Evolución conceptual del pensamiento algebraico en educación media: estudio de caso
Tablas, figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/20193
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/20193
- Palabra clave:
- 370 - Educación
6. Humanidades
Pensamiento algebraico
Modelos explicativos
Evolución conceptual
Registros de representaciones semióticas
Aprendizaje de las matemáticas
Algebraic thinking
Explanatory models
Conceptual evolution
Registers of semiotic representations
Learning of mathematics
Educación
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
REPOUCALDA_b5df1749c5faf0f7adeb516038156275 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/20193 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
title |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
spellingShingle |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso 370 - Educación 6. Humanidades Pensamiento algebraico Modelos explicativos Evolución conceptual Registros de representaciones semióticas Aprendizaje de las matemáticas Algebraic thinking Explanatory models Conceptual evolution Registers of semiotic representations Learning of mathematics Educación |
title_short |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
title_full |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
title_fullStr |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
title_full_unstemmed |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
title_sort |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso |
dc.contributor.none.fl_str_mv |
Tamayo Alzate, Óscar Eugenio Universidad de Caldas CASTRO GORDILLO, WALTER FERNANDO Blanco-Álvarez, Hilbert |
dc.subject.none.fl_str_mv |
370 - Educación 6. Humanidades Pensamiento algebraico Modelos explicativos Evolución conceptual Registros de representaciones semióticas Aprendizaje de las matemáticas Algebraic thinking Explanatory models Conceptual evolution Registers of semiotic representations Learning of mathematics Educación |
topic |
370 - Educación 6. Humanidades Pensamiento algebraico Modelos explicativos Evolución conceptual Registros de representaciones semióticas Aprendizaje de las matemáticas Algebraic thinking Explanatory models Conceptual evolution Registers of semiotic representations Learning of mathematics Educación |
description |
Tablas, figuras |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09-17T16:21:07Z 2024-09-17T16:21:07Z 2024-09-16 2026-09-16 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado http://purl.org/coar/resource_type/c_db06 Text info:eu-repo/semantics/doctoralThesis |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/20193 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/20193 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Abdullatif Khafaie, M., & Rahim, F. (2021). Estimating Case Fatality and Case Recovery Rates of COVID-19: is this the right thing to do? Central Asian Journal of Global Health, 10(1). https://doi.org/10.5195/cajgh.2021.489 Abdulrahman Almurashi, W. (2016). An Introduction to Halliday’s Systemic Functional Linguistics. Journal for the Study of English Linguistics, 4(1). https://doi.org/10.5296/jsel.v4i1.9423 Acevedo Nistal, A., Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: a critical review. ZDM, 41(5), 627–636. https://doi.org/10.1007/s11858-009-0189-1 Adinda, A., Purwanto, Parta, I. N., & Chandra, T. D. (2021). Investigation Of Students’ Metacognitive Awareness Failures About Solving Absolute Value Problems in Mathematics Education. EURASIAN JOURNAL OF EDUCATIONAL RESEARCH, 95, 17–35. https://doi.org/10.14689/ejer.2021.95.2 Afonso, D., & Mc Auliffe, S. (2019). Children’s Capacity for Algebraic Thinking in the Early Grades. African Journal of Research in Mathematics, Science and Technology Education, 23(2), 219–232. https://doi.org/10.1080/18117295.2019.1661661 Agoestanto, A., Sukestiyarno, Y. L., Isnarto, & Rochmad. (2019). An analysis on generational, transformational, global meta-level algebraic thinking ability in junior high school students. Journal of Physics: Conference Series, 1321(3). https://doi.org/10.1088/1742-6596/1321/3/032082 Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The position and causes of student’s errors in algebraic thinking based on cognitive style. International Journal of Instruction, 12(1), 1431–1444. https://doi.org/10.29333/iji.2019.12191a Agudelo-Valderrama, C. (2005). Explicaciones De Ciertas Actitudes Hacia El Cambio: Las Concepciones De Profesores Y Profesoras De Matemáticas Colombianos (as) Sobre Los Factores Determinantes De Su Práctica De Enseñanza Del Álgebra Escolar. Revista EMA, 10(2 y 3), 375–412. Agudelo-Valderrama, C. (2007). La Creciente Brecha Entre Las Disposiciones Educativas Colombianas, Las Proclamaciones Oficiales Y Las Realidades Del Aula De Clase: Las Concepciones De Profesores Y Profesoras De Matemáticas Sobre El Álgebra Escolar Y El Propósito De Su Enseñanza. REICE - Revista Electrónica Iberoamericana Sobre Calidad, Eficacia y Cambio En Educación, 5(1), 43–62. Aguliera, E., & Nightengale-Lee, B. (2020). Emergency remote teaching across urban and rural contexts: perspectives on educational equity. Information and Learning Sciences, 121(5/6), 471–478. https://doi.org/10.1108/ILS-04-2020-0100 Al-Murani, T., Kilhamn, C., Morgan, D., & Watson, A. (2019). Opportunities for learning: the use of variation to analyse examples of a paradigm shift in teaching primary mathematics in England. Research in Mathematics Education, 21(1), 6–24. https://doi.org/10.1080/14794802.2018.1511460 Angus, I. (2005). Jacob Klein’s revision of Husserl’s crisis - A contribution to the transcendental history of reification. PHILOSOPHY TODAY, 49(5, S), 204–211. https://doi.org/10.5840/philtoday200549Supplement25 Antonijević, R. (2016). Cognitive activities in solving mathematical tasks: The role of a cognitive obstacle. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2503–2515. https://doi.org/10.12973/eurasia.2016.1306a Apsari, R. A., Sariyasa, S., Putri, R. I. P., Gunawan, G., & Prayitno, S. (2020). Understanding Students’ Transition from Arithmetic to Algebraic Thinking in the Pre-Algebraic Lesson. Journal of Physics: Conference Series, 1471(1). https://doi.org/10.1088/1742-6596/1471/1/012056 Arroyo-Marioli, F., Bullano, F., Kucinskas, S., & Rondón-Moreno, C. (2021). Tracking R of COVID-19: A new real-time estimation using the Kalman filter. PLoS ONE, 16(1 January). https://doi.org/10.1371/journal.pone.0244474 Asquith, P., Stephens, A. C., Knuth, E. J., & Alibali, M. W. (2007). Middle School Mathematics Teachers’ Knowledge of Students’ Understanding of Core Algebraic Concepts: Equal Sign and Variable. Mathematical Thinking and Learning, 9(3). https://doi.org/10.1080/10986060701360910 Ayala-Altamirano, C., & Molina, M. (2020). Meanings Attributed to Letters in Functional Contexts by Primary School Students. INTERNATIONAL JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION, 18(7), 1271–1291. https://doi.org/10.1007/s10763-019-10012-5 Ayala-Altamirano, C., Pinto, E., Molina, M., & Canadas, M. C. (2022). Interacting with Indeterminate Quantities through Arithmetic Word Problems: Tasks to Promote Algebraic Thinking at Elementary School. MATHEMATICS, 10(13). https://doi.org/10.3390/math10132229 Ayber, G., & Tanisli, D. (2017). An Analysis of Middle School Mathematics Textbooks from the Perspective of Fostering Algebraic Thinking through Generalization. Educational Sciences: Theory & Practice, 17(6), 2001–2030. https://doi.org/10.12738/estp.2017.6.0506 Ballesta-Claver, J., Ayllon Blanco, M. F., & Gomez Perez, I. A. (2021). A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry. MATHEMATICS, 9(15). https://doi.org/10.3390/math9151755 Balzer, W., & Moulines, C. (2011). Structuralist theory of science: focal issues, new results. https://books.google.es/books?hl=es&lr=&id=nj2selIJisC& oi=fnd&pg=PA1&dq=c+moulines+models+&ots=TVvsqWBKJQ&sig=mfhVcOhaGVZAgNDiPLE6qmoGEQ Balzer, W., Moulines, C. U., & Sneed, J. D. (1986). An architectonic for science: The structuralist program (vol 186). Springer Science & Business Media. Bazzini, L., Tsamir, P., & Boero, P. (2004). Algebraic equations and inequalities issues for research and teaching. Principles and Standards for School Mathematics, 2. Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. In Approaches to algebra. Beltrán, R. R. (2015). Historia de la enseñanza en Colombia: entre saberes y disciplinas escolares. Pedagogía y Saberes, 42, 9–20. Bender, A., & Beller, S. (2012). Nature and culture of finger counting: Diversity and representational effects of an embodied cognitive tool. Cognition, 124(2), 156–182. https://doi.org/10.1016/j.cognition.2012.05.005 Blanton, M., Isler-Baykal, I., Stroud, R., Stephens, A., Knuth, E., & Gardiner, A. M. (2019). Growth in children’s understanding of generalizing and representing mathematical structure and relationships. Educational Studies in Mathematics, 102(2), 193–219. https://doi.org/10.1007/s10649-019-09894-7 Blanton, M. L., & Kaput, J. J. (2011). Functional Thinking as a Route Into Algebra in the Elementary Grades (pp. 5–23). https://doi.org/10.1007/978-3-642-17735-4_2 Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J.-S. (2015). The development of children’s algebrai thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39–87. Bonola, R. (1955). Non-Euclidean geometry: A critical and historical study of its development. Boom, A. M. (1986). Escuela, maestro y métodos en Colombia, 1750-1820. Universidad Pedagógica Nacional, Centro de Investigaciones. Booth, L. R. (1988). Children’s difficulties in beginning algebra. In The ideas of algebra, K-12 (pp. 299–306). Boyer, C. (1968). A History of Mathematics. New York: John Willey & Sons. Brating, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. MATHEMATICAL THINKING AND LEARNING, 23(2), 170–185. https://doi.org/10.1080/10986065.2020.1779012 Brenner, M. E., Brar, T., Durdn, R., Mayer, R. E., Moseley, B., Smith, B. R., & Webb, D. (1995). the Role of Multiple Representations in Learning Algebra. Proceedings of the 17th Conference of PME-NA. Brizuela, B. M. (2016). Variables in elementary mathematics education. Elementary School Journal, 117(1), 46–71. https://doi.org/10.1086/687810 Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A., & Murphy Gardiner, A. (2015). Children’s Use of Variables and Variable Notation to Represent Their Algebraic Ideas. Mathematical Thinking and Learning, 17(1), 34–63. https://doi.org/10.1080/10986065.2015.981939 Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015). A specific misconception of the equal sign acts as a barrier to children’s learning of early algebra. Learning and Individual Differences, 38, 61– 67. https://doi.org/10.1016/j.lindif.2015.01.001 Caetano Rodrigues, M. da S., & Fusaro Pinto, M. M. (2020). Characterizing Algebraic Thinking in Elementary School. ABAKOS, 8(1), 86–102. Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Fong Ng, S., & Schmittau, J. (2005). The development of studients’ algebraic thinking in earlier grades: Zentralblatt Für Didaktik Der Mathematik, 37(1), 5–15. https://doi.org/10.1007/bf02655892 Cai, J., & Moyer, J. C. (2008). Developing Algebraic Thinking in Earlier Grades: Some Insights from International Comparative Studies NCTM Yearbook Section Addressed: The Nature of Algebra and Algebraic Thinking: Content Perspectives • What can be learned from international studies of i. Cai, J., Ng, S. F., & Moyer, J. C. (2011). Developing Students’ Algebraic Thinking in Earlier Grades: Lessons from China and Singapore (pp. 25–41). https://doi.org/10.1007/978-3-642-17735-4_3 Cai, J., Nie, B., Moyer, J. C., & Wang, N. (2014). Teaching Mathematics Using Standards-Based and Traditional Curricula: A Case of Variable Ideas (pp. 391–415). https://doi.org/10.1007/978-94-007-7560-2_19 Cañadas, M. C., Blanton, M., & Brizuela, B. M. (2019). Special issue on early algebraic thinking / Número especial sobre el pensamiento algebraico temprano. Infancia y Aprendizaje, 42(3), 469–478. https://doi.org/10.1080/02103702.2019.1638569 Cardozo, M. O., Rua, A. M. L., & Alzate, Ó. E. T. (2019). Modelos de inmunidad en estudiantes universitarios: su evolución como resultado de un proceso de enseñanza. Educação e Pesquisa, 45. https://doi.org/10.1590/s1678-4634201945184698 Cardozo, M. O. (2017). Inmunidad : Modelos Mentales. 4079–4086. Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying Covariational Reasoning While Modeling Dynamic Events: A Framework and a Study. Journal for Research in Mathematics Education, 33(5), 352. https://doi.org/10.2307/4149958 Carpenter, T. P., & Levi, L. (2000). Developing Conceptions of Algebraic Reasoning in the Primary Grades. Research Report. Research Report: National Center for Improving Student Learning and Achievement in Mathematics and Science, 5, 1–22. Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM - International Journal on Mathematics Education, 40(1), 3–22. https://doi.org/10.1007/s11858- 007-0067-7 Carraher, D. W., & Schliemann, A. D. (2018). Cultivating Early Algebraic Thinking. https://doi.org/10.1007/978-3-319-68351-5_5 Carraher, D. W., & Schliemann, A. D. (2019). Early algebraic thinking and the US mathematics standards for grades K to 5. INFANCIA Y APRENDIZAJE, 42(3, SI), 479–522. https://doi.org/10.1080/02103702.2019.1638570 Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115. Carvalho, A. M., & Gonçalves, S. (2021). An analytical solution for the Kermack–McKendrick model. Physica A: Statistical Mechanics and Its Applications, 566. https://doi.org/10.1016/j.physa.2020.125659 Castro, A., Prat, M., & Gorgorio, N. (2016). Conceptual and procedural knowledge in mathematics: their development after decades of research. REVISTA DE EDUCACION, 374, 42–66. https://doi.org/10.4438/1988-592X-RE-2016-374-325 Centrone, S. (2013). The Origin of the Logic of Symbolic Mathematics. Edmund Husserl and Jacob Klein. HISTORY AND PHILOSOPHY OF LOGIC, 34(2), 187–193. https://doi.org/10.1080/01445340.2012.752610 Çelik, D., & Güneş, G. (2013). Different grade students’ use and interpretation of literal symbols. Kuram ve Uygulamada Egitim Bilimleri, 13(2), 1168–1175. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84880094243&partnerID=40&md5=fccbf00d9e578c538894ca2a9503ea3e Çelik, H. C. (2020). Development of symbolic mathematics language literacy perception scale for junior high school students and analysis of literacy perceptions based on certain variables*. International Journal of Mathematical Education in Science and Technology, 51(3). https://doi.org/10.1080/0020739X.2018.1555724 Chandrasekharan, S., & Nersessian, N. J. (2015). Building Cognition: The Construction of Computational Representations for Scientific Discovery. Cognitive Science, 39(8), 1727–1763. https://doi.org/10.1111/cogs.12203 Chen, X., Li, J., Xiao, C., & Yang, P. (2021). Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19. Fuzzy Optimization and Decision Making, 20(2). https://doi.org/10.1007/s10700-020-09342-9 Chen, Y. C., Lu, P. E., Chang, C. S., & Liu, T. H. (2020). A Time-Dependent SIR Model for COVID-19 with Undetectable Infected Persons. IEEE Transactions on Network Science and Engineering, 7(4). https://doi.org/10.1109/TNSE.2020.3024723 Chiappini, G. (2014). The semiotic mediation of digital visual-spatial and deictic diagrams for learning algebra [La mediazione semiotica di diagrammi digitali visuo-spaziali e deittici per l’apprendimento dell ’algebra]. Sistemi Intelligenti, 26(2), 133–162. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84908900396&partnerID=40&md5=9a22a381a217aebaa64f4f6e72e16eb7 Chimoni, M., & Pitta-Pantazi, D. (2017). Parsing the notion of algebraic thinking within a cognitive perspective. Educational Psychology, 37(10), 1186–1205. https://doi.org/10.1080/01443410.2017.1347252 Chimoni, M., Pitta-Pantazi, D., & Christou, C. (2018). Examining early algebraic thinking: insights from empirical data. Educational Studies in Mathematics, 98(1), 57–76. https://doi.org/10.1007/s10649-018- 9803-x Chimoni, M., Pitta-Pantazi, D., & Christou, C. (2023). Unfolding algebraic thinking from a cognitive perspective. Educational Studies in Mathematics, 114(1), 89–108. https://doi.org/10.1007/s10649-023-10218-z Christou, K. P., & Vosniadou, S. (2012). What Kinds of Numbers Do Students Assign to Literal Symbols? Aspects of the Transition from Arithmetic to Algebra. Mathematical Thinking and Learning, 14(1), 1–27. https://doi.org/10.1080/10986065.2012.625074 Chrysostomou, M.-B. M. B., & Christou, C. (2019). Analysing the notion of algebraic thinking based on empirical evidence / Un análisis del concepto de pensamiento algebraico basado en evidencia empírica. Infancia y Aprendizaje, 42(3), 721–781. https://doi.org/10.1080/02103702.2019.1604022 Cinta Munoz-Catalan, M., Ramirez-Garcia, M., Joglar-Prieto, N., & Carrillo-Yanez, J. (2022). Early childhood teachers’ specialised knowledge to promote algebraic thinking as from a task of additive decomposition (El conocimiento especializado del profesor de educacion infantil para fomentar el pensamiento algebraico a partir de una tarea de desco. JOURNAL FOR THE STUDY OF EDUCATION AND DEVELOPMENT, 45(1), 37–80. https://doi.org/10.1080/02103702.2021.1946640 Coelho, F. U., & Aguiar, M. (2018). A história da álgebra e o pensamento algébrico: Correlações com o ensino. Estudos Avancados, 32(94), 171–188. https://doi.org/10.1590/s0103-40142018.3294.0013 Coles, A. (2015). Engaging in mathematics in the classroom: Symbols and experiences. In Engaging in Mathematics in the Classroom: Symbols and Experiences. Taylor and Francis Inc. https://doi.org/10.4324/9781315691329 Coles, A., & Ahn, A. (2022). Developing algebraic activity through conjecturing about relationships. ZDMMathematics Education, 54(6, SI), 1229–1241. https://doi.org/10.1007/s11858-022-01420-z Cortés, J. C., Hitt, F., & Saboya, M. (2016). Arithmetico-algebraic thinking through a mathematical working space in a paper, pencil, and technological environment in secondary school [pensamiento aritméticoalgebraico a través de un espacio de trabajo matemático en un ambiente de papel, lápiz y tecn. Bolema - Mathematics Education Bulletin, 30(54), 240–264. https://doi.org/10.1590/1980-4415v30n54a12 Craik, K. J. W. (1943). The nature of explanation (CUP Archive., Vol. 445). Cambridge University Press Archive. Danesi, M. (2007). A conceptual metaphor framework for the teaching of mathematics. Studies in Philosophy and Education, 26(3). https://doi.org/10.1007/s11217-007-9035-5 Daryaee, A., Shahvarani, A., Tehranian, A., Lotfi, F. H., & Rostamy-Malkhalifeh, M. (2018). Executable functions of the representations in learning the algebraic concepts [Funciones ejecutables de las representaciones en el aprendizaje de los conceptos algebraicos]. PNA, 13(1), 1–18. https://doi.org/10.30827/pna.v13i1.6903 Das, K. (2020). A Study on Misconception of Using Brackets in Arithmetic Expression. Shanlax International Journal of Education, 8(4). https://doi.org/10.34293/education.v8i4.3252 Dascal, M. (2002). Language as a cognitive technology. International Journal of Cognition and Technology, 1(1). https://doi.org/10.1075/ijct.1.1.04das David, M. M., Tomaz, V. S., & Ferreira, M. C. C. (2014). How visual representations participate in algebra classes’ mathematical activity. ZDM - International Journal on Mathematics Education, 46(1), 95–107. https://doi.org/10.1007/s11858-013-0550-2 Demonty, I., Vlassis, J., & Fagnant, A. (2018a). Algebraic thinking, pattern activities and knowledge for teaching at the transition between primary and secondary school. Educational Studies in Mathematics, 99(1). https://doi.org/10.1007/s10649-018-9820-9 Demonty, I., Vlassis, J., & Fagnant, A. (2018b). Algebraic thinking, pattern activities and knowledge for teaching at the transition between primary and secondary school. EDUCATIONAL STUDIES IN MATHEMATICS, 99(1), 1–19. https://doi.org/10.1007/s10649-018-9820-9 Dieudonné, J. (1987). Panorama De Las Matematicas Puras: La Eleccion Bourbakist. Dindyal, J. (2004). Algebraic thinking in geometry at high school level: students’ use of variables and unknowns. National Institute of Education, 27(21). Doran, Y. J. (2017a). The discourse of physics: Building knowledge through language, mathematics and image. In The Discourse of Physics: Building Knowledge through Language, Mathematics and Image. https://doi.org/10.4324/9781315181134 Doran, Y. J. (2017b). The role of mathematics in physics: Building knowledge and describing the empirical world. Onomazein, 35. https://doi.org/10.7764/onomazein.sfl.08 Doran, Y. J. (2018a). Mathematical Statements and Expressions. In The Discourse of Physics. https://doi.org/10.4324/9781315181134-3 Doran, Y. J. (2018b). Mathematical Symbols and the Architecture of the Grammar of Mathematics. In The Discourse of Physics. https://doi.org/10.4324/9781315181134-4 Doran, Y. J. (2019). Building knowledge through images in physics. Visual Communication, 18(2). https://doi.org/10.1177/1470357218759825 Doran, Y. J. (2021a). Multimodal knowledge. In Teaching Science. https://doi.org/10.4324/9781351129282-9 Doran, Y. J. (2021b). Multimodal Knowledge Graphs: Construction, Inference, and Challenges. Teaching Science. Doran, Y. J., Maton, K., & Martin, J. R. (2021). The teaching of science: New insights into knowledge, language and pedagogy. In Teaching Science: Knowledge, Language, Pedagogy. https://doi.org/10.4324/9781351129282-1 Dörfler, W. (1991). Forms and Means of Generalization in Mathematics (pp. 61–85). https://doi.org/10.1007/978-94-017-2195-0_4 Dougherty, B. J., Bryant, D. P., Bryant, B. R., Darrough, R. L., & Pfannenstiel, K. H. (2015). Developing Concepts and Generalizations to Build Algebraic Thinking: The Reversibility, Flexibility, and Generalization Approach. Intervention in School and Clinic, 50(5), 273–281. https://doi.org/10.1177/1053451214560892 Driscoll, M. (1999). Fostering Algebraic Thinking: A Guide for Teachers, Grades 6-10. Duval, R. (1999). Representation, Vision And Visualization: Cognitive Functions In Mathematical Thinking. Basic Issues For Learning. Twenty First Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 25(1). Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z Duval, R. (2017a). How To Learn To Understand Mathematics? Jornal Internacional de Estudos Em Educação Matemática, 10(2), 114. https://doi.org/10.17921/2176-5634.2017v10n2p119-127 Duval, R. (2017b). Registers of Semiotic Representations and Analysis of the Cognitive Functioning of Mathematical Thinking. In Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations (pp. 45–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-56910- 9_3 Duval, R. (2017c). The Registers: Method of Analysis and Identification of Cognitive Variables. In Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations (pp. 73– 111). Springer International Publishing. https://doi.org/10.1007/978-3-319-56910-9_4 Duval, R. (2017d). Understanding the mathematical way of thinking - The registers of semiotic representations. In Understanding the Mathematical Way of Thinking - The Registers of Semiotic Representations. https://doi.org/10.1007/978-3-319-56910-9 Egodawatte, G. (2023). A taxonomy of high school students’ levels of understanding in solving algebraic problems. Teaching Mathematics and Its Applications: An International Journal of the IMA, 42(1), 30– 51. https://doi.org/10.1093/teamat/hrac004 Egodawatte, G., & Stoilescu, D. (2015). Grade 11 students’ interconnected use of conceptual knowledge, procedural skills, and strategic competence in algebra: a mixed method study of error analysis. European Journal of Science and Mathematics Education, 3(3), 289–305. https://doi.org/10.30935/scimath/9438 El Mouhayar, R. (2018). Trends of progression of student level of reasoning and generalization in numerical and figural reasoning approaches in pattern generalization. Educational Studies in Mathematics, 99(1), 89–107. https://doi.org/10.1007/s10649-018-9821-8 Ely, R., & Adams, A. E. (2012). Unknown, placeholder, or variable: what is x? Mathematics Education Research Journal, 24(1), 19–38. https://doi.org/10.1007/s13394-011-0029-9 Erdem, Ö., & Aktaş, G. S. (2018). Assessment of activity-based instruction in overcoming 7th grade middle school students’ misconceptions in Algebra. Turkish Journal of Computer and Mathematics Education, 9(2). https://doi.org/10.16949/turkbilmat.333612 Ernest, P. (1992). The nature of mathematics: Towards a social constructivist account. Science and Education, 1(1). https://doi.org/10.1007/BF00430212 Ezeifeka, C. R. (2015). Grammatical metaphor: In search of proficiency in research abstract writing. SAGE Open, 5(1). https://doi.org/10.1177/2158244015577667 Freudenthal, H. (2002). Didactical Phenomenology of Mathematical Structures. KLUWER ACADEMIC PUBLISHERS NEW. https://doi.org/10.1007/bf02400941 Fey, J. T., & Smith, D. A. (2016). Algebra as part of an integrated high school curriculum. In And the Rest is Just Algebra. Springer International Publishing. https://doi.org/10.1007/978-3-319-45053-7_7 Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(June), 19–25. Firdaus, A. M., Juniati, D., & Wijayanti, P. (2019). Generalization Pattern’s Strategy of Junior High School students based on Gender. Journal of Physics: Conference Series, 1417(1). https://doi.org/10.1088/1742- 6596/1417/1/012045 Flavell, J. H. (1979). Metacognition and Cognitive Monitoring A New Area of Cognitive-Developmental Inquiry A Model of Cognitive Monitoring. In psycnet.apa.org. https://psycnet.apa.org/record/1980- 09388-001 Ford, M., & Johnson-Laird, P. N. (1985). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Language, 61(4), 897. https://doi.org/10.2307/414498 Forigua, J. E., & Velandia, D. A. (2015). Sobre la interpretación y uso de la letra como número generalizado en tareas sobre generalización de patrones: reporte de una experiencia con estudiantes de grado octavo. RECME, 1(1), 273–278. Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108(3). https://doi.org/10.1016/j.cognition.2008.04.007 Frank, Mi. C., Fedorenko, E., & Gibson, E. (2008). Language as a Cognitive Technology: English-Speakers Match Like Pirahã When You Don’t Let Them Count. Proceedings of the Annual Meeting of the Cognitive Science Society, 30(30), 30(30), 439–444. Fried, M. N. (2014). History of mathematics in mathematics education. In International Handbook of Research in History, Philosophy and Science Teaching. Springer Netherlands. https://doi.org/10.1007/978-94-007- 7654-8_21 Fuadiah, N. F., Suryadi, D., & Turmudi. (2019). Teaching and learning activities in classroom and their impact on student misunderstanding: A case study on negative integers. International Journal of Instruction, 12(1), 407–424. https://doi.org/10.29333/iji.2019.12127a Furinghetti, F., & Paola, D. (1994). Parameters, unknowns and variables: A little difference? Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education, January 1994, 368–375. Fyfe, E. R., Matthews, P. G., Amsel, E., McEldoon, K. L., & McNeil, N. M. (2018). Assessing formal knowledge of math equivalence among algebra and pre-algebra students. Journal of Educational Psychology, 110(1), 87–101. https://doi.org/10.1037/edu0000208 Gaeta, G. (2021). A simple SIR model with a large set of asymptomatic infectives. Mathematics In Engineering, 3(2). https://doi.org/10.3934/mine.2021013 Gagatsis, A., & Nardi, E. (2016). Developmental, sociocultural, semiotic, and affect approaches to the study of concepts and conceptual development. In The Second Handbook of Research on the Psychology of Mathematics Education: The Journey Continues. Sense Publishers. https://doi.org/10.1007/978-94-6300- 561-6_6 García, J. V, & Marfileño, V. E. G. (2018). Development of algebraic thinking in high school students through the visual generalization of figural sequences [Desarrollo del pensamiento algebraico en estudiantes de bachillerato a través de la generalización visual de sucesiones de figuras]. Educacion Matematica, 30(2), 49–72. https://doi.org/10.24844/EM3002.03 Gasco-Txabarri, J. (2017). Arithmetic - algebraic problem solving and learning strategies in maths. An study in secondary education [La resolución de problemas aritmético - algebraicos y las estrategias de aprendizaje en matemáticas. Un estudio en educación secundaria obligatoria (. Revista Latinoamericana de Investigacion En Matematica Educativa, 20(2). https://doi.org/10.12802/relime.17.2022 Genareo, V. R., Foegen, A., Dougherty, B. J., DeLeeuw, W. W., Olson, J., & Karaman Dundar, R. (2019). Technical Adequacy of Procedural and Conceptual Algebra Screening Measures in High School Algebra. Assessment for Effective Intervention. https://doi.org/10.1177/1534508419862025 German, A. (2018). From Intermediates through Eidetic Numbers: Plato on the Limits of Counting. PLATO JOURNAL, 18, 111–124. https://doi.org/10.14195/2183-4105_18_9 Giltrow, J. (1995). Writing Science: Literary and Discursive Power by M.A.K. Halliday and J.R. Martin. Discourse and Writing/Rédactologie, 12(1). https://doi.org/10.31468/cjsdwr.388 Godino, J. D., Aké, L. P., Gonzato, M., & Wilhelmi, M. R. (2014). Algebrization levels of school mathematics activity. Implication for primary school teacher education [Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros]. Ensenanza de Las Ciencias, 32(1), 199–219. https://doi.org/10.5565/rev/ensciencias.965 Godino, J. D., Wilhelmi, M. R., Blanco, T. F., Contreras, Ángel., & Giacomone, Belén. (2016). Análisis de la actividad matemática mediante dos herramientas teóricas: Registros de representación semiótica y configuración ontosemiótica. Avances de Investigación En Educación Matemática, 10, 91–110. https://doi.org/10.35763/aiem.v0i10.144 Gómez, P., Castro, P., Bulla, A., Mora, M. F., & Pinzón, A. (2015). Derechos básicos de aprendizaje en matemáticas: revisión crítica y propuesta de ajuste. Scielo.Org.Co, 19(3), 315–338. https://doi.org/10.5294/edu.2016.19.3.1 Gómez, P., & Ley, L. (2010). DISEÑO CURRICULAR EN COLOMBIA. EL CASO DE LAS MATEMÁTICAS VERSIÓN CORTA. Goos, M., Geiger, V., & Bennison, A. (2015). Conceptualising And Enacting Numeracy. Psychology of Mathematics Education Conference, 3. Gounane, S., Barkouch, Y., Atlas, A., Bendahmane, M., Karami, F., & Meskine, D. (2021). An adaptive social distancing SIR model for COVID-19 disease spreading and forecasting. Epidemiologic Methods, 10(s1). https://doi.org/10.1515/em-2020-0044 Grant, H., & Kleiner, I. (2015). Turning Points in the History of Mathematics. Springer New York. https://doi.org/10.1007/978-1-4939-3264-1 Gray, J. (2018). A History of Abstract Algebra. Springer International Publishing. https://doi.org/10.1007/978- 3-319-94773-0 Greefrath, G., & Vorhölter, K. (2016). Teaching and Learning Mathematical Modelling: Approaches and Developments from German Speaking Countries. https://doi.org/10.1007/978-3-319-45004-9_1 Gualberto, C., Dos Santos, Z. B., & Meira, A. C. (2020). Multimodal metaphors: From language as a condition to text to the notion of texture as a meaning-making semiotic resource. Revista de Estudos Da Linguagem, 28(2). https://doi.org/10.17851/2237-2083.28.2.893-915 Gullick, M. M., & Wolford, G. (2014). Brain systems involved in arithmetic with positive versus negative numbers. Human Brain Mapping, 35(2), 539–551. https://doi.org/10.1002/hbm.22201 Guzmán Bautista, N. A. (2013). Una propuesta para desarrollar pensamiento algebraico desde la básica primaria a través de la aritmética generalizada. Facultad de Ciencias. Guzmán, N., Pulido, J., & Alarcón, M. (2013). De la aritmética discreta, al concepto de variable. Hackenberg, A. J., Jones, R., Eker, A., & Creager, M. (2017). “Approximate” multiplicative relationships between quantitative unknowns. Journal of Mathematical Behavior, 48, 38–61. https://doi.org/10.1016/j.jmathb.2017.07.002 Hackenberg, A. J., & Lee, M. Y. (2016). Students’ distributive reasoning with fractions and unknowns. Educational Studies in Mathematics, 93(2), 245–263. https://doi.org/10.1007/s10649-016-9704-9 Hachey, A. C. (2013). The Early Childhood Mathematics Education Revolution. Early Education and Development, 24(4), 419–430. https://doi.org/10.1080/10409289.2012.756223 Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and meaning. Hodder Education. Halliday, M. A. K. (1993a). Towards a language-based theory of learning. Linguistics and Education, 5(2), 93– 116. Halliday, M. A. K. (1999). The notion of “context” in language education (p. 1). https://doi.org/10.1075/cilt.169.04hal Halliday M. A. K., & Martin, J. R. (1993b). Writing science: Literacy and discursive power. (The Falmer Press). Taylor & Francis. Hamilton, E., Lesh, R., Lester, F., & Yoon, C. (2020). The Use of Reflection Tools to Build Personal Models of Problem-Solving. In Foundations for the Future in Mathematics Education. https://doi.org/10.4324/9781003064527-21 Hardiani, N., Budayasa, I. K., & Juniati, D. (2018). Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style. In N. A. B. D. L. A. W. S. C. Ekawati R. Rahayu Y.S. (Ed.), Journal of Physics: Conference Series (Vol. 947, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/947/1/012051 Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428. https://doi.org/10.2307/749651 Hausberger, T. (2017). La dialectique objets-structures comme cadre de référence pour une étude didactique du structuralisme algébrique. Éducation et Didactique, 11(2). https://doi.org/10.4000/educationdidactique.2750 Hausberger, T., Zandieh, M., & Fleischmann, Y. (2021). Abstract and Linear Algebra. In Research and Development in University Mathematics Education. https://doi.org/10.4324/9780429346859-11 Heid, M. K. (1996). A Technology-Intensive Functional Approach to the Emergence of Algebraic Thinking. In Approaches to Algebra. https://doi.org/10.1007/978-94-009-1732-3_18 Henao-Cespedes, V., Garcés-Gómez, Y. A., Ruggeri, S., & Henao-Cespedes, T. M. (2022). Relationship analysis between the spread of COVID-19 and the multidimensional poverty index in the city of Manizales, Colombia. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 197–204. https://doi.org/10.1016/j.ejrs.2021.04.002 Hernández García, K. L., & Tapiero Castellanos, K. J. (2014). Desarrollo del razonamiento algebraico a partir de la generalización de patrones gráficos-icónicos en estudiantes de educación básica primaria. http://funes.uniandes.edu.co/11520/1/Hernández2014Desarrollo.pdf Herscovics, N., & Kieran, C. (1980). Constructing Meaning For The Concept Of Equation. The Mathematics Teacher, 73(8), 572–580. http://www.jstor.org/stable/27962179 Herscovics, N., & Linchevscki, L. (1994). A Cognitive Gap between Arithmetic and Algebra Nicolas Herscovics ; Liora Linchevski. Educational Studies, 27(1), 59–78. Hewitt, D. (2012). Young students learning formal algebraic notation and solving linear equations: are commonly experienced difficulties avoidable? EDUCATIONAL STUDIES IN MATHEMATICS, 81(2), 139–159. https://doi.org/10.1007/s10649-012-9394-x Hewitt, D. (2014). A Symbolic Dance: The Interplay Between Movement, Notation, and Mathematics on a Journey Toward Solving Equations. Mathematical Thinking and Learning, 16(1), 1–31. https://doi.org/10.1080/10986065.2014.857803 Hitt, F., Saboya, M., & Cortés Zavala, C. (2016). An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: triangular numbers. ZDM - Mathematics Education, 48(6), 775–791. https://doi.org/10.1007/s11858-015-0749-5 Hitt, F., Saboya, M., Zavala, C. C., & GRUTEAM. (2017). Rupture or continuity: The arithmetico-algebraic thinking as an alternative in a modelling process in a paper and pencil and technology environment. Educational Studies in Mathematics, 94(1), 97–116. https://doi.org/10.1007/s10649-016-9717-4 Hodnik Čadež, T., & Manfreda Kolar, V. (2015). Comparison of types of generalizations and problem-solving schemas used to solve a mathematical problem. Educational Studies in Mathematics, 89(2), 283–306. https://doi.org/10.1007/s10649-015-9598-y Hohol, M., & Miłkowski, M. (2019). Cognitive Artifacts for Geometric Reasoning. Foundations of Science, 24(4), 657–680. https://doi.org/10.1007/s10699-019-09603-w Huerta Cuervo, M. R. (2006). Iberoamérica en PISA 2006: Informe regional del Grupo Iberoamericano de PISA. Gestión y Politica Pública, 19(2), 420-430. Humberstone, J., & Reeve, R. A. (2018). The conceptual overlap between arithmetic and algebraic referential mapping. Learning and Instruction, 54, 138–146. https://doi.org/10.1016/j.learninstruc.2017.09.001 Hurst, M., & Cordes, S. (2017). Working memory strategies during rational number magnitude processing. Journal of Educational Psychology, 109(5), 694–708. https://doi.org/10.1037/edu0000169 Hurst, M., & Cordes, S. (2018). A systematic investigation of the link between rational number processing and algebra ability. British Journal of Psychology, 109(1), 99–117. https://doi.org/10.1111/bjop.12244 Iedema, R. (2001). Resemiotization. Semiotica, 2001(137), 23–39. https://doi.org/10.1515/semi.2001.106 Iedema, R. (2003). Multimodality, resemiotization: extending the analysis of discourse as multi-semiotic practice. Visual Communication, 2(1), 29–57. https://doi.org/10.1177/1470357203002001751 Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38(3), 258–288. Jacobson, E. (2014). Using Covariation Reasoning to Support Mathematical Modeling. The Mathematics Teacher, 107(7), 515–519. https://doi.org/10.5951/mathteacher.107.7.0515 Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1–16. https://doi.org/10.1007/s10649-017-9761-8 Johanning, D. I. (2004). Supporting the development of algebraic thinking in middle school: A closer look at students’ informal strategies. Journal of Mathematical Behavior, 23(4), 371–388. https://doi.org/10.1016/j.jmathb.2004.09.001 Johansen, M. W., & Misfeldt, M. (2015). Semiotic Scaffolding in Mathematics. Biosemiotics, 8(2), 325–340. https://doi.org/10.1007/s12304-014-9228-6 Johansson, M., Lange, T., Meaney, T., Riesbeck, E., & Wernberg, A. (2014). Young children’s multimodal mathematical explanations. ZDM - International Journal on Mathematics Education, 46(6), 895–909. https://doi.org/10.1007/s11858-014-0614-y Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4(1), 71–115. Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences, 107(43), 18243–18250. https://doi.org/10.1073/pnas.1012933107 Jones, I. (2012). Early algebraization: a global dialogue from multiple perspectives. Research in Mathematics Education, 14(3), 301–305. https://doi.org/10.1080/14794802.2012.734996 Kalra, P. B., Hubbard, E. M., & Matthews, P. G. (2020). Taking the relational structure of fractions seriously: Relational reasoning predicts fraction knowledge in elementary school children. Contemporary Educational Psychology, 62. https://doi.org/10.1016/j.cedpsych.2020.101896 Kanbir, S., Clements, M. A., & Ellerton, N. F. (2018a). Using Design Research and History to Tackle a Fundamental Problem with School Algebra. https://doi.org/10.1007/978-3-319-59204-6 Kanbir, S., Clements, M. A., & Ellerton, N. F. (2018b). Using design research and history to tackle a fundamental problem with school algebra: Improving the quality of algebra education at the middleschool level. Kang, M. (2023). The susceptible–infected–recovered model as a tool to motivate and teach differential equations: an analytic approach. In International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2023.2249898 Kaput, J. J. (2017). 1 What Is Algebra? What Is Algebraic Reasoning? In Algebra In The Early Grades (pp. 5– 18). Routledge. https://doi.org/10.4324/9781315097435-2 Kaput, J. J., & Blanton, M. L. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412. https://my.nctm.org/eresources/view_media.asp?article_id=7228 Kaput, J. J., Blanton, M. L., & Moreno, L. (2018). 2 Algebra From a Symbolization Point of View. In Algebra In The Early Grades (pp. 19–56). Routledge. https://doi.org/10.4324/9781315097435-3 Kaput, J. J., Carraher, D. W., & Blanton, M. L. (2008). Algebra In the Early Grades (J. J. Kaput, D. W. Carraher, & M. L. Blanton, Eds.). Taylor & Francis Group. http://taylorandfrancis.com Kaur, B. (2014). Developing procedural fluency in algebraic structures - a case study of a mathematics classroom in Singapore. In Algebra Teaching around the World. Sense Publishers. https://doi.org/10.1007/978-94- 6209-707-0 Kellogg, D., & Shin, J. young. (2018). Vygotsky, Hasan and Halliday: Towards Conceptual Complementarity. British Journal of Educational Studies, 66(3). https://doi.org/10.1080/00071005.2017.1364695 Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721. Kerrigan, S. T. (2023). Modeling Middle Grade Students’ Algebraic and Covariational Reasoning using Unit Transformations and Working Memory . Virginia Tech. Ketterlin-Geller, L. R., Shivraj, P., Basaraba, D., & Schielack, J. (2019). Universal screening for algebra readiness in middle school: Why, what, and does it work? Investigations in Mathematics Learning, 11(2), 120–133. https://doi.org/10.1080/19477503.2017.1401033 Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326. https://doi.org/10.1007/BF00311062 Kieran, C. (1988). The equation-solving errors of novice and intermediate algebra students. Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, 1. Kieran, C. (1989). The early learning of algebra: A structural perspective. In Research issues in the learning and teaching of Algebra (pp. 33–56). Routledge. https://doi.org/10.4324/9781315044378-4 Kieran, C. (1991). Research Into Practice: Helping to Make the Transition to Algebra. The Arithmetic Teacher, 38(7), 49–51. https://doi.org/10.5951/AT.38.7.0049 Kieran, C. (1992). The learning and teaching of school algebra. https://psycnet.apa.org/record/1992-97586-017 Kieran, C. (1995). A new look at school algebra-Past, present, and future. Journal of Mathematical Behavior, 14(1). https://doi.org/10.1016/0732-3123(95)90020-9 Kieran, C. (1996). The changing face of school algebra. 8th International Congress on Mathematical Education. https://dialnet.unirioja.es/servlet/articulo?codigo=2858391 Kieran, C. (2004). Algebraic thinking in the early grades: What is it. The Mathematics Educator, 8(1), 139– 151. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. Second handbook of research on mathematics teaching and learning, 2, 707-762. Kieran, C. (2011). Cognitive Processes Involved in Learning School Algebra. In Mathematics and Cognition. https://doi.org/10.1017/cbo9781139013499.007 Kieran, C. (2013). The False Dichotomy in Mathematics Education Between Conceptual Understanding and Procedural Skills: An Example from Algebra. In Vital Directions for Mathematics Education Research (Vol. 9781461469773, pp. 153–171). Springer New York. https://doi.org/10.1007/978-1-4614-6977-3_7 Kieran, C. (2014). Algebra Teaching and Learning. In Encyclopedia of Mathematics Education (pp. 27–32). