. https://doi.org/10.1038/nature10425Gioria, M., Hulme, P. E., Richardson, D. M., & Pyšek, P. (2023). Why are invasive plants successful? Annual Review Of Plant Biology, 74(1), 635-670. https://doi.org/10.1146/annurev-arplant-070522-071021Hald-Mortensen, C. (2023). The Main Drivers of Biodiversity Loss: A Brief Overview. Journal Of Ecology & Natural Resources, 7(3). https://doi.org/10.23880/jenr-16000346Heinrichs, S., Pauchard, A., & Schall, P. (2018). Native Plant Diversity and Composition Across a Pinus radiata D.Don Plantation Landscape in South-Central Chile—The Impact of Plantation Age, Logging Roads and Alien Species. Forests, 9(9), 567. https://doi.org/10.3390/f9090567Hibit, J., & Daehler, C. C. (2023). Plant functional, biogeographical and phylogenetic diversity are related to native and non-native plant abundance in invaded Hawaiian forests. Biological Invasions. https://doi.org/10.1007/s10530-023-03201-5Hsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.IPBES (2023). Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Roy, H. E., Pauchard, A., Stoett, P., and Renard Truong, T. (eds.). IPBES secretariat, Bonn, Germany. https://doi.org/10.5281/zenodo.7430682Jin, Y. & Qian, H. (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353–1359. doi:10.1111/ecog.04434Kauffman, J. B., Beschta, R. L., Lacy, P. M., & Liverman, M. (2022). Livestock Use on Public Lands in the Western USA Exacerbates Climate Change: Implications for Climate Change Mitigation and Adaptation. Environmental Management, 69(6), 1137-1152. https://doi.org/10.1007/s00267-022-01633-8Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. In Bioinformatics (Vol. 26, pp. 1463–1464).Lampinen, J. (2019). Disturbance, microclimate and historical habitat connectivity determine the population performance of the threatened grassland specialist Carex caryophyllea in remnant grasslands. Nordic Journal Of Botany, 37(6). https://doi.org/10.1111/njb.02175Lisboa, S. N., Domingos, F., Vallius, E., Lensu, A., Macamo, E., & Sitoe, A. (2022). Assessing the Impact of Road and Land Use on Species Diversity of Trees, Shrubs, Herbs and Grasses in the Mountain Landscape in Southern Africa. Frontiers In Conservation Science, 3. https://doi.org/10.3389/fcosc.2022.829690Llambí, L. D., Becerra, M. T., Peralvo, M., Avella, A., Baruffol, M., & Díaz, L. J. (2020). Monitoring Biodiversity and Ecosystem Services in Colombia’s High Andean Ecosystems: Toward an Integrated Strategy. Mountain Research And Development, 39(3). https://doi.org/10.1659/mrd-journal-d-19-00020.1Lyseng, M. P., Bork, E. W., Hewins, D. B., Alexander, M. J., Carlyle, C. N., Chang, S. X., & Willms, W. D. (2018). Long-term grazing impacts on vegetation diversity, composition, and exotic species presence across an aridity gradient in northern temperate grasslands. Plant Ecology, 219(6), 649-663. https://doi.org/10.1007/s11258-018-0824-4Ma, C., Li, S., Pu, Z., Tan, J., Liu, M., Zhou, J., Li, H., & Jiang, L. (2016). Different effects of invader–native phylogenetic relatedness on invasion success and impact: A metaanalysis of Darwin's natu ralization hypothesis. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20160663. https://doi.org/10.1098/rspb.2016.0663Machaca, N. C., Condori, B., Pardo, A. R., Anthelme, F., Meneses, R., Weeda, C., & PerottoBaldivieso, H. (2018). Effects of grazing pressure on plant species composition and water presence on bofedales in the Andes mountain range of Bolivia. HAL (Le Centre Pour la Communication Scientifique Directe). https://doi.org/10.19189/map.2017.omb.303Magnitskiy, S. (2023). Native plants from the genus Vaccinium in Colombia and their potential uses. A review. Revista Colombiana de Ciencias Hortícolas, 17(1). https://doi.org/10.17584/rcch.2023v17i1.15503Manzoor, S. A., Griffiths, G., & Lukac, M. (2021). Land use and climate change interaction triggers contrasting trajectories of biological invasion. Ecological Indicators, 120, 