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_6 Kieran, C. (2016). Cognitive neuroscience and algebra: Challenging some traditional beliefs. In And the Rest is Just Algebra. https://doi.org/10.1007/978-3-319-45053-7_9 Kieran, C. (2018). The Early Learning of Algebra: A Structural Perspective. In Research Issues in the Learning and Teaching of Algebra (pp. 33–56). Routledge. https://doi.org/10.4324/9781315044378-4 Kieran, C. (2022). The multi-dimensionality of early algebraic thinking: background, overarching dimensions, and new directions. ZDM-MATHEMATICS EDUCATION, 54(6, SI), 1131–1150. https://doi.org/10.1007/s11858-022-01435-6 Kieran, C., & Filloy Yagüe, E. (1989). El Aprendizaje del Álgebra Escolar Desde Una Perspectiva Psicológica. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 7(3), 229–240. Kieran, C., & Guzmán, J. (2010). Role of Task and Technology in Provoking Teacher Change: A Case of Proofs and Proving in High School Algebra. In Learning Through Teaching Mathematics (pp. 127–152). Springer Netherlands. https://doi.org/10.1007/978-90-481-3990-3_7 Kieran, C., & Martínez-Hernández, C. (2022). Coordinating invisible and visible sameness within equivalence transformations of numerical equalities by 10- to 12-year-olds in their movement from computational to structural approaches. ZDM – Mathematics Education, 54(6), 1215–1227. https://doi.org/10.1007/s11858- 022-01355-5 Kilhamn, C., Bråting, K., Helenius, O., & Mason, J. (2022). Variables in early algebra: exploring didactic potentials in programming activities. ZDM – Mathematics Education, 54(6), 1273–1288. https://doi.org/10.1007/s11858-022-01384-0 Kızıltoprak, A., & Köse, N. Y. (2017). Relational thinking: The bridge between arithmetic and algebra. International Electronic Journal of Elementary Education, 10(1), 131–145. https://doi.org/10.26822/iejee.2017131893 Klein, J. (1992). Greek mathematical thought and the origin of algebra. Courier Corporation. Kline, M. (1990). Mathematical Thought From Ancient to Modern Times: Volume 3. https://books.google.es/books?hl=es&lr=&id=- OsRDAAAQBAJ&oi=fnd&pg=PP1&dq=kline+1990+mathematical+thought&ots=Aw_hVPX_sW&sig= YxLI5bfR9-weucYjfNIXoPJXvkY Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle School Students ’ Understanding of Core Algebraic. Zdm, 37(1), 68–76. https://doi.org/10.1007/BF0255899.E.J. Köklü, Ö. (2007). An investigation of college students’ covariational reasoning. In Office. Köklü O., & Jakubowski, E. (2010). From Interpretations to Graphical Representations: A Case Study Investigation of Covariational Reasoning. EURASIAN JOURNAL OF EDUCATIONAL RESEARCH, 10(40), 151–170. Koochesfahani, A. (2016). On Jacob Klein’s Greek Mathematical Thought and the Origin of Algebra. The St. John’s Review, 57(2), 47–69. Kriegler, S. (2007). Just WHAT IS ALGEBRAIC THINKING ? Introduction to Algebra :TeacherHandbook, 1–11. https://mathandteaching.org/uploads/Articles_PDF/articles-01-kriegler.pdf Kroeger, L. A., Brown, R. D., & O’Brien, B. A. (2012). Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs. Early Education and Development, 23(1), 37–58. https://doi.org/10.1080/10409289.2012.617289 Kröger, M., Turkyilmazoglu, M., & Schlickeiser, R. (2021). Explicit formulae for the peak time of an epidemic from the SIR model. Which approximant to use? Physica D: Nonlinear Phenomena, 425. https://doi.org/10.1016/j.physd.2021.132981 Kuchemann, D. (1978). Children’s understanding of numerical variables. Mathematics in School, 7(4), 23–26. Kusuma, N. F., Subanti, S., & Usodo, B. (2018). Students’ misconception on equal sign. In Dafik (Ed.), Journal of Physics: Conference Series (Vol. 1008, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1008/1/012058 Kvasz, L. (2006). The history of algebra and the development of the form of its language. Philosophia Mathematica, 14(3), 287–317. https://doi.org/10.1093/philmat/nkj017 Lan, X., & Ying, Z. (2021). Teaching Derivative Concept Using 6 Questions Cognitive Model. Journal of Didactic Mathematics, 1(3). https://doi.org/10.34007/jdm.v1i3.371 Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 720–733. https://doi.org/10.1037/0278-7393.33.4.720 Lee, K., Yeong, S. H. M., Ng, S. F., Venkatraman, V., Graham, S., & Chee, M. W. L. (2010). Computing solutions to algebraic problems using a symbolic versus a schematic strategy. ZDM - International Journal on Mathematics Education, 42(6), 591–605. https://doi.org/10.1007/s11858-010-0265-6 Lee, M. Y., & Hackenberg, A. J. (2014). Relationships Between Fractional Knowledge and Algebraic Reasoning: The Case Of Willa. International Journal of Science and Mathematics Education, 12(4), 975–1000. https://doi.org/10.1007/s10763-013-9442-8 Lee, K., Ng, S. F., & Bull, R. (2018). Learning and solving algebra word problems: The roles of relational skills, arithmetic, and executive functioning. Developmental Psychology, 54(9), 1758–1772. https://doi.org/10.1037/dev0000561 Leikin, M., Waisman, I., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry. Journal of Integrative Neuroscience, 13(1), 35–59. https://doi.org/10.1142/S0219635214500034 Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing, 1–14. http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=ED430792%5Cnhttp://www.jaylemke.com/ storage/Math-in-the-Middle-2002.pdf Lepak, J. R., Wernet, J. L. W. W., & Ayieko, R. A. (2018). Capturing and characterizing students’ strategic algebraic reasoning through cognitively demanding tasks with focus on representations. Journal of Mathematical Behavior, 50(January), 57–73. https://doi.org/10.1016/j.jmathb.2018.01.003 Lerna, C. (2014). Burt C. Hopkins. The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. Studies in Continental Thought. Philosophia Mathematica, 22(2), 249–262. https://doi.org/10.1093/philmat/nku007 Lesh, R. (2006). Modeling Students Modeling Abilities: The Teaching and Learning of Complex Systems in Education. Journal of the Learning Sciences, 15(1), 45–52. https://doi.org/10.1207/s15327809jls1501_6 Levin, M., & Walkoe, J. (2022). Seeds of algebraic thinking: a Knowledge in Pieces perspective on the development of algebraic thinking. ZDM-MATHEMATICS EDUCATION, 54(6, SI), 1303–1314. https://doi.org/10.1007/s11858-022-01374-2 Libkind, S., Baas, A., Halter, M., Patterson, E., & Fairbanks, J. P. (2022). An algebraic framework for structured epidemic modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2233). https://doi.org/10.1098/rsta.2021.0309 Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations. Educational Studies in Mathematics, 30(1). https://doi.org/10.1007/BF00163752 Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2). https://doi.org/10.1023/A:1003606308064 Liu, Y., & O’Halloran, K. L. (2009). Intersemiotic Texture: analyzing cohesive devices between language and images. Social Semiotics, 19(4), 367–388. https://doi.org/10.1080/10350330903361059 Looi, C.-K., & Lim, K.-S. (2009). From bar diagrams to letter-symbolic algebra: a technology-enabled bridging. Journal of Computer Assisted Learning, 25(4), 358–374. https://doi.org/10.1111/j.1365- 2729.2009.00313.x Lopes, A. P. C. e. (2023). Advanced algebraic thinking processes in students’ modelling activities. Teaching Mathematics and Its Applications: An International Journal of the IMA, 42(4), 360–374. https://doi.org/10.1093/teamat/hrac024 Luzardo, D., & Peña P, A. J. (2006). History of linear algebra up to the dawn of the 20th century | Historia del álgebra lineal hasta los albores del siglo XX. Divulgaciones Matematicas, 14(2). Madej, L. (2022). Primary School Students’ Knowledge of the Equal Sign—the Swedish Case. International Journal of Science and Mathematics Education, 20(2), 321–343. https://doi.org/10.1007/s10763-020- 10144-z Magiera, M. T., van den Kieboom, L. A., & Moyer, J. C. (2013). An exploratory study of pre-service middle school teachers’ knowledge of algebraic thinking. Educational Studies in Mathematics, 84(1), 93–113. https://doi.org/10.1007/s10649-013-9472-8 Maj-Tatsis, B., & Tatsis, K. (2018). The use of variables in a patterning activity: Counting dots [Uporaba spremenljivk pri zaporedjih: štetje pik]. Center for Educational Policy Studies Journal, 8(2), 55–70. https://doi.org/10.26529/cepsj.309 Maffia, A., & Mariotti, M. A. (2020). From action to symbols: giving meaning to the symbolic representation of the distributive law in primary school. Educational Studies in Mathematics, 104(1), 25–40. https://doi.org/10.1007/s10649-020-09944-5 Malisani, E. E., & Spagnolo, F. (2009). From arithmetical thought to algebraic thought: The role of the “variable.” Educational Studies in Mathematics, 71(1), 19–41. https://doi.org/10.1007/s10649-008-9157- x Mandal, S., & Naskar, S. K. (2019). Solving Arithmetic Word Problems by Object Oriented Modeling and Query-Based Information Processing. International Journal on Artificial Intelligence Tools, 28(4, SI). https://doi.org/10.1142/S0218213019400025 Marshall, S. P. (1995). Schemas in Problem Solving. In Schemas in Problem Solving. https://doi.org/10.1017/cbo9780511527890 Martin, J. R., & Veel, R. (2005). Reading science: Critical and functional perspectives on discourses of science. In Reading Science: Critical and Functional Perspectives on Discourses of Science. https://doi.org/10.4324/9780203982327 Martinez, M. V., Brizuela, B. M., & Superfine, A. C. (2011). Integrating algebra and proof in high school mathematics: An exploratory study. Journal of Mathematical Behavior, 30(1), 30–47. https://doi.org/10.1016/j.jmathb.2010.11.002 Martinez-Leon, I., Olmedo-Cifuentes, I., Arcas-Lario, N., & Zapata-Conesa, J. (2018). Cooperatives in Education: Teacher Job Satisfaction and Gender Differences. CIRIEC-ESPANA REVISTA DE ECONOMIA PUBLICA SOCIAL Y COOPERATIVA, 94, 31–60. https://doi.org/10.7203/CIRIECE. 94.12700 Mason, J. (2016). Overcoming the algebra barrier: Being particular about the general, and generally looking beyond the particular, in Homage to Mary Boole. In And the Rest is Just Algebra. Springer International Publishing. https://doi.org/10.1007/978-3-319-45053-7_6 Mason, J. (2018a). 3 Making Use of Children’s Powers to Produce Algebraic Thinking. Algebra In The Early Grades, April, 57–94. https://doi.org/10.4324/9781315097435-4 Mason, J. (2018b). Structuring Structural Awareness: A Commentary on Chapter 13. New ICMI Study Series, 325–340. https://doi.org/10.1007/978-3-319-63555-2_14 Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43(3). https://doi.org/10.5951/jresematheduc.43.3.0316 Maurício de Carvalho, J. P. S., & Rodrigues, A. A. (2023). SIR Model with Vaccination: Bifurcation Analysis. Qualitative Theory of Dynamical Systems, 22(3). https://doi.org/10.1007/s12346-023-00802-2 Mavrikis, M., Noss, R., Hoyles, C., & Geraniou, E. (2013). Sowing the seeds of algebraic generalization: Designing epistemic affordances for an intelligent microworld. Journal of Computer Assisted Learning, 29(1), 68–84. https://doi.org/10.1111/j.1365-2729.2011.00469.x Mayo Clinic. (2022). Enfermedad del coronavirus 2019 (COVID-19). Https://Www.Mayoclinic.Org/Es- Es/Diseases-Conditions/Coronavirus/Symptoms-Causes/Syc-20479963. Medova, J., Bulkova, K. O., & Ceretkova, S. (2020). Relations between Generalization, Reasoning and Combinatorial Thinking in Solving Mathematical Open-Ended Problems within Mathematical Contest. MATHEMATICS, 8(12). https://doi.org/10.3390/math8122257 Medvedeva, M., Simos, T. E., Tsitouras, C., & Katsikis, V. (2021). Direct estimation of SIR model parameters through second-order finite differences. Mathematical Methods in the Applied Sciences, 44(5). https://doi.org/10.1002/mma.6985 Meert, G., Greǵoire, J., Seron, X., & Noël, M.-P. (2013). The processing of symbolic and nonsymbolic ratios in school-age children. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0082002 MEN. (1998). Lineamientos curriculares en Matemáticas. Ministerio de Educación Nacional. MEN, M. de E. N. de C. (2016). Derechos Básicos de Aprendizaje. Merriam, S. B. (1998). Qualitative research and case study applications in education. In Dados (Vol. 2nd). Meyer, A., & Fischer, A. (2013). How Algebraic Symbol Use Supports Algebraic Thinking-Theoretical Insights [Wie algebraische Symbolsprache die Möglichkeiten für algebraisches Denken erweitert - Eine Theorie symbolsprachlichen algebraischen Denkens]. Journal Fur Mathematik-Didaktik, 34(2), 177–208. https://doi.org/10.1007/s13138-013-0054-1 Meyer, C., & Meyer, C. B. (2016). A Case in Case Study Methodology. In Case Studies. https://doi.org/10.4135/9781473915480.n22 Mielicki, M. K., Kacinik, N. A., & Wiley, J. (2017). Bilingualism and symbolic abstraction: Implications for algebra learning. Learning and Instruction, 49, 242–250. https://doi.org/10.1016/j.learninstruc.2017.03.002 Miłkowski, M. (2022). Cognitive Artifacts and Their Virtues in Scientific Practice. Studies in Logic, Grammar and Rhetoric, 67(3). https://doi.org/10.2478/slgr-2022-0012 Miller, M. E. (2023). Mathematical Structure and Empirical Content. The British Journal for the Philosophy of Science, 74(2), 511–532. https://doi.org/10.1086/714814 Mohsen, N. S. (2022). Algebraic thinking and its relation to metacognitive skills among middle school students. INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 14(3), 4823– 4831. https://doi.org/10.9756/INT-JECSE/V14I3.639 Moritz, J. (2004). Reasoning about Covariation. In The Challenge of Developing Statistical Literacy, Reasoning and Thinking (pp. 227–255). Springer Netherlands. https://doi.org/10.1007/1-4020-2278-6_10 Morsanyi, K., van Bers, B. M. C. W., O’Connor, P. A., & McCormack, T. (2020). The role of numerical and non-numerical ordering abilities in mathematics and reading in middle childhood. Contemporary Educational Psychology, 62. https://doi.org/10.1016/j.cedpsych.2020.101895 Moulines, C. U. (1996). Structuralist Models, Idealization, and Approximation. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), MModelling and Simulation in the Social Sciences from the Philosophy of Science Point of View. Theory and Decision Library (Series A: Philosophy and Methodology of the Social Sciences). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-015-8686-3_9 Moulines, C. U. (2005). Models of data, theoretical models, and ontology: A structuralist perspective. In Activity and Sign: Grounding Mathematics Education (pp. 325–333). Springer US. https://doi.org/10.1007/0-387-24270-8_28 Mulligan, J., Verschaffel, L., Baccaglini-Frank, A., Coles, A., Gould, P., He, S., Ma, Y., Milinković, J., Obersteiner, A., Roberts, N., Sinclair, N., Wang, Y., Xie, S., & Yang, D.-C. (2018). Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive and Developmental Approaches. New ICMI Study Series, 137–167. https://doi.org/10.1007/978-3-319-63555-2_7 Muniroh, A., Usodo, B., & Subanti, S. (2017). Algebraic Form Problem Solving Based on Student Abstraction Ability. In R. A. A. G. Riza L.S. Nandiyanto A.B.D. (Ed.), Journal of Physics: Conference Series (Vol. 895, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/895/1/012038 Mustaffa, N. B., Ismail, Z. B., Said, M. N. H. B. M., & Tasir, Z. B. (2017). A review on the development of algebraic thinking through technology. Advanced Science Letters, 23(4), 2951–2953. https://doi.org/10.1166/asl.2017.7615 Mustaffa, N., Ismail, Z., Tasir, Z., & Said, M. N. H. B. M. (2015). A review on the developing algebraic thinking. Advanced Science Letters, 21(10), 3381–3383. https://doi.org/10.1166/asl.2015.6511 Mustaffa, N., Mohamad Said, M. N. H., Ismail, Z., & Tasir, Z. (2018). The effect of integrating algebraic thinking in problem-based learning via virtual environment among secondary school students. In W. L.- H. C. M. Rodrigo M.M.T. Yang J.-C. (Ed.), ICCE 2018 - 26th International Conference on Computers in Education, Main Conference Proceedings (pp. 187–192). Asia-Pacific Society for Computers in Education. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85060006300&partnerID=40&md5=e49435c2e574aa8819462e3f17e2b4cc Mustaffa, N., Said, M. N. H. M., Ismail, Z., & Tasir, Z. (2019). Framework of Integrating Algebraic Thinking in Problem-Based Learning via Online Environment for School Students. In W. G. K. W. S. J. R. M. L. L. C. U. V. N. Lee M.J.W. Nikolic S. (Ed.), Proceedings of 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2018 (pp. 372–378). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TALE.2018.8615390 Navas Cárdenas, A. M., & Martínez Rivera, C. A. (2017). Los referentes curriculares instituidos para la elaboración del conocimiento escolar en ciencias en Colombia:¿ qué caracteriza la estructura de los estándares. Enseñanza de Las Ciencias, Extra, 1183-1188. Navia Imbachí, C. H., & Tamayo Alzate, Ó. E. (2020). Modelos mentales sobre el concepto de ambiente en estudiantes indígenas de educación básica. Latinoamericana de Estudios Educativos, 16(1). https://doi.org/10.17151/rlee.2020.16.1.2 Ngu, B. H., Chung, S. F., & Yeung, A. S. (2015). Cognitive load in algebra: element interactivity in solving equations. Educational Psychology, 35(3), 271–293. https://doi.org/10.1080/01443410.2013.878019 Nicolás, P. (2015). Structuralism and theories in mathematics education. CERME9, 9, 2688–2694. Niess, M. L. (2014). Leveraging dynamic and dependable spreadsheets focusing on algebraic thinking and reasoning. In Cases on Technology Integration in Mathematics Education. IGI Global. https://doi.org/10.4018/978-1-4666-6497-5.ch001 Ningrum, Y., Kusmayadi, T. A., & Fitriana, L. (2019). Analysis problem solving about contextual problem of algebraic in junior high school. In Dafik (Ed.), Journal of Physics: Conference Series (Vol. 1211, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1211/1/012102 Norman, D. A. (1983). Some observations on mental models. In G. Dedre & Albert L. Stevens (Eds.), Mental Models (1st Edition, pp. 15–22). Psychology Press. Norman, D. A. (1992). Design principles for cognitive artifacts. Research in Engineering Design, 4(1). https://doi.org/10.1007/BF02032391 Nurhayati, D. M., Herman, T., & Suhendra, S. (2017). Analysis of Secondary School Students’ Algebraic Thinking and Math-Talk Learning Community to Help Students Learn. Journal of Physics: Conference Series, 895(1), 012054. https://doi.org/10.1088/1742-6596/895/1/012054 Obara, S. (2019). Pre-service teachers exploring the role of pattern-based reasoning in the context of algebraic thinking. Eurasia Journal of Mathematics, Science and Technology Education, 15(11). https://doi.org/10.29333/ejmste/109262 Oaks, J. A. (2018a). François Viète’s revolution in algebra. Archive for History of Exact Sciences, 72(3), 245– 302. https://doi.org/10.1007/s00407-018-0208-0 Oaks, J. A. (2018b). François Viète’s revolution in algebra. Archive for History of Exact Sciences, 72(3), 245– 302. https://doi.org/10.1007/s00407-018-0208-0 O’Halloran, K. (2008a). Mathematical discourse: Language, symbolism and visual images. . Continium. O’Halloran, K. L. (1999). Towards a systemic functional analysis of multisemiotic mathematics texts. Semiotica, 124(1–2), 1–30. https://doi.org/10.1515/semi.1999.124.1-2.1 O’Halloran, K. L. (2006). Mathematical discourse: language, symbolism and the visual images. Choice Reviews Online, 43(11), 43-6575-43–6575. https://doi.org/10.5860/CHOICE.43-6575 O’Halloran, K. L. (2008). Language and Visual Imagery. Visual Communication, 7(4). O’Halloran, K. L. (2011). The semantic hyperspace: Accumulating mathematical knowledge across semiotic resources and modalities. In F. Christie & K. Maton (Eds.), Disciplinarity: Functional linguistic and sociological perspectives (pp. 217-236.). Continuum. O’ Halloran, K. L. (2014). Halliday and Multimodal Semiotics. SemiotiX New Series. O’Halloran, K. L. (2015). The language of learning mathematics: A multimodal perspective. The Journal of Mathematical Behavior, 40, 63–74. https://doi.org/10.1016/j.jmathb.2014.09.002 O’Halloran, K. L. (2023). Matter, meaning and semiotics. Visual Communication, 22(1), 174–201. https://doi.org/10.1177/14703572221128881 O’Halloran, K. L., Tan, S., & Wignell, P. (2016). Intersemiotic Translation as Resemiotisation: A Multimodal Perspective. Signata, 7, 199–229. https://doi.org/10.4000/signata.1223 Orrego Cardozo, M., López Rúa, A. M., & Tamayo Alzate, Ó. E. (2012). Modelos de inflamación en estudiantes universitarios. Revista Latinoamericana de Estudios Educativos, 8(1). Orrego, M., López, A., & Tamayo, O. (2013). Evolución de los modelos explicativos de fagocitosis en estudiantes universitarios. Revista Latinoamericana de Estudios Educativos , 9(1). Orrego, M., Tamayo, O. E., & Ruiz, F. J. (2016). Unidades didácticas para la enseñanza de las ciencias. Editorial Universidad Autónoma de Manizales. Manizales Colombia. Ozturk, M. (2021). An embedded mixed method study on teaching algebraic expressions using metacognitionbased training. THINKING SKILLS AND CREATIVITY, 39. https://doi.org/10.1016/j.tsc.2021.100787 Ozturk, M., & Kaplan, A. (2019). Cognitive Analysis of Constructing Algebraic Proof Processes: A Mixed Method Research. EGITIM VE BILIM-EDUCATION AND SCIENCE, 44(197), 25–64. https://doi.org/10.15390/EB.2018.7504 Palarea, M., & Socas, M. (1994). Algunos obstáculos cognitivos en el aprendizaje del lenguaje algebraico. Suma, 16, 91–98. Palarea Medina, M. (1999). La adquisición del lenguaje algebraico: reflexiones de una investigación. In Números (Issue 40, pp. 3–28). Pallarès, G., Hausberger, T., & Roy, A. (2021). Promoting epistemology in the training of pre-service mathematics teachers? A mixed didactical and philosophical approach. Education et Didactique, 15(1). https://doi.org/10.4000/educationdidactique.8103 Palatnik, A. (2022). Didactic situations in project-based learning: The case of numerical patterns and sequences. JOURNAL OF MATHEMATICAL BEHAVIOR, 66. https://doi.org/10.1016/j.jmathb.2022.100956 Pang, J., & Kim, J. (2018). Characteristics of Korean Students’ Early Algebraic Thinking: A Generalized Arithmetic Perspective. https://doi.org/10.1007/978-3-319-68351-5_6 Papic, M. (2015). An Early Mathematical Patterning Assessment: identifying young Australian Indigenous children’s patterning skills. Mathematics Education Research Journal, 27(4), 519–534. https://doi.org/10.1007/s13394-015-0149-8 Pearn, C., & Stephens, M. (2018). Generalizing Fractional Structures: A Critical Precursor to Algebraic Thinking (pp. 237–260). https://doi.org/10.1007/978-3-319-68351-5_10 Pérez Peña, J. J. (2005). La generalización como proceso de pensamiento matemático: una propueta didáctica para mejorar el aprendizaje del álgebra elemental. Philipp, R. A. (1992). The many uses of algebraic variables. Mathematics Teacher, 85(7), 557–561Piaget, J. (1971). The theory of stages in cognitive development. In Measurement and Piaget. (pp. ix, 283–ix, 283). McGraw-Hill. Pino-Fan, L., Guzmán, I., Duval, R., & Font, V. (2015). The theory of registers of semiotic representation and the onto-semiotic approach to mathematical cognition and instruction: linking looks for the study of mathematical understanding. Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, 4, 33–40. Pinto, E., & Cañadas, M. C. (2019). Generalizations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-019-00300-2 Pirie, S., & Kieren, T. (1994). Learning Mathematics : Constructivis and Interactionist Theories of Mathematical Development. In Learning Mathematics (Vol. 26). https://doi.org/10.1007/978-94-017- 2057-1 Pittalis, M. (2023). Young Students’ Arithmetic-Algebraic Structure Sense: an Empirical Model and Profiles of Students. International Journal of Science and Mathematics Education, 21(6), 1865–1887. https://doi.org/10.1007/s10763-022-10333-y Pittalis, M., Pitta-Pantazi, D., & Christou, C. (2020). Young Students’ Functional Thinking Modes: The Relation Between Recursive Patterning, Covariational Thinking, and Correspondence Relations. Journal for Research in Mathematics Education, 51(5), 631–674. https://doi.org/10.5951/jresematheduc-2020- 0164 Pitta-Pantazi, D., Chimoni, M., & Christou, C. (2019). Different Types of Algebraic Thinking: an Empirical Study Focusing on Middle School Students. International Journal of Science and Mathematics Education, 18(5), 965–984. https://doi.org/10.1007/s10763-019-10003-6 Pitta-Pantazi, D., Chimoni, M., & Christou, C. (2020). Different Types of Algebraic Thinking: an Empirical Study Focusing on Middle School Students. International Journal of Science and Mathematics Education, 18(5), 965–984. https://doi.org/10.1007/s10763-019-10003-6 Plothová, L., & Naštická, Z. (2017). An analysis of errors in algebraization of a math word problem and the Rosnick-Clement phenomenon. In L. P. P. M. Szarkova D. Richtarikova D. (Ed.), 16th Conference on Applied Mathematics, APLIMAT 2017 - Proceedings (pp. 1197–1206). Slovak University of Technology in Bratislava. Pollack, C. (2019). Same-different judgments with alphabetic characters: The case of literal symbol processing. Journal of Numerical Cognition, 5(2), 241–259. https://doi.org/10.5964/jnc.v5i2.163 Pollack, C., Leon Guerrero, S., & Star, J. R. (2016). Exploring mental representations for literal symbols using priming and comparison distance effects. ZDM, 48(3), 291–303. https://doi.org/10.1007/s11858-015- 0745-9 Pollack, C., & Price, G. R. (2020). Mapping letters to numbers: Potential mechanisms of literal symbol processing. Learning and Individual Differences, 77. https://doi.org/10.1016/j.lindif.2019.101809 Pottage, J. (1969). Jacob Klein, (1968): Greek Mathematical Thought and the Origin of Algebra . (tr. by Eva Brann, with an appendix containing Vieta’s Introduction to the Analytic Art. The British Journal for the Philosophy of Science, 20(4). https://doi.org/10.1093/bjps/20.4.374 Powell, S. R., Berry, K. A., & Barnes, M. A. (2019). The role of pre-algebraic reasoning within a wordproblem intervention for third-grade students with mathematics difficulty. ZDM - Mathematics Education. https://doi.org/10.1007/s11858-019-01093-1 Powell, S. R., Kearns, D. M., & Driver, M. K. (2016). Exploring the connection between arithmetic and prealgebraic reasoning at first and second grade. Journal of Educational Psychology, 108(7), 943–959. https://doi.org/10.1037/edu0000112 Pramesti, T. I., & Retnawati, H. (2019). Difficulties in learning algebra: An analysis of students’ errors. Journal of Physics: Conference Series, 1320(1). https://doi.org/10.1088/1742-6596/1320/1/012061 Pratiwi, V., Herman, T., & Suryadi, D. (2019). Algebraic thinking obstacles of elementary school students: A Hermeneutics-phenomenology study. In A. A. G. S. P. I. A. R. R. Sutarno Nandiyanto A.B.D. (Ed.), Journal of Physics: Conference Series (Vol. 1157, Issue 3). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1157/3/032115 Prendergast, M., & Treacy, P. (2018). Curriculum reform in Irish secondary schools–a focus on algebra. Journal of Curriculum Studies, 50(1), 126–143. https://doi.org/10.1080/00220272.2017.1313315 Preston, C. M., Hubber, P. J., & Xu, L. (2022). Teaching About Electricity in Primary School Multimodality and Variation Theory as Analytical Lenses. RESEARCH IN SCIENCE EDUCATION, 52(3, SI), 949–973. https://doi.org/10.1007/s11165-022-10047-9 Priya, A. (2021). Case Study Methodology of Qualitative Research: Key Attributes and Navigating the Conundrums in Its Application. Sociological Bulletin, 70(1), 94–110. https://doi.org/10.1177/0038022920970318 Puig, L. (2003). HISTORIA DE LAS IDEAS ALGEBRAICAS: COMPONENTES Y PREGUNTAS DE INVESTIGACIÓN DESDE EL PUNTO DE VISTA DE LA MATEMÁTICA EDUCATIVA. In P. F. Castro, T. Ortega, L. Rico, & A. Vallecillos (Eds.), Investigación en Educación Matemática. Actas del Séptimo Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 97–108). Universidad de Granada. Puig, L. (2006). Sentido y elaboración del componente de competencia de los modelos teóricos locales en la investigación de la enseñanza y aprendizaje de contenidos matemáticos específicos. X Simposio de La SEIEM, 2, 87–107. Qiu, H., Wang, Q., Wu, Q., & Zhou, H. (2022). Does flattening the curve make a difference? An investigation of the COVID-19 pandemic based on an SIR model. International Review of Economics and Finance, 80. https://doi.org/10.1016/j.iref.2022.02.063 Queiroz, J., & Atã, P. (2019). Intersemiotic Translation, Cognitive Artefact, and Creativity. Adaptation, 12(3). https://doi.org/10.1093/adaptation/apz001 Radford, L. (1994). La enseñanza de la demostración: aspectos teóricos y prácticos. Educacion Matematica, funes.uniandes.edu.co. Radford, L. (2001). Introducción Semiótica y Educación Matemática. In Otte. Steinbring. Radford, L. (2003). Gestures, Speech, and the Sprouting of Signs: A Semiotic-Cultural Approach to Students’ Types of Generalization Algebraic thinking View project. Mathematical Thinking and Learning, 5(1), 37–70. https://doi.org/10.1207/S15327833MTL0501_02 Radford, L. (2006a). Algebraic Thinking and the Generalization of Patterns: A Semiotic Perspective. 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 1–21(March 1987), 2–21. http://www.academia.edu/download/34739146/Book_from_conference.pdf#page=28 Radford, L. (2006b). Elementos de una teoría cultural de la objetivación. Relime, Número Especial, 103–129. Radford, L. (2006c). Semiótica cultural y cognición. Matemática Educativa En Latinoamérica. Radford, L. (2006d). The Anthropology of Meaning. Educational Studies in Mathematics, 41–65. https://doi.org/10.1007/s10649-006-7136-7 Radford, L. (2008a). Iconicity and contraction: a semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM, 40(1), 83–96. https://doi.org/10.1007/s11858-007-0061-0 Radford, L. (2008b). The ethics of being and knowing: Towards a cultural theory of learning. Radford, L. (2010a). Algebraic thinking from a cultural semiotic perspective Algebraic thinking View project Embodiment View project. Article in Research in Mathematics Education. https://doi.org/10.1080/14794800903569741 Radford, L. (2012). On the development of early algebraic thinking. Revista Investigación Didáctica de Las Matemmáticas. Radford, L. (2013a). En torno a tres problemas de la generalización. Investigación En Didáctica de La Matemática. Radford, L. (2013b). Three Key Concepts of the Theory of Objectification: Knowledge, Knowing, and Learning. REDIMAT - Journal of Research in Mathematics Education, 2(1), 7–44. https://doi.org/10.4471/redimat.2013.19 Radford, L. (2014a). De la teoría de la objetivación. In Revista Latinoamericana de Etnomatemática (Vol. 7, Issue 2). Radford, L. (2014b). The Progressive Development of Early Embodied Algebraic Thinking. Mathematics Education Research Journal, 26(2), 257–277. https://doi.org/10.1007/s13394-013-0087-2 Radford, L. (2014c). Towards an embodied, cultural, and material conception of mathematics cognition. ZDM - International Journal on Mathematics Education, 46(3), 349–361. https://doi.org/10.1007/s11858-014- 0591-1 Radford, L. (2016). The epistemic, the cognitive, the human: a commentary on the mathematical working space approach. ZDM - Mathematics Education, 48(6), 925–933. https://doi.org/10.1007/s11858-016-0811-y Radford, L., Bardini, C., & Sabena, C. (2007). Perceiving the general: The multisemiotic dimension of students’ algebraic activity. Journal for Research in Mathematics Education, 38(5), 507–530. https://doi.org/10.2307/30034963 Radford, L., & D’Amore, B. (2006). Semiotics, culture, and mathematical thinking. Revista de Investigación Educativa. Radford, L., Dettori, G., National, I., & Garuti, R. (2002). Perspectives on School Algebra. Perspectives on School Algebra, April 2001. https://doi.org/10.1007/0-306-47223-6 Radford, L., & Puig, L. (2007). Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in Mathematics, 66(2), 145–164. https://doi.org/10.1007/s10649-006-9024-6 Raffa Rodrigues, R. V., Oliveira, H. M., & de Costa Trindade Cyrino, M. C. (2022). Promoting Prospective Mathematics Teachers’ Professional Vision on a Whole-class Reflective Discussion: Contributions of Digital Resources. INTERNATIONAL JOURNAL OF EDUCATION IN MATHEMATICS SCIENCE AND TECHNOLOGY, 10(4), 773–794. https://doi.org/10.46328/ijemst.2181 Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H. E. A., & Cheng, P. C. H. (2020). Dissecting Representations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12169 LNAI. https://doi.org/10.1007/978-3- 030-54249-8_11 Rahardjoni, A. S., Hasanah, I. N., & ... (2020). Developing critical thinking competence in algebraic thinking using augmented reality for junior high school. … Nasional Matematika, 3. Rahmawati, D. I. (2018). Characteristics of Algebraic Thinking of Junior High School Students. Journal of Physics: Conference Series, 1097(1), 012110. https://doi.org/10.1088/1742-6596/1097/1/012110 Rahmawati, D. I., Priatna, N., & Juandi, D. (2019). Algebraic thinking characteristics of eighth grade junior high school students based on Superitem Test of SOLO model. In P. I. A. A. G. N. A. B. D. S. Agustin R.R. Sutarno (Ed.), Journal of Physics: Conference Series (Vol. 1157, Issue 4). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1157/4/042087 Rakes, C. R. (2011). Misconceptions in rational numbers, probability, algebra, and geometry. Dissertation Abstracts International Section A: Humanities and Social Sciences, 2811. https://www.lib.uwo.ca/cgibin/ ezpauthn.cgi?url=http://search.proquest.com/docview/863421468?accountid=15115%5Cnhttp://sfx.sc holarsportal.info/western?url_ver=Z39.88- 2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ: Ralston, N. C., Benner, G. J., Tssai, S.-F., Riccomini, P. J., & Nelson, J. R. (2014). Mathematics instruction for students with emotional and behavioral disorders: A best-evidence synthesis. Preventing School Failure, 58(1), 1–16. https://doi.org/10.1080/1045988X.2012.726287 Ralston, N., & Li, M. (2022). Student Conceptions of the Equal Sign. The Elementary School Journal, 122(3). https://doi.org/10.1086/717999 Ramirez, R., Brizuela, B. M., & Ayala-Altamirano, C. (2022). Word problems associated with the use of functional strategies among grade 4 students. MATHEMATICS EDUCATION RESEARCH JOURNAL, 34(2), 317–341. https://doi.org/10.1007/s13394-020-00346-7 Reif, F. (2008). Applying cognitive science to education. In Applying cognitive science to education (pp. 391– 407). Reiss, M. J. (2020). Science Education in the Light of COVID-19: The Contribution of History, Philosophy and Sociology of Science. Science and Education, 29(4). https://doi.org/10.1007/s11191-020-00143-5 Rojas, S. (2021). Observing the epidemiological SIR model on the COVID-19 data. Revista Mexicana de Fisica E, 18(1). https://doi.org/10.31349/REVMEXFISE.18.35 Romiti, A. (2013). The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. REVIEW OF METAPHYSICS, 66(4), 839–841. Roth, W.-M., & Radford, L. (2011). SEMIOTIC PERSPECTIVES ON THE TEACHING AND LEARNING OF MATHEMATICS SERIES S e n s e P u b l i s h e r s S e n s e P u b l i s h e r s SEMI 2 SEMIOTIC PERSPECTIVES ON THE TEACHING AND LEARNING OF MATHEMATICS SERIES A Cultural- Historical Perspective on Mathe. Rowlands, S., Gloria Ann, S., Gabriele, K., Werner, B., & Jill P., B. (2015). Teaching Mathematical Modelling: Connecting to Research and Practice. Science & Education, 24(4). https://doi.org/10.1007/s11191-014-9734-6 Rusdiana, Sutawidjaja, A., Irawan, E. B., & Sudirman. (2018). Students perception on a problem of pattern generalization. Journal of Physics: Conference Series, 1116(2). https://doi.org/10.1088/1742- 6596/1116/2/022040 Salimipour, A., Mehraban, T., Ghafour, H. S., Arshad, N. I., & Ebadi, M. J. (2023). SIR model for the spread of COVID-19: A case study. In Operations Research Perspectives (Vol. 10). https://doi.org/10.1016/j.orp.2022.100265 Santia, I., Purwanto, Sutawidjadja, A., Sudirman, & Subanji. (2019). Exploring mathematical representations in solving ill-structured problems: The case of quadratic function. Journal on Mathematics Education, 10(3), 365–378. https://doi.org/10.22342/jme.10.3.7600.365-378 Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The Approximate Number System is not Predictive for Symbolic Number Processing in Kindergarteners. Quarterly Journal of Experimental Psychology, 67(2), 271–280. https://doi.org/10.1080/17470218.2013.803581 Sasanguie, D., & Reynvoet, B. (2014). Adults’ Arithmetic Builds on Fast and Automatic Processing of Arabic Digits: Evidence from an Audiovisual Matching Paradigm. PLoS ONE, 9(2), e87739. https://doi.org/10.1371/journal.pone.0087739 Saxena, R., Jadeja, M., & Bhateja, V. (2023). Propagation Analysis of COVID-19: An SIR Model-Based Investigation of the Pandemic. Arabian Journal for Science and Engineering, 48(8). https://doi.org/10.1007/s13369-021-05904-0 Schanzer, E. (2015). Algebraic Functions, Computer Programming, and the Challenge of Transfer (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004 Schmidt, Q. (2006). Estándares básicos de competencias en lenguaje, matemáticas, ciencias y ciudadanas: guía sobre lo que los estudiantes deben saber y saber hacer con lo que aprenden. Ministerio de Educación Nacional. Schmittau, J. (2005). The development of algebraic thinking. Zentralblatt Für Didaktik Der Mathematik, 37(1), 16–22. https://doi.org/10.1007/bf02655893 Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning-epistemology, history, and semiotics interacting: To the memory of Carl Menger (1902-1985). Educational Studies in Mathematics, 77(1), 79–104. https://doi.org/10.1007/s10649-011-9301-x Schueler, S., & Roesken-Winter, B. (2014). Exploring Students’ Mental Models in Linear Algebra and Analytic Geometry: Obstacles for Understanding Basic Concepts. North American Chapter of the International Group for the Psychology of Mathematics Education, 5. Sebsibe, A. S., & Feza, N. N. (2020). Assessment of Students’ Conceptual Knowledge in Limit of Functions. INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION, 15(2). https://doi.org/10.29333/iejme/6294 Šedivý, J. (1976). A note on the role of parameters in mathematics teaching. Educational Studies in Mathematics, 7(1–2). https://doi.org/10.1007/BF00144365 Sfard, A. (1987). TWO CONCEPTIONS OF MATHEMATICAL NOTIONS: OPERATIONAL AND STRUCTURAL. Proceedings of the International Conference on the Psychology of Mathematics Education (PME), 11, 119. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715 Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. The Journal of Mathematical Behavior, 14(1), 15–39. https://doi.org/10.1016/0732-3123(95)90022-5 Sfard, A. (2002). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. In Educational Studies in Mathematics (Vol. 46, Issue 1/3). https://doi.org/10.1023/A:1014097416157 Sfard, A. (2008). Aprendizaje de las matemáticas escolares desde un enfoque comunicacional. Sfard, A., & Kieran, C. (2001). Cognition as Communication: Rethinking Learning-by-Talking Through Multi- Faceted Analysis of Students’ Mathematical Interactions. Mind, Culture, and Activity, 8(1), 42–76. https://doi.org/10.1207/S15327884MCA0801_04 Sfard, A., & Linchevski, L. (1994). The Gains and the Pitfalls of Reification — The Case of Algebra. In Learning Mathematics (pp. 87–124). Springer Netherlands. https://doi.org/10.1007/978-94-017-2057-1_4 Shutler, P. M. E. (2017). A symbolical approach to negative numbers. Mathematics Enthusiast, 14(1–3), 207– 240. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85011298699&partnerID=40&md5=1ffb001f3e1894a74c270263f242903f Sibgatullin, I. R., Korzhuev, A. V., Khairullina, E. R., Sadykova, A. R., Baturina, R. V., & Chauzova, V. (2022). A Systematic Review on Algebraic Thinking in Education. Eurasia Journal of Mathematics, Science and Technology Education, 18(1), em2065. https://doi.org/10.29333/ejmste/11486 Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361. https://doi.org/10.1111/desc.12395 Singh, A., & Chattopadhyay, A. (2020). COVID-19 recovery rate and its association with development. Indian Journal of Medical Sciences, 0. https://doi.org/10.25259/ijms_229_2020 Smith, D., & Moore, L. (2020a). The SIR Model for Spread of Disease - The Differential Equation Model. Mathematical Association of America. Socas, M. (2011). La enseñanza del Álgebra en la Educación Obligatoria. Aportaciones de la investigación. NUMEROS. Revista de Didáctica de Las Matemáticas, 77, 5–34. Solares, A., & Kieran, C. (2013). Articulating syntactic and numeric perspectives on equivalence: the case of rational expressions. Educational Studies in Mathematics, 84(1), 115–148. http://www.jstor.org/stable/43589775 Somasundram, P., Akmar, S. N., & Eu, L. K. (2019). Year five pupils’ number sense and algebraic thinking: The mediating role of symbol and pattern sense. New Educational Review, 55(1), 100–111. https://doi.org/10.15804/tner.2019.55.1.08 Soto-Johnson, H. (2014). Visualizing the arithmetic of complex numbers. International Journal for Technology in Mathematics Education, 21(3), 103–114. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84908367475&partnerID=40&md5=b43100ab64d9c84ac1534b12a4a45393 Stacey, K., & MacGregor, M. (1997). Ideas about Symbolism That Students Bring To Algebra. Mathematics Teacher, 90(2), 110–113. Stallings, Lynn. (2000). A brief history of algebraic notation. School Science and Mathematics, 100(5), 230– 235. Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 41–54. https://doi.org/10.1016/j.cedpsych.2014.05.005 Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Murphy Gardiner, A. (2017). A Learning Progression for Elementary Students’ Functional Thinking. Mathematical Thinking and Learning, 19(3), 143–166. https://doi.org/10.1080/10986065.2017.1328636 Stevens, A. L., & Gentner, D. (1983). Mental Models (D. Gentner & A. L. Stevens, Eds.). Psychology Press. https://doi.org/10.4324/9781315802725 Stillman, G. A. (2019). State of the Art on Modelling in Mathematics Education—Lines of Inquiry. https://doi.org/10.1007/978-3-030-14931-4_1 Strachota, S. M. (2016). Supporting Calculus learning through “smooth” covariation. Proceedings of International Conference of the Learning Sciences, ICLS, 2, 982–985. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84988023727&partnerID=40&md5=050c61e3bfe895740d8c4bbbefc3977d Suarez Gomez, L. J., & Suarez Avila, N. Y. (2020). Configurations of mathematical objects and mathematical processes of integral calculus. PRAXIS & SABER, 11(26). https://doi.org/10.19053/22160159.v11.n26.2020.10992 Sugiarti, L., & Retnawati, H. (2019). Analysis of student difficulties on algebra problem solving in junior high school. Journal of Physics: Conference Series, 1320(1). https://doi.org/10.1088/1742- 6596/1320/1/012103 Swafford, J. O., & Kepner, H. S. (2020). The Evaluation of an Application-Oriented First-Year Algebra Program. Journal for Research in Mathematics Education, 11(3). https://doi.org/10.5951/jresematheduc.11.3.0190 Swafford, J. O., & Langrall, C. W. (2000). Grade 6 students’ preinstructional use of equations to describe and represent problem situations. Journal for Research in Mathematics Education, 31(1), 89–112. https://doi.org/10.2307/749821 Switzer, J. M. (2018). U.S. grade 4–6 students’ rational-number substitutions for odd-sum unknown addend tasks. Investigations in Mathematics Learning, 10(1), 33–53. https://doi.org/10.1080/19477503.2017.1371999 Tall, D., & Katz, M. (2014). A cognitive analysis of Cauchy’s conceptions of function, continuity, limit and infinitesimal, with implications for teaching the calculus. EDUCATIONAL STUDIES IN MATHEMATICS, 86(1), 97–124. https://doi.org/10.1007/s10649-014-9531-9 Tamayo Alzate, O. E., Orrego Cardozo, M., & Dávila Posada, A. R. (2014). MODELOS EXPLICATIVOS DE ESTUDIANTES ACERCA DEL CONCEPTO DE RESPIRACIÓN. Revista Bio-Grafía Escritos Sobre La Biología y Su Enseñanza, 7(13). https://doi.org/10.17227/20271034.vol.7num.13bio-grafia129.145 Tamayo-Alzate, Ó. E. (2006). Representaciones semióticas y evolución conceptual en la enseñanza de las ciencias y las matemáticas. Revista Educación y Pedagogía, XVIII(45 (mayo-agosto)), 37–49. Tamayo-Alzate, Ó. E. (2012). La argumentación como constituyente del pensamiento crítico en niños. Hallazgos, 9(17). https://doi.org/10.15332/s1794-3841.2012.0017.10 Tamayo-Alzate, Ó. E. (2013). Modelos y modelización en la enseñanza y el aprendizaje de las ciencias. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 0(Extra). Tamayo-Alzate, Ó. E. (2014). Pensamiento crítico dominio- específico en la didáctica de las ciencias. Tecné, Episteme y Didaxis: TED, n.36(0121–3814). Tamayo-Alzate, Ó. E., López-Rúa, A. M., & Orrego-Cardozo, M. (2017). Modelización en la didáctica de las ciencias. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, Extra, 4313. Tamayo-Alzate, Ó. E., & Sanmartí Puig, N. (2007). High‐school Students’ Conceptual Evolution of the Respiration Concept from the Perspective of Giere’s Cognitive Science Model. International Journal of Science Education, 29(2), 215–248. https://doi.org/10.1080/09500690600620854 Tamayo-Alzate, Ó. E., Zona, R., & Loaiza, Y. (2015). Pensamiento critico en la educacion. Revista Latinoamericana de Estudios Educativos (Colombia), 11(2). Tham, J. C. K., Burnham, K. D., Hocutt, D. L., Ranade, N., Misak, J., Duin, A. H., Pedersen, I., & Campbell, J. L. (2021). Metaphors, mental models, and multiplicity: Understanding student perception of digital literacy. Computers and Composition, 59. https://doi.org/10.1016/j.compcom.2021.102628 Thomas, M. O. J., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM - International Journal on Mathematics Education, 42(6), 607–619. https://doi.org/10.1007/s11858-010- 0272-7 Thompson, P., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically (pp. 421–456). Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among U.S. and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95– 111. https://doi.org/10.1016/j.jmathb.2017.08.001 Thomson, S., & Fleming, N. (2004). Summing it up: Mathematicsachievement in Australian schoolsin TIMSS 2002 (Vol. 3). Torres, M. D., Canadas, M. C., & Moreno, A. (2022). Functional thinking of 2nd primary student: structures and representations. PNA-REVISTA DE INVESTIGACION EN DIDACTICA DE LA MATEMATICA, 16(3), 215–236. https://doi.org/10.30827/pna.v16i3.23637 Trigueros, M., Quintero, R., Reyes, A., & Ursini, S. (1996). Diseño de un cuestionario de diagnóstico acerca del manejo del concepto de variable en el álgebra. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 14(3), 351–364. Ureña, J., Ramírez, R., & Molina, M. (2019). Representations of the generalization of a functional relationship and the relation with the interviewer’s mediation / Representaciones de la generalización de una relación funcional y el vínculo con la mediación del entrevistador. Infancia y Aprendizaje, 42(3), 570–614. https://doi.org/10.1080/02103702.2019.1604020 Ursini, S., & Trigueros, M. (1999). A model for the uses of variable in elementary algebra. Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education. Ursini, S., & Trigueros, M. (2004). How do High School Students Interpret Parameters in Algebra? Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4(2001), 361–368. Usiskin, Z. (1988). Conceptions of School Algebra and uses of Variabels. Algebraic Thinking, Grades K-12, 8, 7–13. Usiskin, Z. (1995). Why is Algebra Important To Learn? In American Educator: Vol. Spring. Usiskin, Z. (1997). Doing algebra in grades K-4. Teaching Children Mathematics, 3. Usiskin, Z. (1999). Conceptions of school algebra and uses of variables. Algebraic Thinking, Grades K–12, 5, 8–19. Usiskin, Z. (2004). A significant amount of algebra. NAW, 5(2), 147–151. Usiskin, Z. (2010). The current state of the school mathematics curriculum. Mathematics Curriculum: Issues, Trends, and Future Directions: Seventy-Second Yearbook. Usiskin, Z., Lins, R., Romano, T., Sfard, A., Hosokawa, H., & Lerman, S. (2004). TSG 1: The Teaching and Learning of Algebra. Proceedings of the Ninth International Congress on Mathematical Education, 293– 296. https://doi.org/10.1007/978-94-010-9046-9_71 Usta, N., & Ozdemir, B. G. (2018). Examination of Algebraic Thinking Levels of Middle School Students. JOURNAL OF QUALITATIVE RESEARCH IN EDUCATION-EGITIMDE NITEL ARASTIRMALAR DERGISI, 6(3), 427–453. https://doi.org/10.14689/issn.2148-2624.1.6c3s20m Vamvakoussi, X. (2017). Using analogies to facilitate conceptual change in mathematics learning. ZDM - Mathematics Education, 49(4), 497–507. https://doi.org/10.1007/s11858-017-0857-5 Vasco, C. E. (1985). El enfoque de sistemas en el nuevo programa de matemáticas. Revista de La Universidad Nacional (1944 - 1992), 1(2). Vasco, C. E. (2003). El pensamiento variacional y la modelación matemática. Conferencia Interamericana de Educación Matemática, Blumenau (Vol. 9). van den Kieboom, L. A., Magiera, M. T., & Moyer, J. C. (2014). Exploring the relationship between K-8 prospective teachers’ algebraic thinking proficiency and the questions they pose during diagnostic algebraic thinking interviews. Journal of Mathematics Teacher Education, 17(5), 429–461. https://doi.org/10.1007/s10857-013-9264-1 Veith, J. M., Beste, M.-L., Kindervater, M., Krause, M., Straulino, M., Greinert, F., & Bitzenbauer, P. (2023). Mathematics education research on algebra ove Veith, J. M., Bitzenbauer, P., & Girnat, B. (2022). Towards Describing Student Learning of Abstract Algebra: Insights into Learners’ Cognitive Processes from an Acceptance Survey. MATHEMATICS, 10(7). https://doi.org/10.3390/math10071138 Vergel, R. (2014). Formas de pensamiento algebraico temprano en alumnos de cuarto y quinto grados de Educación Básica Primaria (9-10 años). Universidad Distrital Francisco José de Caldas. Vergel, R. (2015). Generalización de patrones y formas de pensamiento algebraico temprano. PNA, 9(3), 193- 215. Vergel, R., Godino, J. D., Font, V., & Pantano, Ó. L. (2023). Comparing the views of the theory of objectification and the onto-semiotic approach on the school algebra nature and learning. Mathematics Education Research Journal, 35(3), 475-496. Vermeulen, C., & Meyer, B. (2017). The equal sign: Teachers’ knowledge and students’ misconceptions. African Journal of Research in Mathematics, Science and Technology Education, 21(2). https://doi.org/10.1080/18117295.2017.1321343 Verschaffel, L., Greer, B., & De Corte, E. (2010). Mathematics learning. International Encyclopedia of Education, 401–406. https://doi.org/10.1016/B978-0-08-044894-7.00517-0 Villalba Baza, C. A., & Tamayo Alzate, O. E. (2017). Concepciones Y Modelos Acerca De La Enseñanza De Las Ciencias Naturales En Estudiantes De La Licenciatura En Pedagogía Infantil De La Universidad Tecnológica De Pereira (Pag: 95-116). Revista Bio-Grafía Escritos Sobre La Biología y Su Enseñanza, 5(8). https://doi.org/10.17227/20271034.vol.5num.8bio-grafia95.116 Vinitsky, S. I., Gusev, A. A., Derbov, V. L., Krassovitskiy, P. M., Pen’kov, F. M., & Chuluunbaatar, G. (2021). Reduced SIR Model of COVID-19 Pandemic. Computational Mathematics and Mathematical Physics, 61(3). https://doi.org/10.1134/S0965542521030155 Vlassis, J., & Demonty, I. (2022). The role of algebraic thinking in dealing with negative numbers. Zdm- Mathematics Education, 54(6, SI), 1243–1255. https://doi.org/10.1007/s11858-022-01402-1 Volmik, J. (1994). Mathematics by all. Springer Cultural Perspectives on the Mathematics. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69. https://doi.org/10.1016/0959-4752(94)90018-3 Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585. https://doi.org/10.1016/0010-0285(92)90018-W Vosniadou, S. (2002). Model-Based Reasoning. Model-Based Reasoning, January 2002. https://doi.org/10.1007/978-1-4615-0605-8 Wagner, S. (1981). Conservation of equation and function under transformations of variable. Journal for Research in Mathematics Education, 12(2), 107–118. Wagner, S. (1983). What are these things called variables? The Mathematics Teacher, 76(7), 474–479. Wagner, S., & Kieran, C. (1989). Research issues in the learning and teaching of algebra, Vol. 4. This Monograph Contains Revisions of Papers Presented at The Research Agenda Conference on Algebra, Which Was Held in Mar, 1987, at the University of Georgia, Athens, under the Auspices of the National Council of Teachers of Mathematics, Inc. Wagner, S., & Kieran, C. (2018). An Agenda for Research on the Learning and Teaching of Algebra. In Research Issues in the Learning and Teaching of Algebra (pp. 220–237). Routledge. https://doi.org/10.4324/9781315044378-17 Wagner, S., & Parker, S. (1993). Advancing Algebra. Research Ideas for the Classroom: High School Mathematics, 119–139. Wahyuni, R., & Herman, T. (2020). Students’ Understanding of the Equal Sign: A Case in Suburban School. https://doi.org/10.5220/0009057100240028 Wang, X. (2015). The Literature Review of Algebra Learning: Focusing on the Contributions to Students’ Difficulties. Creative Education, 06(02), 144–153. https://doi.org/10.4236/ce.2015.62013 Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of Algebra. In The Second Handbook of Research on the Psychology of Mathematics Education: The Journey Continues. Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_3 Wasserman, N. H. (2014). Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers. PRIMUS, 24(3), 191–214. https://doi.org/10.1080/10511970.2013.857374 Weinberg, A., Dresen, J., & Slater, T. (2016). Students’ understanding of algebraic notation: A semiotic systems perspective. Journal of Mathematical Behavior, 43, 70–88. https://doi.org/10.1016/j.jmathb.2016.06.001 Wilkie, K. J. (2016). Learning to teach upper primary school algebra: changes to teachers’ mathematical knowledge for teaching functional thinking. Mathematics Education Research Journal, 28(2), 245–275. https://doi.org/10.1007/s13394-015-0151-1 Wilkie, K. J., & Clarke, D. (2015). Pathways to professional growth: Investigating upper primary school teachers’ perspectives on learning to teach algebra. Australian Journal of Teacher Education, 40(4), 87– 118. https://doi.org/10.14221/ajte.2015v40n4.6 Wilkie, K. J., & Clarke, D. M. (2016). Developing students’ functional thinking in algebra through different visualizations of a growing pattern’s structure. Mathematics Education Research Journal, 28(2), 223– 243. https://doi.org/10.1007/s13394-015-0146-y Wille, A. (2010). Steps Towards a Structural Conception of the Notion of Variable. Proceedings of CERME 6, 659–668. Wilkie, K. J. (2019). Investigating secondary students’ generalization, graphing, and construction of figural patterns for making sense of quadratic functions. Journal of Mathematical Behavior, 54. https://doi.org/10.1016/j.jmathb.2019.01.005 Windsor, W. (2010). Algebraic Thinking: A Problem-Solving Approach. Proceedings of the 33rd Annual Conference of the Mathematics Education Research Group of Australasia, 33, 665–672. Witzel, B. S., Mercer, C. D., & Miller, M. D. (2003). Teaching Algebra to Students with Learning Difficulties: An Investigation of an Explicit Instruction Model. Learning Disabilities Research and Practice, 18(2), 121–131. https://doi.org/10.1111/1540-5826.00068 Xin, Y. P. (2019). The effect of a conceptual model-based approach on ‘additive’ word problem solving of elementary students struggling in mathematics. ZDM - Mathematics Education, 51(1), 139–150. https://doi.org/10.1007/s11858-018-1002-9 Xu, L., Ferguson, J., & Tytler, R. (2021). Student Reasoning About the Lever Principle Through Multimodal Representations: a Socio-Semiotic Approach. International Journal Of Science And Mathematics Education, 19(6), 1167–1186. https://doi.org/10.1007/s10763-020-10102-9 Yin, R. K. (1992). The case study method as a tool for doing evaluation. Current Sociology, 40(1). https://doi.org/10.1177/001139292040001009 Young, J. W., Denton, W. W., & Mitchell, U. G. (1911). Lectures on fundamental concepts of algebra and geometry. Macmillan. Yuniati, S., Nusantara, T., Subanji, & Made Sulandra, I. (2019). The use of multiple representation in functional thinking. International Journal of Recent Technology and Engineering, 8(1C2), 672–678. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85069932406&partnerID=40&md5=8c5ae18d2532055bbd4c8ffad9f62e98 Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between aegebraic thinking and aegebraic notation. Educational Studies in Mathematics, 49(3), 361–378. https://doi.org/10.1023/A:1020291317178 Zeljić, M. (2015). Modelling the Relationships Between Quantities: Meaning in Literal Expressions. EURASIA Journal of Mathematics, Science and Technology Education, 11(2), 431–442. https://doi.org/10.12973/eurasia.2015.1362a Zhang, J., Feng, W., & Zhang, Z. (2019). Holistic representation of negative numbers: Evidence from duration comparison tasks. Acta Psychologica, 193, 123–131. https://doi.org/10.1016/j.actpsy.2018.12.012 |
dc.rights.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_f1cf |
dc.format.none.fl_str_mv |
465 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Artes y Humanidades Manizales Doctorado en Educación |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Artes y Humanidades Manizales Doctorado en Educación |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145002840850432 |
spelling |
Evolución conceptual del pensamiento algebraico en educación media: estudio de caso370 - Educación6. HumanidadesPensamiento algebraicoModelos explicativosEvolución conceptualRegistros de representaciones semióticasAprendizaje de las matemáticasAlgebraic thinkingExplanatory modelsConceptual evolutionRegisters of semiotic representationsLearning of mathematicsEducaciónTablas, figurasA partir de una revisión sistemática de las tendencias conceptuales sobre el aprendizaje del pensamiento algebraico, se destaca la falta de consenso sobre el concepto de variable y su papel en dicho aprendizaje. Este estudio se centra en la identificación de modelos explicativos de variables, constantes y parámetros en un estudiante de grado undécimo de una institución educativa pública en Manizales, Caldas, basándose en los lineamientos curriculares colombianos. El objetivo principal es comprender la evolución del pensamiento algebraico y la influencia de las variables, las constantes y los parámetros en el aprendizaje algebraico-variacional en un problema socio-científico. La metodología empleada consistió en un estudio de caso en profundidad, utilizando la teoría de la evolución conceptual, una intervención en el aula para recopilar datos y su procesamiento mediante el software ATLAS.ti.23. Se desarrolló un modelo de pensamiento algebraico estructurado en un circuito semiótico que permitió analizar las transiciones semióticas entre diferentes registros de representaciones. Se concluyó que las variables son unidades que permiten el flujo de significados y están asociadas a las estructuras algebraicas por medio de las propiedades cuantitativas del fenómeno a analizar; mientras que, el significado de los parámetros ajusta la estructura algebraica de las variables, modificando su comportamiento dentro del modelo explicativo y adicionando más significados, lo que posibilita generar modelos más abstractos y realizar pronósticos más precisos.From a systematic review of conceptual trends in learning algebraic thinking, the need for more consensus on the concept of variables and their role in such learning is highlighted. Based on the Colombian curricular guidelines, this study focuses on identifying explanatory models of variables, constants, and parameters in eleventh-grade students of a public educational institution in Manizales, Caldas. The main objective is to understand the evolution of algebraic thinking and the influence of variables, constants, and parameters in algebraic-variational learning in a socio-scientific problem. The methodology employed consisted of an in-depth case study using the theory of conceptual evolution, a classroom intervention to collect data, and its processing using ATLAS.ti.23 software. A model of algebraic thinking structured in a semantic circuit was developed that allowed the analysis of semiotic transitions between different representation registers. It was concluded that the variables are units that allow the flow of meanings and are associated with the algebraic structures using the quantitative properties of the phenomenon to be analyzed. In contrast, the meaning of the parameters adjusts the algebraic structure of the variables, modifying their behavior within the explanatory model and adding more meanings, which makes it possible to generate more abstract models and make more accurate forecasts.Introducción / Capítulo I: Antecedentes y problema de investigación /Antecedentes / Lenguaje Algebraico / Álgebra Escolar / Estructuras Aritméticas y Estructuras Algebraicas / Variables y la Dualidad Proceso-Objeto/ Cognición y Pensamiento Algebraico / Problema de Investigación / Capítulo II: Pregunta de Investigación / Capítulo III: Justificación /Capítulo IV: Objetivos de Investigación / Objetivo General / Objetivos Específicos / Capítulo V: Referentes Teóricos / Evolución Conceptual /Modelos Mentales / Modelo Conceptual de Pensamiento Algebraico /Variables: Unidades de Significado/ Modelos y Evolución Conceptual /Relaciones Semióticas / Espacio Semántico en el Álgebra Escolar / Modelos Epistemológicos de Variables /Flujo de Significados en el Espacio Semántico /Condensación Semiótica /Capítulo VI: Metodología / Diseño Metodológico / Unidades de Trabajo /Selección del Caso Único/ Diseño de la Investigación /Fases de la Investigación /Primera Fase /Segunda Fase /Tercera Fase /Cuarta Fase / Quinta Fase /Sexta Fase / Séptima Fase / Instrumento para la Recolección de Datos /Prueba de Diagnósticos Iniciales /Operacionalización de Variables /Capítulo VII: Análisis de los Resultados / Estudio de Caso: Estudiante Ezequiel / Análisis Evolución Conceptual /Análisis de la Evolución Conceptual en el Primer Momento/ Modelo SIR / Análisis de los Componentes del Modelo SIR / Concepciones sobre Contagio / Proceso de contagio / Tasas de Contagio /Crecimiento de los Casos de Contagio/ Concepciones sobre las Medidas de Bioseguridad / Concepciones sobre los Infectados / Concepciones sobre los Recuperados / Concepciones sobre los Fallecidos / Análisis de las Relaciones Internas del Modelo SIR / Modelo SIR: Red de Relaciones y Componentes del Primer Momento /Análisis de la Evolución Conceptual en el Segundo Momento / Análisis de los Componentes del Modelo SIR / Cantidad de Infectados y sus Relaciones / Relaciones de Crecimiento Exponencial /Relaciones de Decrecimiento Exponencial / Análisis de la Evolución Conceptual en el Tercer Momento / Tasas de Recuperación y Mortalidad / Ecuaciones del Modelo SIR /Estructura Compartimental del Modelo SIR /Tasa de Crecimiento Exponencial (B ) e Índice de Reproducción (R0) / Comportamiento Gráfico de las Variables del Modelo SIR / Análisis de los Registros de Representaciones / Análisis del Lenguaje Natural / Análisis del Lenguaje Natural en el Primer Momento / Análisis del Lenguaje Natural en el Segundo Momento /Análisis del Lenguaje Natural en el Tercer Momento/ Análisis del Lenguaje Icónico /Análisis del Lenguaje Icónico en el Primer Momento/ Análisis del Lenguaje Diagramático /Análisis del Lenguaje Gráfico/ Análisis del Lenguaje Icónico en el Segundo Momento / Análisis del Leguaje Icónico en el Tercer Momento /Análisis de las Representaciones en Lenguaje Simbólico / Análisis de los Modelos de Variable /Modelos de Variable en el Primer Momento/ Modelos de Variable en el Segundo Momento/ Modelos de Variable en el Tercer Momento/ Análisis de las Relaciones Semióticas/Capítulo VIII: Discusión /Capítulo IX: Conclusiones /Capítulo X: Recomendaciones/Apéndice: Modelización del Pensamiento Algebraico / Referencias Bibliográficas /Anexos.DoctoradoDoctor(a) en EducaciónEnseñanza de las ciencias y las matemáticasUniversidad de CaldasFacultad de Artes y HumanidadesManizalesDoctorado en EducaciónTamayo Alzate, Óscar EugenioUniversidad de CaldasCASTRO GORDILLO, WALTER FERNANDOBlanco-Álvarez, HilbertLara-Escobar, Rubén Darío2024-09-17T16:21:07Z2026-09-162024-09-17T16:21:07Z2024-09-16Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesis465 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/20193Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbdullatif Khafaie, M., & Rahim, F. (2021). Estimating Case Fatality and Case Recovery Rates of COVID-19: is this the right thing to do? Central Asian Journal of Global Health, 10(1). https://doi.org/10.5195/cajgh.2021.489Abdulrahman Almurashi, W. (2016). An Introduction to Halliday’s Systemic Functional Linguistics. Journal for the Study of English Linguistics, 4(1). https://doi.org/10.5296/jsel.v4i1.9423Acevedo Nistal, A., Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: a critical review. ZDM, 41(5), 627–636. https://doi.org/10.1007/s11858-009-0189-1Adinda, A., Purwanto, Parta, I. N., & Chandra, T. D. (2021). Investigation Of Students’ Metacognitive Awareness Failures About Solving Absolute Value Problems in Mathematics Education. EURASIAN JOURNAL OF EDUCATIONAL RESEARCH, 95, 17–35. https://doi.org/10.14689/ejer.2021.95.2Afonso, D., & Mc Auliffe, S. (2019). Children’s Capacity for Algebraic Thinking in the Early Grades. African Journal of Research in Mathematics, Science and Technology Education, 23(2), 219–232. https://doi.org/10.1080/18117295.2019.1661661Agoestanto, A., Sukestiyarno, Y. L., Isnarto, & Rochmad. (2019). An analysis on generational, transformational, global meta-level algebraic thinking ability in junior high school students. Journal of Physics: Conference Series, 1321(3). https://doi.org/10.1088/1742-6596/1321/3/032082Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The position and causes of student’s errors in algebraic thinking based on cognitive style. International Journal of Instruction, 12(1), 1431–1444. https://doi.org/10.29333/iji.2019.12191aAgudelo-Valderrama, C. (2005). Explicaciones De Ciertas Actitudes Hacia El Cambio: Las Concepciones De Profesores Y Profesoras De Matemáticas Colombianos (as) Sobre Los Factores Determinantes De Su Práctica De Enseñanza Del Álgebra Escolar. Revista EMA, 10(2 y 3), 375–412.Agudelo-Valderrama, C. (2007). La Creciente Brecha Entre Las Disposiciones Educativas Colombianas, Las Proclamaciones Oficiales Y Las Realidades Del Aula De Clase: Las Concepciones De Profesores Y Profesoras De Matemáticas Sobre El Álgebra Escolar Y El Propósito De Su Enseñanza. REICE - Revista Electrónica Iberoamericana Sobre Calidad, Eficacia y Cambio En Educación, 5(1), 43–62.Aguliera, E., & Nightengale-Lee, B. (2020). Emergency remote teaching across urban and rural contexts: perspectives on educational equity. Information and Learning Sciences, 121(5/6), 471–478. https://doi.org/10.1108/ILS-04-2020-0100Al-Murani, T., Kilhamn, C., Morgan, D., & Watson, A. (2019). Opportunities for learning: the use of variation to analyse examples of a paradigm shift in teaching primary mathematics in England. Research in Mathematics Education, 21(1), 6–24. https://doi.org/10.1080/14794802.2018.1511460Angus, I. (2005). Jacob Klein’s revision of Husserl’s crisis - A contribution to the transcendental history of reification. PHILOSOPHY TODAY, 49(5, S), 204–211. https://doi.org/10.5840/philtoday200549Supplement25Antonijević, R. (2016). Cognitive activities in solving mathematical tasks: The role of a cognitive obstacle. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2503–2515. https://doi.org/10.12973/eurasia.2016.1306aApsari, R. A., Sariyasa, S., Putri, R. I. P., Gunawan, G., & Prayitno, S. (2020). Understanding Students’ Transition from Arithmetic to Algebraic Thinking in the Pre-Algebraic Lesson. Journal of Physics: Conference Series, 1471(1). https://doi.org/10.1088/1742-6596/1471/1/012056Arroyo-Marioli, F., Bullano, F., Kucinskas, S., & Rondón-Moreno, C. (2021). Tracking R of COVID-19: A new real-time estimation using the Kalman filter. PLoS ONE, 16(1 January). https://doi.org/10.1371/journal.pone.0244474Asquith, P., Stephens, A. C., Knuth, E. J., & Alibali, M. W. (2007). Middle School Mathematics Teachers’ Knowledge of Students’ Understanding of Core Algebraic Concepts: Equal Sign and Variable. Mathematical Thinking and Learning, 9(3). https://doi.org/10.1080/10986060701360910Ayala-Altamirano, C., & Molina, M. (2020). Meanings Attributed to Letters in Functional Contexts by Primary School Students. INTERNATIONAL JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION, 18(7), 1271–1291. https://doi.org/10.1007/s10763-019-10012-5Ayala-Altamirano, C., Pinto, E., Molina, M., & Canadas, M. C. (2022). Interacting with Indeterminate Quantities through Arithmetic Word Problems: Tasks to Promote Algebraic Thinking at Elementary School. MATHEMATICS, 10(13). https://doi.org/10.3390/math10132229Ayber, G., & Tanisli, D. (2017). An Analysis of Middle School Mathematics Textbooks from the Perspective of Fostering Algebraic Thinking through Generalization. Educational Sciences: Theory & Practice, 17(6), 2001–2030. https://doi.org/10.12738/estp.2017.6.0506Ballesta-Claver, J., Ayllon Blanco, M. F., & Gomez Perez, I. A. (2021). A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry. MATHEMATICS, 9(15). https://doi.org/10.3390/math9151755Balzer, W., & Moulines, C. (2011). Structuralist theory of science: focal issues, new results. https://books.google.es/books?hl=es&lr=&id=nj2selIJisC& oi=fnd&pg=PA1&dq=c+moulines+models+&ots=TVvsqWBKJQ&sig=mfhVcOhaGVZAgNDiPLE6qmoGEQBalzer, W., Moulines, C. U., & Sneed, J. D. (1986). An architectonic for science: The structuralist program (vol 186). Springer Science & Business Media.Bazzini, L., Tsamir, P., & Boero, P. (2004). Algebraic equations and inequalities issues for research and teaching. Principles and Standards for School Mathematics, 2.Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. In Approaches to algebra.Beltrán, R. R. (2015). Historia de la enseñanza en Colombia: entre saberes y disciplinas escolares. Pedagogía y Saberes, 42, 9–20.Bender, A., & Beller, S. (2012). Nature and culture of finger counting: Diversity and representational effects of an embodied cognitive tool. Cognition, 124(2), 156–182. https://doi.org/10.1016/j.cognition.2012.05.005Blanton, M., Isler-Baykal, I., Stroud, R., Stephens, A., Knuth, E., & Gardiner, A. M. (2019). Growth in children’s understanding of generalizing and representing mathematical structure and relationships. Educational Studies in Mathematics, 102(2), 193–219. https://doi.org/10.1007/s10649-019-09894-7Blanton, M. L., & Kaput, J. J. (2011). Functional Thinking as a Route Into Algebra in the Elementary Grades (pp. 5–23). https://doi.org/10.1007/978-3-642-17735-4_2Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J.-S. (2015). The development of children’s algebrai thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39–87.Bonola, R. (1955). Non-Euclidean geometry: A critical and historical study of its development.Boom, A. M. (1986). Escuela, maestro y métodos en Colombia, 1750-1820. Universidad Pedagógica Nacional, Centro de Investigaciones.Booth, L. R. (1988). Children’s difficulties in beginning algebra. In The ideas of algebra, K-12 (pp. 299–306).Boyer, C. (1968). A History of Mathematics. New York: John Willey & Sons.Brating, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. MATHEMATICAL THINKING AND LEARNING, 23(2), 170–185. https://doi.org/10.1080/10986065.2020.1779012Brenner, M. E., Brar, T., Durdn, R., Mayer, R. E., Moseley, B., Smith, B. R., & Webb, D. (1995). the Role of Multiple Representations in Learning Algebra. Proceedings of the 17th Conference of PME-NA.Brizuela, B. M. (2016). Variables in elementary mathematics education. Elementary School Journal, 117(1), 46–71. https://doi.org/10.1086/687810Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A., & Murphy Gardiner, A. (2015). Children’s Use of Variables and Variable Notation to Represent Their Algebraic Ideas. Mathematical Thinking and Learning, 17(1), 34–63. https://doi.org/10.1080/10986065.2015.981939Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015). A specific misconception of the equal sign acts as a barrier to children’s learning of early algebra. Learning and Individual Differences, 38, 61– 67. https://doi.org/10.1016/j.lindif.2015.01.001Caetano Rodrigues, M. da S., & Fusaro Pinto, M. M. (2020). Characterizing Algebraic Thinking in Elementary School. ABAKOS, 8(1), 86–102.Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Fong Ng, S., & Schmittau, J. (2005). The development of studients’ algebraic thinking in earlier grades: Zentralblatt Für Didaktik Der Mathematik, 37(1), 5–15. https://doi.org/10.1007/bf02655892Cai, J., & Moyer, J. C. (2008). Developing Algebraic Thinking in Earlier Grades: Some Insights from International Comparative Studies NCTM Yearbook Section Addressed: The Nature of Algebra and Algebraic Thinking: Content Perspectives • What can be learned from international studies of i.Cai, J., Ng, S. F., & Moyer, J. C. (2011). Developing Students’ Algebraic Thinking in Earlier Grades: Lessons from China and Singapore (pp. 25–41). https://doi.org/10.1007/978-3-642-17735-4_3Cai, J., Nie, B., Moyer, J. C., & Wang, N. (2014). Teaching Mathematics Using Standards-Based and Traditional Curricula: A Case of Variable Ideas (pp. 391–415). https://doi.org/10.1007/978-94-007-7560-2_19Cañadas, M. C., Blanton, M., & Brizuela, B. M. (2019). Special issue on early algebraic thinking / Número especial sobre el pensamiento algebraico temprano. Infancia y Aprendizaje, 42(3), 469–478. https://doi.org/10.1080/02103702.2019.1638569Cardozo, M. O., Rua, A. M. L., & Alzate, Ó. E. T. (2019). Modelos de inmunidad en estudiantes universitarios: su evolución como resultado de un proceso de enseñanza. Educação e Pesquisa, 45. https://doi.org/10.1590/s1678-4634201945184698Cardozo, M. O. (2017). Inmunidad : Modelos Mentales. 4079–4086.Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying Covariational Reasoning While Modeling Dynamic Events: A Framework and a Study. Journal for Research in Mathematics Education, 33(5), 352. https://doi.org/10.2307/4149958Carpenter, T. P., & Levi, L. (2000). Developing Conceptions of Algebraic Reasoning in the Primary Grades. Research Report. Research Report: National Center for Improving Student Learning and Achievement in Mathematics and Science, 5, 1–22.Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM - International Journal on Mathematics Education, 40(1), 3–22. https://doi.org/10.1007/s11858- 007-0067-7Carraher, D. W., & Schliemann, A. D. (2018). Cultivating Early Algebraic Thinking. https://doi.org/10.1007/978-3-319-68351-5_5Carraher, D. W., & Schliemann, A. D. (2019). Early algebraic thinking and the US mathematics standards for grades K to 5. INFANCIA Y APRENDIZAJE, 42(3, SI), 479–522. https://doi.org/10.1080/02103702.2019.1638570Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115.Carvalho, A. M., & Gonçalves, S. (2021). An analytical solution for the Kermack–McKendrick model. Physica A: Statistical Mechanics and Its Applications, 566. https://doi.org/10.1016/j.physa.2020.125659Castro, A., Prat, M., & Gorgorio, N. (2016). Conceptual and procedural knowledge in mathematics: their development after decades of research. REVISTA DE EDUCACION, 374, 42–66. https://doi.org/10.4438/1988-592X-RE-2016-374-325Centrone, S. (2013). The Origin of the Logic of Symbolic Mathematics. Edmund Husserl and Jacob Klein. HISTORY AND PHILOSOPHY OF LOGIC, 34(2), 187–193. https://doi.org/10.1080/01445340.2012.752610Çelik, D., & Güneş, G. (2013). Different grade students’ use and interpretation of literal symbols. Kuram ve Uygulamada Egitim Bilimleri, 13(2), 1168–1175. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84880094243&partnerID=40&md5=fccbf00d9e578c538894ca2a9503ea3eÇelik, H. C. (2020). Development of symbolic mathematics language literacy perception scale for junior high school students and analysis of literacy perceptions based on certain variables*. International Journal of Mathematical Education in Science and Technology, 51(3). https://doi.org/10.1080/0020739X.2018.1555724Chandrasekharan, S., & Nersessian, N. J. (2015). Building Cognition: The Construction of Computational Representations for Scientific Discovery. Cognitive Science, 39(8), 1727–1763. https://doi.org/10.1111/cogs.12203Chen, X., Li, J., Xiao, C., & Yang, P. (2021). Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19. Fuzzy Optimization and Decision Making, 20(2). https://doi.org/10.1007/s10700-020-09342-9Chen, Y. C., Lu, P. E., Chang, C. S., & Liu, T. H. (2020). A Time-Dependent SIR Model for COVID-19 with Undetectable Infected Persons. IEEE Transactions on Network Science and Engineering, 7(4). https://doi.org/10.1109/TNSE.2020.3024723Chiappini, G. (2014). The semiotic mediation of digital visual-spatial and deictic diagrams for learning algebra [La mediazione semiotica di diagrammi digitali visuo-spaziali e deittici per l’apprendimento dell ’algebra]. Sistemi Intelligenti, 26(2), 133–162. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84908900396&partnerID=40&md5=9a22a381a217aebaa64f4f6e72e16eb7Chimoni, M., & Pitta-Pantazi, D. (2017). Parsing the notion of algebraic thinking within a cognitive perspective. Educational Psychology, 37(10), 1186–1205. https://doi.org/10.1080/01443410.2017.1347252Chimoni, M., Pitta-Pantazi, D., & Christou, C. (2018). Examining early algebraic thinking: insights from empirical data. Educational Studies in Mathematics, 98(1), 57–76. https://doi.org/10.1007/s10649-018- 9803-xChimoni, M., Pitta-Pantazi, D., & Christou, C. (2023). Unfolding algebraic thinking from a cognitive perspective. Educational Studies in Mathematics, 114(1), 89–108. https://doi.org/10.1007/s10649-023-10218-zChristou, K. P., & Vosniadou, S. (2012). What Kinds of Numbers Do Students Assign to Literal Symbols? Aspects of the Transition from Arithmetic to Algebra. Mathematical Thinking and Learning, 14(1), 1–27. https://doi.org/10.1080/10986065.2012.625074Chrysostomou, M.-B. M. B., & Christou, C. (2019). Analysing the notion of algebraic thinking based on empirical evidence / Un análisis del concepto de pensamiento algebraico basado en evidencia empírica. Infancia y Aprendizaje, 42(3), 721–781. https://doi.org/10.1080/02103702.2019.1604022Cinta Munoz-Catalan, M., Ramirez-Garcia, M., Joglar-Prieto, N., & Carrillo-Yanez, J. (2022). Early childhood teachers’ specialised knowledge to promote algebraic thinking as from a task of additive decomposition (El conocimiento especializado del profesor de educacion infantil para fomentar el pensamiento algebraico a partir de una tarea de desco. JOURNAL FOR THE STUDY OF EDUCATION AND DEVELOPMENT, 45(1), 37–80. https://doi.org/10.1080/02103702.2021.1946640Coelho, F. U., & Aguiar, M. (2018). A história da álgebra e o pensamento algébrico: Correlações com o ensino. Estudos Avancados, 32(94), 171–188. https://doi.org/10.1590/s0103-40142018.3294.0013Coles, A. (2015). Engaging in mathematics in the classroom: Symbols and experiences. In Engaging in Mathematics in the Classroom: Symbols and Experiences. Taylor and Francis Inc. https://doi.org/10.4324/9781315691329Coles, A., & Ahn, A. (2022). Developing algebraic activity through conjecturing about relationships. ZDMMathematics Education, 54(6, SI), 1229–1241. https://doi.org/10.1007/s11858-022-01420-zCortés, J. C., Hitt, F., & Saboya, M. (2016). Arithmetico-algebraic thinking through a mathematical working space in a paper, pencil, and technological environment in secondary school [pensamiento aritméticoalgebraico a través de un espacio de trabajo matemático en un ambiente de papel, lápiz y tecn. Bolema - Mathematics Education Bulletin, 30(54), 240–264. https://doi.org/10.1590/1980-4415v30n54a12Craik, K. J. W. (1943). The nature of explanation (CUP Archive., Vol. 445). Cambridge University Press Archive.Danesi, M. (2007). A conceptual metaphor framework for the teaching of mathematics. Studies in Philosophy and Education, 26(3). https://doi.org/10.1007/s11217-007-9035-5Daryaee, A., Shahvarani, A., Tehranian, A., Lotfi, F. H., & Rostamy-Malkhalifeh, M. (2018). Executable functions of the representations in learning the algebraic concepts [Funciones ejecutables de las representaciones en el aprendizaje de los conceptos algebraicos]. PNA, 13(1), 1–18. https://doi.org/10.30827/pna.v13i1.6903Das, K. (2020). A Study on Misconception of Using Brackets in Arithmetic Expression. Shanlax International Journal of Education, 8(4). https://doi.org/10.34293/education.v8i4.3252Dascal, M. (2002). Language as a cognitive technology. International Journal of Cognition and Technology, 1(1). https://doi.org/10.1075/ijct.1.1.04dasDavid, M. M., Tomaz, V. S., & Ferreira, M. C. C. (2014). How visual representations participate in algebra classes’ mathematical activity. ZDM - International Journal on Mathematics Education, 46(1), 95–107. https://doi.org/10.1007/s11858-013-0550-2Demonty, I., Vlassis, J., & Fagnant, A. (2018a). Algebraic thinking, pattern activities and knowledge for teaching at the transition between primary and secondary school. Educational Studies in Mathematics, 99(1). https://doi.org/10.1007/s10649-018-9820-9Demonty, I., Vlassis, J., & Fagnant, A. (2018b). Algebraic thinking, pattern activities and knowledge for teaching at the transition between primary and secondary school. EDUCATIONAL STUDIES IN MATHEMATICS, 99(1), 1–19. https://doi.org/10.1007/s10649-018-9820-9Dieudonné, J. (1987). Panorama De Las Matematicas Puras: La Eleccion Bourbakist.Dindyal, J. (2004). Algebraic thinking in geometry at high school level: students’ use of variables and unknowns. National Institute of Education, 27(21).Doran, Y. J. (2017a). The discourse of physics: Building knowledge through language, mathematics and image. In The Discourse of Physics: Building Knowledge through Language, Mathematics and Image. https://doi.org/10.4324/9781315181134Doran, Y. J. (2017b). The role of mathematics in physics: Building knowledge and describing the empirical world. Onomazein, 35. https://doi.org/10.7764/onomazein.sfl.08Doran, Y. J. (2018a). Mathematical Statements and Expressions. In The Discourse of Physics. https://doi.org/10.4324/9781315181134-3Doran, Y. J. (2018b). Mathematical Symbols and the Architecture of the Grammar of Mathematics. In The Discourse of Physics. https://doi.org/10.4324/9781315181134-4Doran, Y. J. (2019). Building knowledge through images in physics. Visual Communication, 18(2). https://doi.org/10.1177/1470357218759825Doran, Y. J. (2021a). Multimodal knowledge. In Teaching Science. https://doi.org/10.4324/9781351129282-9Doran, Y. J. (2021b). Multimodal Knowledge Graphs: Construction, Inference, and Challenges. Teaching Science.Doran, Y. J., Maton, K., & Martin, J. R. (2021). The teaching of science: New insights into knowledge, language and pedagogy. In Teaching Science: Knowledge, Language, Pedagogy. https://doi.org/10.4324/9781351129282-1Dörfler, W. (1991). Forms and Means of Generalization in Mathematics (pp. 61–85). https://doi.org/10.1007/978-94-017-2195-0_4Dougherty, B. J., Bryant, D. P., Bryant, B. R., Darrough, R. L., & Pfannenstiel, K. H. (2015). Developing Concepts and Generalizations to Build Algebraic Thinking: The Reversibility, Flexibility, and Generalization Approach. Intervention in School and Clinic, 50(5), 273–281. https://doi.org/10.1177/1053451214560892Driscoll, M. (1999). Fostering Algebraic Thinking: A Guide for Teachers, Grades 6-10.Duval, R. (1999). Representation, Vision And Visualization: Cognitive Functions In Mathematical Thinking. Basic Issues For Learning. Twenty First Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 25(1).Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-zDuval, R. (2017a). How To Learn To Understand Mathematics? Jornal Internacional de Estudos Em Educação Matemática, 10(2), 114. https://doi.org/10.17921/2176-5634.2017v10n2p119-127Duval, R. (2017b). Registers of Semiotic Representations and Analysis of the Cognitive Functioning of Mathematical Thinking. In Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations (pp. 45–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-56910- 9_3Duval, R. (2017c). The Registers: Method of Analysis and Identification of Cognitive Variables. In Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations (pp. 73– 111). Springer International Publishing. https://doi.org/10.1007/978-3-319-56910-9_4Duval, R. (2017d). Understanding the mathematical way of thinking - The registers of semiotic representations. In Understanding the Mathematical Way of Thinking - The Registers of Semiotic Representations. https://doi.org/10.1007/978-3-319-56910-9Egodawatte, G. (2023). A taxonomy of high school students’ levels of understanding in solving algebraic problems. Teaching Mathematics and Its Applications: An International Journal of the IMA, 42(1), 30– 51. https://doi.org/10.1093/teamat/hrac004Egodawatte, G., & Stoilescu, D. (2015). Grade 11 students’ interconnected use of conceptual knowledge, procedural skills, and strategic competence in algebra: a mixed method study of error analysis. European Journal of Science and Mathematics Education, 3(3), 289–305. https://doi.org/10.30935/scimath/9438El Mouhayar, R. (2018). Trends of progression of student level of reasoning and generalization in numerical and figural reasoning approaches in pattern generalization. Educational Studies in Mathematics, 99(1), 89–107. https://doi.org/10.1007/s10649-018-9821-8Ely, R., & Adams, A. E. (2012). Unknown, placeholder, or variable: what is x? Mathematics Education Research Journal, 24(1), 19–38. https://doi.org/10.1007/s13394-011-0029-9Erdem, Ö., & Aktaş, G. S. (2018). Assessment of activity-based instruction in overcoming 7th grade middle school students’ misconceptions in Algebra. Turkish Journal of Computer and Mathematics Education, 9(2). https://doi.org/10.16949/turkbilmat.333612Ernest, P. (1992). The nature of mathematics: Towards a social constructivist account. Science and Education, 1(1). https://doi.org/10.1007/BF00430212Ezeifeka, C. R. (2015). Grammatical metaphor: In search of proficiency in research abstract writing. SAGE Open, 5(1). https://doi.org/10.1177/2158244015577667Freudenthal, H. (2002). Didactical Phenomenology of Mathematical Structures. KLUWER ACADEMIC PUBLISHERS NEW. https://doi.org/10.1007/bf02400941Fey, J. T., & Smith, D. A. (2016). Algebra as part of an integrated high school curriculum. In And the Rest is Just Algebra. Springer International Publishing. https://doi.org/10.1007/978-3-319-45053-7_7Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(June), 19–25.Firdaus, A. M., Juniati, D., & Wijayanti, P. (2019). Generalization Pattern’s Strategy of Junior High School students based on Gender. Journal of Physics: Conference Series, 1417(1). https://doi.org/10.1088/1742- 6596/1417/1/012045Flavell, J. H. (1979). Metacognition and Cognitive Monitoring A New Area of Cognitive-Developmental Inquiry A Model of Cognitive Monitoring. In psycnet.apa.org. https://psycnet.apa.org/record/1980- 09388-001Ford, M., & Johnson-Laird, P. N. (1985). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Language, 61(4), 897. https://doi.org/10.2307/414498Forigua, J. E., & Velandia, D. A. (2015). Sobre la interpretación y uso de la letra como número generalizado en tareas sobre generalización de patrones: reporte de una experiencia con estudiantes de grado octavo. RECME, 1(1), 273–278.Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108(3). https://doi.org/10.1016/j.cognition.2008.04.007Frank, Mi. C., Fedorenko, E., & Gibson, E. (2008). Language as a Cognitive Technology: English-Speakers Match Like Pirahã When You Don’t Let Them Count. Proceedings of the Annual Meeting of the Cognitive Science Society, 30(30), 30(30), 439–444.Fried, M. N. (2014). History of mathematics in mathematics education. In International Handbook of Research in History, Philosophy and Science Teaching. Springer Netherlands. https://doi.org/10.1007/978-94-007- 7654-8_21Fuadiah, N. F., Suryadi, D., & Turmudi. (2019). Teaching and learning activities in classroom and their impact on student misunderstanding: A case study on negative integers. International Journal of Instruction, 12(1), 407–424. https://doi.org/10.29333/iji.2019.12127aFuringhetti, F., & Paola, D. (1994). Parameters, unknowns and variables: A little difference? Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education, January 1994, 368–375.Fyfe, E. R., Matthews, P. G., Amsel, E., McEldoon, K. L., & McNeil, N. M. (2018). Assessing formal knowledge of math equivalence among algebra and pre-algebra students. Journal of Educational Psychology, 110(1), 87–101. https://doi.org/10.1037/edu0000208Gaeta, G. (2021). A simple SIR model with a large set of asymptomatic infectives. Mathematics In Engineering, 3(2). https://doi.org/10.3934/mine.2021013Gagatsis, A., & Nardi, E. (2016). Developmental, sociocultural, semiotic, and affect approaches to the study of concepts and conceptual development. In The Second Handbook of Research on the Psychology of Mathematics Education: The Journey Continues. Sense Publishers. https://doi.org/10.1007/978-94-6300- 561-6_6García, J. V, & Marfileño, V. E. G. (2018). Development of algebraic thinking in high school students through the visual generalization of figural sequences [Desarrollo del pensamiento algebraico en estudiantes de bachillerato a través de la generalización visual de sucesiones de figuras]. Educacion Matematica, 30(2), 49–72. https://doi.org/10.24844/EM3002.03Gasco-Txabarri, J. (2017). Arithmetic - algebraic problem solving and learning strategies in maths. An study in secondary education [La resolución de problemas aritmético - algebraicos y las estrategias de aprendizaje en matemáticas. Un estudio en educación secundaria obligatoria (. Revista Latinoamericana de Investigacion En Matematica Educativa, 20(2). https://doi.org/10.12802/relime.17.2022Genareo, V. R., Foegen, A., Dougherty, B. J., DeLeeuw, W. W., Olson, J., & Karaman Dundar, R. (2019). Technical Adequacy of Procedural and Conceptual Algebra Screening Measures in High School Algebra. Assessment for Effective Intervention. https://doi.org/10.1177/1534508419862025German, A. (2018). From Intermediates through Eidetic Numbers: Plato on the Limits of Counting. PLATO JOURNAL, 18, 111–124. https://doi.org/10.14195/2183-4105_18_9Giltrow, J. (1995). Writing Science: Literary and Discursive Power by M.A.K. Halliday and J.R. Martin. Discourse and Writing/Rédactologie, 12(1). https://doi.org/10.31468/cjsdwr.388Godino, J. D., Aké, L. P., Gonzato, M., & Wilhelmi, M. R. (2014). Algebrization levels of school mathematics activity. Implication for primary school teacher education [Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros]. Ensenanza de Las Ciencias, 32(1), 199–219. https://doi.org/10.5565/rev/ensciencias.965Godino, J. D., Wilhelmi, M. R., Blanco, T. F., Contreras, Ángel., & Giacomone, Belén. (2016). Análisis de la actividad matemática mediante dos herramientas teóricas: Registros de representación semiótica y configuración ontosemiótica. Avances de Investigación En Educación Matemática, 10, 91–110. https://doi.org/10.35763/aiem.v0i10.144Gómez, P., Castro, P., Bulla, A., Mora, M. F., & Pinzón, A. (2015). Derechos básicos de aprendizaje en matemáticas: revisión crítica y propuesta de ajuste. Scielo.Org.Co, 19(3), 315–338. https://doi.org/10.5294/edu.2016.19.3.1Gómez, P., & Ley, L. (2010). DISEÑO CURRICULAR EN COLOMBIA. EL CASO DE LAS MATEMÁTICAS VERSIÓN CORTA.Goos, M., Geiger, V., & Bennison, A. (2015). Conceptualising And Enacting Numeracy. Psychology of Mathematics Education Conference, 3.Gounane, S., Barkouch, Y., Atlas, A., Bendahmane, M., Karami, F., & Meskine, D. (2021). An adaptive social distancing SIR model for COVID-19 disease spreading and forecasting. Epidemiologic Methods, 10(s1). https://doi.org/10.1515/em-2020-0044Grant, H., & Kleiner, I. (2015). Turning Points in the History of Mathematics. Springer New York. https://doi.org/10.1007/978-1-4939-3264-1Gray, J. (2018). A History of Abstract Algebra. Springer International Publishing. https://doi.org/10.1007/978- 3-319-94773-0Greefrath, G., & Vorhölter, K. (2016). Teaching and Learning Mathematical Modelling: Approaches and Developments from German Speaking Countries. https://doi.org/10.1007/978-3-319-45004-9_1Gualberto, C., Dos Santos, Z. B., & Meira, A. C. (2020). Multimodal metaphors: From language as a condition to text to the notion of texture as a meaning-making semiotic resource. Revista de Estudos Da Linguagem, 28(2). https://doi.org/10.17851/2237-2083.28.2.893-915Gullick, M. M., & Wolford, G. (2014). Brain systems involved in arithmetic with positive versus negative numbers. Human Brain Mapping, 35(2), 539–551. https://doi.org/10.1002/hbm.22201Guzmán Bautista, N. A. (2013). Una propuesta para desarrollar pensamiento algebraico desde la básica primaria a través de la aritmética generalizada. Facultad de Ciencias.Guzmán, N., Pulido, J., & Alarcón, M. (2013). De la aritmética discreta, al concepto de variable.Hackenberg, A. J., Jones, R., Eker, A., & Creager, M. (2017). “Approximate” multiplicative relationships between quantitative unknowns. Journal of Mathematical Behavior, 48, 38–61. https://doi.org/10.1016/j.jmathb.2017.07.002Hackenberg, A. J., & Lee, M. Y. (2016). Students’ distributive reasoning with fractions and unknowns. Educational Studies in Mathematics, 93(2), 245–263. https://doi.org/10.1007/s10649-016-9704-9Hachey, A. C. (2013). The Early Childhood Mathematics Education Revolution. Early Education and Development, 24(4), 419–430. https://doi.org/10.1080/10409289.2012.756223Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and meaning. Hodder Education.Halliday, M. A. K. (1993a). Towards a language-based theory of learning. Linguistics and Education, 5(2), 93– 116.Halliday, M. A. K. (1999). The notion of “context” in language education (p. 1). https://doi.org/10.1075/cilt.169.04halHalliday M. A. K., & Martin, J. R. (1993b). Writing science: Literacy and discursive power. (The Falmer Press). Taylor & Francis.Hamilton, E., Lesh, R., Lester, F., & Yoon, C. (2020). The Use of Reflection Tools to Build Personal Models of Problem-Solving. In Foundations for the Future in Mathematics Education. https://doi.org/10.4324/9781003064527-21Hardiani, N., Budayasa, I. K., & Juniati, D. (2018). Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style. In N. A. B. D. L. A. W. S. C. Ekawati R. Rahayu Y.S. (Ed.), Journal of Physics: Conference Series (Vol. 947, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/947/1/012051Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428. https://doi.org/10.2307/749651Hausberger, T. (2017). La dialectique objets-structures comme cadre de référence pour une étude didactique du structuralisme algébrique. Éducation et Didactique, 11(2). https://doi.org/10.4000/educationdidactique.2750Hausberger, T., Zandieh, M., & Fleischmann, Y. (2021). Abstract and Linear Algebra. In Research and Development in University Mathematics Education. https://doi.org/10.4324/9780429346859-11Heid, M. K. (1996). A Technology-Intensive Functional Approach to the Emergence of Algebraic Thinking. In Approaches to Algebra. https://doi.org/10.1007/978-94-009-1732-3_18Henao-Cespedes, V., Garcés-Gómez, Y. A., Ruggeri, S., & Henao-Cespedes, T. M. (2022). Relationship analysis between the spread of COVID-19 and the multidimensional poverty index in the city of Manizales, Colombia. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 197–204. https://doi.org/10.1016/j.ejrs.2021.04.002Hernández García, K. L., & Tapiero Castellanos, K. J. (2014). Desarrollo del razonamiento algebraico a partir de la generalización de patrones gráficos-icónicos en estudiantes de educación básica primaria. http://funes.uniandes.edu.co/11520/1/Hernández2014Desarrollo.pdfHerscovics, N., & Kieran, C. (1980). Constructing Meaning For The Concept Of Equation. The Mathematics Teacher, 73(8), 572–580. http://www.jstor.org/stable/27962179Herscovics, N., & Linchevscki, L. (1994). A Cognitive Gap between Arithmetic and Algebra Nicolas Herscovics ; Liora Linchevski. Educational Studies, 27(1), 59–78.Hewitt, D. (2012). Young students learning formal algebraic notation and solving linear equations: are commonly experienced difficulties avoidable? EDUCATIONAL STUDIES IN MATHEMATICS, 81(2), 139–159. https://doi.org/10.1007/s10649-012-9394-xHewitt, D. (2014). A Symbolic Dance: The Interplay Between Movement, Notation, and Mathematics on a Journey Toward Solving Equations. Mathematical Thinking and Learning, 16(1), 1–31. https://doi.org/10.1080/10986065.2014.857803Hitt, F., Saboya, M., & Cortés Zavala, C. (2016). An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: triangular numbers. ZDM - Mathematics Education, 48(6), 775–791. https://doi.org/10.1007/s11858-015-0749-5Hitt, F., Saboya, M., Zavala, C. C., & GRUTEAM. (2017). Rupture or continuity: The arithmetico-algebraic thinking as an alternative in a modelling process in a paper and pencil and technology environment. Educational Studies in Mathematics, 94(1), 97–116. https://doi.org/10.1007/s10649-016-9717-4Hodnik Čadež, T., & Manfreda Kolar, V. (2015). Comparison of types of generalizations and problem-solving schemas used to solve a mathematical problem. Educational Studies in Mathematics, 89(2), 283–306. https://doi.org/10.1007/s10649-015-9598-yHohol, M., & Miłkowski, M. (2019). Cognitive Artifacts for Geometric Reasoning. Foundations of Science, 24(4), 657–680. https://doi.org/10.1007/s10699-019-09603-wHuerta Cuervo, M. R. (2006). Iberoamérica en PISA 2006: Informe regional del Grupo Iberoamericano de PISA. Gestión y Politica Pública, 19(2), 420-430.Humberstone, J., & Reeve, R. A. (2018). The conceptual overlap between arithmetic and algebraic referential mapping. Learning and Instruction, 54, 138–146. https://doi.org/10.1016/j.learninstruc.2017.09.001Hurst, M., & Cordes, S. (2017). Working memory strategies during rational number magnitude processing. Journal of Educational Psychology, 109(5), 694–708. https://doi.org/10.1037/edu0000169Hurst, M., & Cordes, S. (2018). A systematic investigation of the link between rational number processing and algebra ability. British Journal of Psychology, 109(1), 99–117. https://doi.org/10.1111/bjop.12244Iedema, R. (2001). Resemiotization. Semiotica, 2001(137), 23–39. https://doi.org/10.1515/semi.2001.106Iedema, R. (2003). Multimodality, resemiotization: extending the analysis of discourse as multi-semiotic practice. Visual Communication, 2(1), 29–57. https://doi.org/10.1177/1470357203002001751Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38(3), 258–288.Jacobson, E. (2014). Using Covariation Reasoning to Support Mathematical Modeling. The Mathematics Teacher, 107(7), 515–519. https://doi.org/10.5951/mathteacher.107.7.0515Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1–16. https://doi.org/10.1007/s10649-017-9761-8Johanning, D. I. (2004). Supporting the development of algebraic thinking in middle school: A closer look at students’ informal strategies. Journal of Mathematical Behavior, 23(4), 371–388. https://doi.org/10.1016/j.jmathb.2004.09.001Johansen, M. W., & Misfeldt, M. (2015). Semiotic Scaffolding in Mathematics. Biosemiotics, 8(2), 325–340. https://doi.org/10.1007/s12304-014-9228-6Johansson, M., Lange, T., Meaney, T., Riesbeck, E., & Wernberg, A. (2014). Young children’s multimodal mathematical explanations. ZDM - International Journal on Mathematics Education, 46(6), 895–909. https://doi.org/10.1007/s11858-014-0614-yJohnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4(1), 71–115.Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences, 107(43), 18243–18250. https://doi.org/10.1073/pnas.1012933107Jones, I. (2012). Early algebraization: a global dialogue from multiple perspectives. Research in Mathematics Education, 14(3), 301–305. https://doi.org/10.1080/14794802.2012.734996Kalra, P. B., Hubbard, E. M., & Matthews, P. G. (2020). Taking the relational structure of fractions seriously: Relational reasoning predicts fraction knowledge in elementary school children. Contemporary Educational Psychology, 62. https://doi.org/10.1016/j.cedpsych.2020.101896Kanbir, S., Clements, M. A., & Ellerton, N. F. (2018a). Using Design Research and History to Tackle a Fundamental Problem with School Algebra. https://doi.org/10.1007/978-3-319-59204-6Kanbir, S., Clements, M. A., & Ellerton, N. F. (2018b). Using design research and history to tackle a fundamental problem with school algebra: Improving the quality of algebra education at the middleschool level.Kang, M. (2023). The susceptible–infected–recovered model as a tool to motivate and teach differential equations: an analytic approach. In International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2023.2249898Kaput, J. J. (2017). 1 What Is Algebra? What Is Algebraic Reasoning? In Algebra In The Early Grades (pp. 5– 18). Routledge. https://doi.org/10.4324/9781315097435-2Kaput, J. J., & Blanton, M. L. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412. https://my.nctm.org/eresources/view_media.asp?article_id=7228Kaput, J. J., Blanton, M. L., & Moreno, L. (2018). 2 Algebra From a Symbolization Point of View. In Algebra In The Early Grades (pp. 19–56). Routledge. https://doi.org/10.4324/9781315097435-3Kaput, J. J., Carraher, D. W., & Blanton, M. L. (2008). Algebra In the Early Grades (J. J. Kaput, D. W. Carraher, & M. L. Blanton, Eds.). Taylor & Francis Group. http://taylorandfrancis.comKaur, B. (2014). Developing procedural fluency in algebraic structures - a case study of a mathematics classroom in Singapore. In Algebra Teaching around the World. Sense Publishers. https://doi.org/10.1007/978-94- 6209-707-0Kellogg, D., & Shin, J. young. (2018). Vygotsky, Hasan and Halliday: Towards Conceptual Complementarity. British Journal of Educational Studies, 66(3). https://doi.org/10.1080/00071005.2017.1364695Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721.Kerrigan, S. T. (2023). Modeling Middle Grade Students’ Algebraic and Covariational Reasoning using Unit Transformations and Working Memory . Virginia Tech.Ketterlin-Geller, L. R., Shivraj, P., Basaraba, D., & Schielack, J. (2019). Universal screening for algebra readiness in middle school: Why, what, and does it work? Investigations in Mathematics Learning, 11(2), 120–133. https://doi.org/10.1080/19477503.2017.1401033Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326. https://doi.org/10.1007/BF00311062Kieran, C. (1988). The equation-solving errors of novice and intermediate algebra students. Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, 1.Kieran, C. (1989). The early learning of algebra: A structural perspective. In Research issues in the learning and teaching of Algebra (pp. 33–56). Routledge. https://doi.org/10.4324/9781315044378-4Kieran, C. (1991). Research Into Practice: Helping to Make the Transition to Algebra. The Arithmetic Teacher, 38(7), 49–51. https://doi.org/10.5951/AT.38.7.0049Kieran, C. (1992). The learning and teaching of school algebra. https://psycnet.apa.org/record/1992-97586-017Kieran, C. (1995). A new look at school algebra-Past, present, and future. Journal of Mathematical Behavior, 14(1). https://doi.org/10.1016/0732-3123(95)90020-9Kieran, C. (1996). The changing face of school algebra. 8th International Congress on Mathematical Education. https://dialnet.unirioja.es/servlet/articulo?codigo=2858391Kieran, C. (2004). Algebraic thinking in the early grades: What is it. The Mathematics Educator, 8(1), 139– 151.Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. Second handbook of research on mathematics teaching and learning, 2, 707-762.Kieran, C. (2011). Cognitive Processes Involved in Learning School Algebra. In Mathematics and Cognition. https://doi.org/10.1017/cbo9781139013499.007Kieran, C. (2013). The False Dichotomy in Mathematics Education Between Conceptual Understanding and Procedural Skills: An Example from Algebra. In Vital Directions for Mathematics Education Research (Vol. 9781461469773, pp. 153–171). Springer New York. https://doi.org/10.1007/978-1-4614-6977-3_7Kieran, C. (2014). Algebra Teaching and Learning. In Encyclopedia of Mathematics Education (pp. 27–32). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_6Kieran, C. (2016). Cognitive neuroscience and algebra: Challenging some traditional beliefs. In And the Rest is Just Algebra. https://doi.org/10.1007/978-3-319-45053-7_9Kieran, C. (2018). The Early Learning of Algebra: A Structural Perspective. In Research Issues in the Learning and Teaching of Algebra (pp. 33–56). Routledge. https://doi.org/10.4324/9781315044378-4Kieran, C. (2022). The multi-dimensionality of early algebraic thinking: background, overarching dimensions, and new directions. ZDM-MATHEMATICS EDUCATION, 54(6, SI), 1131–1150. https://doi.org/10.1007/s11858-022-01435-6Kieran, C., & Filloy Yagüe, E. (1989). El Aprendizaje del Álgebra Escolar Desde Una Perspectiva Psicológica. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 7(3), 229–240.Kieran, C., & Guzmán, J. (2010). Role of Task and Technology in Provoking Teacher Change: A Case of Proofs and Proving in High School Algebra. In Learning Through Teaching Mathematics (pp. 127–152). Springer Netherlands. https://doi.org/10.1007/978-90-481-3990-3_7Kieran, C., & Martínez-Hernández, C. (2022). Coordinating invisible and visible sameness within equivalence transformations of numerical equalities by 10- to 12-year-olds in their movement from computational to structural approaches. ZDM – Mathematics Education, 54(6), 1215–1227. https://doi.org/10.1007/s11858- 022-01355-5Kilhamn, C., Bråting, K., Helenius, O., & Mason, J. (2022). Variables in early algebra: exploring didactic potentials in programming activities. ZDM – Mathematics Education, 54(6), 1273–1288. https://doi.org/10.1007/s11858-022-01384-0Kızıltoprak, A., & Köse, N. Y. (2017). Relational thinking: The bridge between arithmetic and algebra. International Electronic Journal of Elementary Education, 10(1), 131–145. https://doi.org/10.26822/iejee.2017131893Klein, J. (1992). Greek mathematical thought and the origin of algebra. Courier Corporation.Kline, M. (1990). Mathematical Thought From Ancient to Modern Times: Volume 3. https://books.google.es/books?hl=es&lr=&id=- OsRDAAAQBAJ&oi=fnd&pg=PP1&dq=kline+1990+mathematical+thought&ots=Aw_hVPX_sW&sig= YxLI5bfR9-weucYjfNIXoPJXvkYKnuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle School Students ’ Understanding of Core Algebraic. Zdm, 37(1), 68–76. https://doi.org/10.1007/BF0255899.E.J.Köklü, Ö. (2007). An investigation of college students’ covariational reasoning. In Office.Köklü O., & Jakubowski, E. (2010). From Interpretations to Graphical Representations: A Case Study Investigation of Covariational Reasoning. EURASIAN JOURNAL OF EDUCATIONAL RESEARCH, 10(40), 151–170.Koochesfahani, A. (2016). On Jacob Klein’s Greek Mathematical Thought and the Origin of Algebra. The St. John’s Review, 57(2), 47–69.Kriegler, S. (2007). Just WHAT IS ALGEBRAIC THINKING ? Introduction to Algebra :TeacherHandbook, 1–11. https://mathandteaching.org/uploads/Articles_PDF/articles-01-kriegler.pdfKroeger, L. A., Brown, R. D., & O’Brien, B. A. (2012). Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs. Early Education and Development, 23(1), 37–58. https://doi.org/10.1080/10409289.2012.617289Kröger, M., Turkyilmazoglu, M., & Schlickeiser, R. (2021). Explicit formulae for the peak time of an epidemic from the SIR model. Which approximant to use? Physica D: Nonlinear Phenomena, 425. https://doi.org/10.1016/j.physd.2021.132981Kuchemann, D. (1978). Children’s understanding of numerical variables. Mathematics in School, 7(4), 23–26.Kusuma, N. F., Subanti, S., & Usodo, B. (2018). Students’ misconception on equal sign. In Dafik (Ed.), Journal of Physics: Conference Series (Vol. 1008, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1008/1/012058Kvasz, L. (2006). The history of algebra and the development of the form of its language. Philosophia Mathematica, 14(3), 287–317. https://doi.org/10.1093/philmat/nkj017Lan, X., & Ying, Z. (2021). Teaching Derivative Concept Using 6 Questions Cognitive Model. Journal of Didactic Mathematics, 1(3). https://doi.org/10.34007/jdm.v1i3.371Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 720–733. https://doi.org/10.1037/0278-7393.33.4.720Lee, K., Yeong, S. H. M., Ng, S. F., Venkatraman, V., Graham, S., & Chee, M. W. L. (2010). Computing solutions to algebraic problems using a symbolic versus a schematic strategy. ZDM - International Journal on Mathematics Education, 42(6), 591–605. https://doi.org/10.1007/s11858-010-0265-6Lee, M. Y., & Hackenberg, A. J. (2014). Relationships Between Fractional Knowledge and Algebraic Reasoning: The Case Of Willa. International Journal of Science and Mathematics Education, 12(4), 975–1000. https://doi.org/10.1007/s10763-013-9442-8Lee, K., Ng, S. F., & Bull, R. (2018). Learning and solving algebra word problems: The roles of relational skills, arithmetic, and executive functioning. Developmental Psychology, 54(9), 1758–1772. https://doi.org/10.1037/dev0000561Leikin, M., Waisman, I., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry. Journal of Integrative Neuroscience, 13(1), 35–59. https://doi.org/10.1142/S0219635214500034Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing, 1–14. http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=ED430792%5Cnhttp://www.jaylemke.com/ storage/Math-in-the-Middle-2002.pdfLepak, J. R., Wernet, J. L. W. W., & Ayieko, R. A. (2018). Capturing and characterizing students’ strategic algebraic reasoning through cognitively demanding tasks with focus on representations. Journal of Mathematical Behavior, 50(January), 57–73. https://doi.org/10.1016/j.jmathb.2018.01.003Lerna, C. (2014). Burt C. Hopkins. The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. Studies in Continental Thought. Philosophia Mathematica, 22(2), 249–262. https://doi.org/10.1093/philmat/nku007Lesh, R. (2006). Modeling Students Modeling Abilities: The Teaching and Learning of Complex Systems in Education. Journal of the Learning Sciences, 15(1), 45–52. https://doi.org/10.1207/s15327809jls1501_6Levin, M., & Walkoe, J. (2022). Seeds of algebraic thinking: a Knowledge in Pieces perspective on the development of algebraic thinking. ZDM-MATHEMATICS EDUCATION, 54(6, SI), 1303–1314. https://doi.org/10.1007/s11858-022-01374-2Libkind, S., Baas, A., Halter, M., Patterson, E., & Fairbanks, J. P. (2022). An algebraic framework for structured epidemic modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2233). https://doi.org/10.1098/rsta.2021.0309Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations. Educational Studies in Mathematics, 30(1). https://doi.org/10.1007/BF00163752Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2). https://doi.org/10.1023/A:1003606308064Liu, Y., & O’Halloran, K. L. (2009). Intersemiotic Texture: analyzing cohesive devices between language and images. Social Semiotics, 19(4), 367–388. https://doi.org/10.1080/10350330903361059Looi, C.-K., & Lim, K.-S. (2009). From bar diagrams to letter-symbolic algebra: a technology-enabled bridging. Journal of Computer Assisted Learning, 25(4), 358–374. https://doi.org/10.1111/j.1365- 2729.2009.00313.xLopes, A. P. C. e. (2023). Advanced algebraic thinking processes in students’ modelling activities. Teaching Mathematics and Its Applications: An International Journal of the IMA, 42(4), 360–374. https://doi.org/10.1093/teamat/hrac024Luzardo, D., & Peña P, A. J. (2006). History of linear algebra up to the dawn of the 20th century | Historia del álgebra lineal hasta los albores del siglo XX. Divulgaciones Matematicas, 14(2).Madej, L. (2022). Primary School Students’ Knowledge of the Equal Sign—the Swedish Case. International Journal of Science and Mathematics Education, 20(2), 321–343. https://doi.org/10.1007/s10763-020- 10144-zMagiera, M. T., van den Kieboom, L. A., & Moyer, J. C. (2013). An exploratory study of pre-service middle school teachers’ knowledge of algebraic thinking. Educational Studies in Mathematics, 84(1), 93–113. https://doi.org/10.1007/s10649-013-9472-8Maj-Tatsis, B., & Tatsis, K. (2018). The use of variables in a patterning activity: Counting dots [Uporaba spremenljivk pri zaporedjih: štetje pik]. Center for Educational Policy Studies Journal, 8(2), 55–70. https://doi.org/10.26529/cepsj.309Maffia, A., & Mariotti, M. A. (2020). From action to symbols: giving meaning to the symbolic representation of the distributive law in primary school. Educational Studies in Mathematics, 104(1), 25–40. https://doi.org/10.1007/s10649-020-09944-5Malisani, E. E., & Spagnolo, F. (2009). From arithmetical thought to algebraic thought: The role of the “variable.” Educational Studies in Mathematics, 71(1), 19–41. https://doi.org/10.1007/s10649-008-9157- xMandal, S., & Naskar, S. K. (2019). Solving Arithmetic Word Problems by Object Oriented Modeling and Query-Based Information Processing. International Journal on Artificial Intelligence Tools, 28(4, SI). https://doi.org/10.1142/S0218213019400025Marshall, S. P. (1995). Schemas in Problem Solving. In Schemas in Problem Solving. https://doi.org/10.1017/cbo9780511527890Martin, J. R., & Veel, R. (2005). Reading science: Critical and functional perspectives on discourses of science. In Reading Science: Critical and Functional Perspectives on Discourses of Science. https://doi.org/10.4324/9780203982327Martinez, M. V., Brizuela, B. M., & Superfine, A. C. (2011). Integrating algebra and proof in high school mathematics: An exploratory study. Journal of Mathematical Behavior, 30(1), 30–47. https://doi.org/10.1016/j.jmathb.2010.11.002Martinez-Leon, I., Olmedo-Cifuentes, I., Arcas-Lario, N., & Zapata-Conesa, J. (2018). Cooperatives in Education: Teacher Job Satisfaction and Gender Differences. CIRIEC-ESPANA REVISTA DE ECONOMIA PUBLICA SOCIAL Y COOPERATIVA, 94, 31–60. https://doi.org/10.7203/CIRIECE. 94.12700Mason, J. (2016). Overcoming the algebra barrier: Being particular about the general, and generally looking beyond the particular, in Homage to Mary Boole. In And the Rest is Just Algebra. Springer International Publishing. https://doi.org/10.1007/978-3-319-45053-7_6Mason, J. (2018a). 3 Making Use of Children’s Powers to Produce Algebraic Thinking. Algebra In The Early Grades, April, 57–94. https://doi.org/10.4324/9781315097435-4Mason, J. (2018b). Structuring Structural Awareness: A Commentary on Chapter 13. New ICMI Study Series, 325–340. https://doi.org/10.1007/978-3-319-63555-2_14Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43(3). https://doi.org/10.5951/jresematheduc.43.3.0316Maurício de Carvalho, J. P. S., & Rodrigues, A. A. (2023). SIR Model with Vaccination: Bifurcation Analysis. Qualitative Theory of Dynamical Systems, 22(3). https://doi.org/10.1007/s12346-023-00802-2Mavrikis, M., Noss, R., Hoyles, C., & Geraniou, E. (2013). Sowing the seeds of algebraic generalization: Designing epistemic affordances for an intelligent microworld. Journal of Computer Assisted Learning, 29(1), 68–84. https://doi.org/10.1111/j.1365-2729.2011.00469.xMayo Clinic. (2022). Enfermedad del coronavirus 2019 (COVID-19). Https://Www.Mayoclinic.Org/Es- Es/Diseases-Conditions/Coronavirus/Symptoms-Causes/Syc-20479963.Medova, J., Bulkova, K. O., & Ceretkova, S. (2020). Relations between Generalization, Reasoning and Combinatorial Thinking in Solving Mathematical Open-Ended Problems within Mathematical Contest. MATHEMATICS, 8(12). https://doi.org/10.3390/math8122257Medvedeva, M., Simos, T. E., Tsitouras, C., & Katsikis, V. (2021). Direct estimation of SIR model parameters through second-order finite differences. Mathematical Methods in the Applied Sciences, 44(5). https://doi.org/10.1002/mma.6985Meert, G., Greǵoire, J., Seron, X., & Noël, M.-P. (2013). The processing of symbolic and nonsymbolic ratios in school-age children. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0082002MEN. (1998). Lineamientos curriculares en Matemáticas. Ministerio de Educación Nacional.MEN, M. de E. N. de C. (2016). Derechos Básicos de Aprendizaje.Merriam, S. B. (1998). Qualitative research and case study applications in education. In Dados (Vol. 2nd).Meyer, A., & Fischer, A. (2013). How Algebraic Symbol Use Supports Algebraic Thinking-Theoretical Insights [Wie algebraische Symbolsprache die Möglichkeiten für algebraisches Denken erweitert - Eine Theorie symbolsprachlichen algebraischen Denkens]. Journal Fur Mathematik-Didaktik, 34(2), 177–208. https://doi.org/10.1007/s13138-013-0054-1Meyer, C., & Meyer, C. B. (2016). A Case in Case Study Methodology. In Case Studies. https://doi.org/10.4135/9781473915480.n22Mielicki, M. K., Kacinik, N. A., & Wiley, J. (2017). Bilingualism and symbolic abstraction: Implications for algebra learning. Learning and Instruction, 49, 242–250. https://doi.org/10.1016/j.learninstruc.2017.03.002Miłkowski, M. (2022). Cognitive Artifacts and Their Virtues in Scientific Practice. Studies in Logic, Grammar and Rhetoric, 67(3). https://doi.org/10.2478/slgr-2022-0012Miller, M. E. (2023). Mathematical Structure and Empirical Content. The British Journal for the Philosophy of Science, 74(2), 511–532. https://doi.org/10.1086/714814Mohsen, N. S. (2022). Algebraic thinking and its relation to metacognitive skills among middle school students. INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 14(3), 4823– 4831. https://doi.org/10.9756/INT-JECSE/V14I3.639Moritz, J. (2004). Reasoning about Covariation. In The Challenge of Developing Statistical Literacy, Reasoning and Thinking (pp. 227–255). Springer Netherlands. https://doi.org/10.1007/1-4020-2278-6_10Morsanyi, K., van Bers, B. M. C. W., O’Connor, P. A., & McCormack, T. (2020). The role of numerical and non-numerical ordering abilities in mathematics and reading in middle childhood. Contemporary Educational Psychology, 62. https://doi.org/10.1016/j.cedpsych.2020.101895Moulines, C. U. (1996). Structuralist Models, Idealization, and Approximation. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), MModelling and Simulation in the Social Sciences from the Philosophy of Science Point of View. Theory and Decision Library (Series A: Philosophy and Methodology of the Social Sciences). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-015-8686-3_9Moulines, C. U. (2005). Models of data, theoretical models, and ontology: A structuralist perspective. In Activity and Sign: Grounding Mathematics Education (pp. 325–333). Springer US. https://doi.org/10.1007/0-387-24270-8_28Mulligan, J., Verschaffel, L., Baccaglini-Frank, A., Coles, A., Gould, P., He, S., Ma, Y., Milinković, J., Obersteiner, A., Roberts, N., Sinclair, N., Wang, Y., Xie, S., & Yang, D.-C. (2018). Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive and Developmental Approaches. New ICMI Study Series, 137–167. https://doi.org/10.1007/978-3-319-63555-2_7Muniroh, A., Usodo, B., & Subanti, S. (2017). Algebraic Form Problem Solving Based on Student Abstraction Ability. In R. A. A. G. Riza L.S. Nandiyanto A.B.D. (Ed.), Journal of Physics: Conference Series (Vol. 895, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/895/1/012038Mustaffa, N. B., Ismail, Z. B., Said, M. N. H. B. M., & Tasir, Z. B. (2017). A review on the development of algebraic thinking through technology. Advanced Science Letters, 23(4), 2951–2953. https://doi.org/10.1166/asl.2017.7615Mustaffa, N., Ismail, Z., Tasir, Z., & Said, M. N. H. B. M. (2015). A review on the developing algebraic thinking. Advanced Science Letters, 21(10), 3381–3383. https://doi.org/10.1166/asl.2015.6511Mustaffa, N., Mohamad Said, M. N. H., Ismail, Z., & Tasir, Z. (2018). The effect of integrating algebraic thinking in problem-based learning via virtual environment among secondary school students. In W. L.- H. C. M. Rodrigo M.M.T. Yang J.-C. (Ed.), ICCE 2018 - 26th International Conference on Computers in Education, Main Conference Proceedings (pp. 187–192). Asia-Pacific Society for Computers in Education. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85060006300&partnerID=40&md5=e49435c2e574aa8819462e3f17e2b4ccMustaffa, N., Said, M. N. H. M., Ismail, Z., & Tasir, Z. (2019). Framework of Integrating Algebraic Thinking in Problem-Based Learning via Online Environment for School Students. In W. G. K. W. S. J. R. M. L. L. C. U. V. N. Lee M.J.W. Nikolic S. (Ed.), Proceedings of 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2018 (pp. 372–378). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TALE.2018.8615390Navas Cárdenas, A. M., & Martínez Rivera, C. A. (2017). Los referentes curriculares instituidos para la elaboración del conocimiento escolar en ciencias en Colombia:¿ qué caracteriza la estructura de los estándares. Enseñanza de Las Ciencias, Extra, 1183-1188.Navia Imbachí, C. H., & Tamayo Alzate, Ó. E. (2020). Modelos mentales sobre el concepto de ambiente en estudiantes indígenas de educación básica. Latinoamericana de Estudios Educativos, 16(1). https://doi.org/10.17151/rlee.2020.16.1.2Ngu, B. H., Chung, S. F., & Yeung, A. S. (2015). Cognitive load in algebra: element interactivity in solving equations. Educational Psychology, 35(3), 271–293. https://doi.org/10.1080/01443410.2013.878019Nicolás, P. (2015). Structuralism and theories in mathematics education. CERME9, 9, 2688–2694.Niess, M. L. (2014). Leveraging dynamic and dependable spreadsheets focusing on algebraic thinking and reasoning. In Cases on Technology Integration in Mathematics Education. IGI Global. https://doi.org/10.4018/978-1-4666-6497-5.ch001Ningrum, Y., Kusmayadi, T. A., & Fitriana, L. (2019). Analysis problem solving about contextual problem of algebraic in junior high school. In Dafik (Ed.), Journal of Physics: Conference Series (Vol. 1211, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1211/1/012102Norman, D. A. (1983). Some observations on mental models. In G. Dedre & Albert L. Stevens (Eds.), Mental Models (1st Edition, pp. 15–22). Psychology Press.Norman, D. A. (1992). Design principles for cognitive artifacts. Research in Engineering Design, 4(1). https://doi.org/10.1007/BF02032391Nurhayati, D. M., Herman, T., & Suhendra, S. (2017). Analysis of Secondary School Students’ Algebraic Thinking and Math-Talk Learning Community to Help Students Learn. Journal of Physics: Conference Series, 895(1), 012054. https://doi.org/10.1088/1742-6596/895/1/012054Obara, S. (2019). Pre-service teachers exploring the role of pattern-based reasoning in the context of algebraic thinking. Eurasia Journal of Mathematics, Science and Technology Education, 15(11). https://doi.org/10.29333/ejmste/109262Oaks, J. A. (2018a). François Viète’s revolution in algebra. Archive for History of Exact Sciences, 72(3), 245– 302. https://doi.org/10.1007/s00407-018-0208-0Oaks, J. A. (2018b). François Viète’s revolution in algebra. Archive for History of Exact Sciences, 72(3), 245– 302. https://doi.org/10.1007/s00407-018-0208-0O’Halloran, K. (2008a). Mathematical discourse: Language, symbolism and visual images. . Continium.O’Halloran, K. L. (1999). Towards a systemic functional analysis of multisemiotic mathematics texts. Semiotica, 124(1–2), 1–30. https://doi.org/10.1515/semi.1999.124.1-2.1O’Halloran, K. L. (2006). Mathematical discourse: language, symbolism and the visual images. Choice Reviews Online, 43(11), 43-6575-43–6575. https://doi.org/10.5860/CHOICE.43-6575O’Halloran, K. L. (2008). Language and Visual Imagery. Visual Communication, 7(4).O’Halloran, K. L. (2011). The semantic hyperspace: Accumulating mathematical knowledge across semiotic resources and modalities. In F. Christie & K. Maton (Eds.), Disciplinarity: Functional linguistic and sociological perspectives (pp. 217-236.). Continuum.O’ Halloran, K. L. (2014). Halliday and Multimodal Semiotics. SemiotiX New Series.O’Halloran, K. L. (2015). The language of learning mathematics: A multimodal perspective. The Journal of Mathematical Behavior, 40, 63–74. https://doi.org/10.1016/j.jmathb.2014.09.002O’Halloran, K. L. (2023). Matter, meaning and semiotics. Visual Communication, 22(1), 174–201. https://doi.org/10.1177/14703572221128881O’Halloran, K. L., Tan, S., & Wignell, P. (2016). Intersemiotic Translation as Resemiotisation: A Multimodal Perspective. Signata, 7, 199–229. https://doi.org/10.4000/signata.1223Orrego Cardozo, M., López Rúa, A. M., & Tamayo Alzate, Ó. E. (2012). Modelos de inflamación en estudiantes universitarios. Revista Latinoamericana de Estudios Educativos, 8(1).Orrego, M., López, A., & Tamayo, O. (2013). Evolución de los modelos explicativos de fagocitosis en estudiantes universitarios. Revista Latinoamericana de Estudios Educativos , 9(1).Orrego, M., Tamayo, O. E., & Ruiz, F. J. (2016). Unidades didácticas para la enseñanza de las ciencias. Editorial Universidad Autónoma de Manizales. Manizales Colombia.Ozturk, M. (2021). An embedded mixed method study on teaching algebraic expressions using metacognitionbased training. THINKING SKILLS AND CREATIVITY, 39. https://doi.org/10.1016/j.tsc.2021.100787Ozturk, M., & Kaplan, A. (2019). Cognitive Analysis of Constructing Algebraic Proof Processes: A Mixed Method Research. EGITIM VE BILIM-EDUCATION AND SCIENCE, 44(197), 25–64. https://doi.org/10.15390/EB.2018.7504Palarea, M., & Socas, M. (1994). Algunos obstáculos cognitivos en el aprendizaje del lenguaje algebraico. Suma, 16, 91–98.Palarea Medina, M. (1999). La adquisición del lenguaje algebraico: reflexiones de una investigación. In Números (Issue 40, pp. 3–28).Pallarès, G., Hausberger, T., & Roy, A. (2021). Promoting epistemology in the training of pre-service mathematics teachers? A mixed didactical and philosophical approach. Education et Didactique, 15(1). https://doi.org/10.4000/educationdidactique.8103Palatnik, A. (2022). Didactic situations in project-based learning: The case of numerical patterns and sequences. JOURNAL OF MATHEMATICAL BEHAVIOR, 66. https://doi.org/10.1016/j.jmathb.2022.100956Pang, J., & Kim, J. (2018). Characteristics of Korean Students’ Early Algebraic Thinking: A Generalized Arithmetic Perspective. https://doi.org/10.1007/978-3-319-68351-5_6Papic, M. (2015). An Early Mathematical Patterning Assessment: identifying young Australian Indigenous children’s patterning skills. Mathematics Education Research Journal, 27(4), 519–534. https://doi.org/10.1007/s13394-015-0149-8Pearn, C., & Stephens, M. (2018). Generalizing Fractional Structures: A Critical Precursor to Algebraic Thinking (pp. 237–260). https://doi.org/10.1007/978-3-319-68351-5_10Pérez Peña, J. J. (2005). La generalización como proceso de pensamiento matemático: una propueta didáctica para mejorar el aprendizaje del álgebra elemental.Philipp, R. A. (1992). The many uses of algebraic variables. Mathematics Teacher, 85(7), 557–561Piaget, J. (1971). The theory of stages in cognitive development. In Measurement and Piaget. (pp. ix, 283–ix, 283). McGraw-Hill.Pino-Fan, L., Guzmán, I., Duval, R., & Font, V. (2015). The theory of registers of semiotic representation and the onto-semiotic approach to mathematical cognition and instruction: linking looks for the study of mathematical understanding. Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, 4, 33–40.Pinto, E., & Cañadas, M. C. (2019). Generalizations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-019-00300-2Pirie, S., & Kieren, T. (1994). Learning Mathematics : Constructivis and Interactionist Theories of Mathematical Development. In Learning Mathematics (Vol. 26). https://doi.org/10.1007/