106936. https://doi.org/10.1016/j.ecolind.2020.106936Marini, L., Bertolli, A., Bona, E., Federici, G., Martini, F., Prosser, F., & Bommarco, R. (2012). Beta‐diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecology And Biogeography, 22(4), 450-460. https://doi.org/10.1111/geb.12006Merdas, S., Kouba, Y., Mostephaoui, T., Farhi, Y., & Chenchouni, H. (2021). Livestock grazing‐induced large‐scale biotic homogenization in arid Mediterranean steppe rangelands. Land Degradation And Development, 32(17), 5099-5107. https://doi.org/10.1002/ldr.4095Michaels, J., Batzer, E., Harrison, S., & Eviner, V. T. (2021). Grazing affects vegetation diversity and heterogeneity in California vernal pools. Ecology, 102(4). https://doi.org/10.1002/ecy.3295Mungi, N. A., Qureshi, Q., & Jhala, Y. V. (2021). Role of species richness and human impacts in resisting invasive species in tropical forests. Journal Of Ecology, 109(9), 3308-3321. https://doi.org/10.1111/1365-2745.13751Muñoz-Guerrero, D. A. (2017). Transformaciones y prospectiva del paisaje en el páramo de Paja Blanca, Nariño, Colombia. Perspectiva Geográfica, 22(2),47-66. doi: 10.19053/01233769.7598Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., A, R., Senior, Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., EcheverriaLondoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., . . . Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022). _vegan: Community Ecology Package_. R package version 2.6-4, <https://CRAN.R-project.org/package=vegan>Oliver, T. H., Heard, M. S., Isaac, N. J., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., & Bullock, J. M. (2015). 36 Biodiversity and Resilience of Ecosystem Functions. Trends In Ecology & Evolution, 30(11), 673-684. https://doi.org/10.1016/j.tree.2015.08.009Orrock, J. L., Dutra, H. P., Marquis, R. J., & Barber, N. (2015). Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species. Ecology, 96(4), 1052-1061. https://doi.org/10.1890/14-0732.1Osorio-Castiblanco, D. F. (2024). Biomass and bioethanol production of the shrub Ulex europaeus (Fabaceae) estimated with remote sensor imagery in the Andean paramos. Revista de Biología Tropical, 72(1), e56364. https://doi.org/10.15517/rev.biol.trop..v72i1.56364Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M., Oviedo-Ocaña, R., Buytaert, W., & Ochoa-Tocachi, B. (2021). Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. CATENA, 202, 105227. https://doi.org/10.1016/j.catena.2021.105227Paudel, R., Shrestha, B. B., Sharma, L. N., Adhikari, B., & Siwakoti, M. (2022). Diversity of naturalized and invasive plant species across land use types in an inner Tarai Valley of Central Nepal. Tropical Ecology, 64(2), 201-210. https://doi.org/10.1007/s42965- 022-00263-9Perea-Ardila, M. A., Vaquiro, J. R., & Rodríguez-Valenzuela, J. (2022). Determinación de la cobertura y uso del suelo utilizando RapidEye en el Parque Nacional Natural los Nevados y su zona amortiguadora en Colombia. Revista de Ciencias Ambientales, 56(2), 148-176. https://doi.org/10.15359/rca.56-2.8Pinzón-Pinto, Á. (2016). Efecto en las propiedades físicas de un suelo de parámo por la accion antropica. Dialnet. https://dialnet.unirioja.es/servlet/articulo?codigo=7831494Qian, H. (2023). Patterns of phylogenetic relatedness of non-native plants across the introduction–naturalization–invasion continuum in China. Plant Diversity, 45(2), 169- 176. https://doi.org/10.1016/j.pld.2022.12.005Qian, H., Qian, S., & Sandel, B. (2022). Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Global Ecology And Biogeography, 31(9), 1864-1876. https://doi.org/10.1111/geb.13566Qian, H., & Sandel, B. (2021). Darwin’s preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Global Ecology And Biogeography, 31(3), 531-545. https://doi.org/10.1111/geb.13445R Core Team (2025). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>Rangel-Ch., J.O. (ed.). 2018. Colombia Diversidad Biótica XVI. Patrones de riqueza y de diversidad de las plantas con flores en el bioma de Páramo. Universidad Nacional de Colombia - Instituto de Ciencias Naturales. 386 pp. Bogotá D.CRaveloaritiana, E., Tscharntke, T., Martin, D. A., Wurz, A., Osen, K., Soazafy, M. R., Vorontsova, M. S., Kreft, H., Rakouth, B., & Grass, I. (2024). Land‐use intensity and relatedness to native plants promote exotic plant invasion in a tropical biodiversity hotspot. Journal Of Applied Ecology, 61(6), 1396-1410. https://doi.org/10.1111/1365-2664.14657Richardson, David & Pyšek, Petr & Carlton, James. (2010). A Compendium of Essential Concepts and Terminology in Invasion Ecology. 10.1002/9781444329988.ch30.Rincón, L. N. G. (2015). Los páramos en Colombia, un ecosistema en riesgo. Dialnet. https://dialnet.unirioja.es/servlet/articulo?codigo=5662382Ríos Guarín, E. A. (2024). Análisis multitemporal de las coberturas del suelo con imágenes de radar años 2016, 2019 y 2021 PNN de los Nevados Villamaría Caldas - Colombia [Tesis de maestría, Universidad de Manizales]Rojas‐Sandoval, J., Ackerman, J. D., Marcano‐Vega, H., & Willig, M. R. (2022). Alien species affect the abundance and richness of native species in tropical forests: The role of adaptive strategies. Ecosphere, 13(12). https://doi.org/10.1002/ecs2.4291Sánchez-Ortiz, K., Taylor, K. J. M., De Palma, A., Essl, F., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., Van Kleunen, M., Weigelt, P., & Purvis, A. (2020). Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE, 15(12), e0227169. https://doi.org/10.1371/journal.pone.0227169Sandoval-Calderon, A. P., Soons, M. B., Van Kuijk, M., Verweij, P. A., Barry, K. E., & Hautier, Y. (2024). Camelid herding may homogenize Andean grassland plant communities. Ecological Indicators, 167, 112590. https://doi.org/10.1016/j.ecolind.2024.112590Sandoya, V., Pauchard, A., & Cavieres, L. A. (2017). Natives and non‐natives plants show different responses to elevation and disturbance on the tropical high Andes of Ecuador. Ecology And Evolution, 7(19), 7909-7919. https://doi.org/10.1002/ece3.3270Siebert, F., Van Staden, N., Komape, D., Swemmer, A., & Siebert, S. (2021). Effects of landuse on herbaceous vegetation in a semi-arid Mopaneveld savanna. Bothalia, 51(1). https://doi.org/10.38201/btha.abc.v51.i1.8Sievert, K. (2020). plotly: Interactive web-based data visualization with R. R packageSmith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302–314. DOI: 10.1002/ajb2.1019Steinfeld H, et al. (2006) Livestock’s long shadow. United Nations Food and Agricultural Organization. http://www.fao.org/docrep/ 010/a0701e/a0701e00.HTMTorres, M. C. D., Flórez, F. H., & Triana, F. A. (2014). Efecto del Uso del Suelo en la Capacidad de Almacenamiento Hídrico en el Páramo de Sumapaz - Colombia. Revista Facultad Nacional de Agronomía Medellín, 67(1), 7189-7200. https://doi.org/10.15446/rfnam.v67n1.42642Urbina, J. C., & Benavides, J. C. (2015). Simulated Small Scale Disturbances Increase Decomposition Rates and Facilitates Invasive Species Encroachment in a High Elevation Tropical Andean Peatland. Biotropica, 47(2), 143-151. https://doi.org/10.1111/btp.12191Valencia, J., Lassaletta, L., Velázquez, E., Nicolau, J. M., & Gómez‐Sal, A. (2012). Factors Controlling Compositional Changes in a Northern Andean Páramo (La Rusia, Colombia). Biotropica, 45(1), 18-26. https://doi.org/10.1111/j.1744- 7429.2012.00895.xVargas Ríos, O. (2013). Disturbios en los páramos andinos. En Visión socio-ecosistémica de los páramos (pp. 39-57). Red de Desarrollo Sostenible - ColombiaVargas-Ríos O. (Ed.). (2021). Bases ecológicas y sociales para la restauración de los páramos. Facultad de Ciencias, Universidad Nacional de Colombia.Zanne, A. E., Tank, D. C., Cornwell, W. K., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89–92. DOI: 10.1038/nature12872Zhang, Z., Liu, Y., Hardrath, A., Jin, H., & Van Kleunen, M. (2022). Increases in multiple resources promote competitive ability of naturalized non-native plants. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-04113-1https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/223242025-06-06T08:01:15Z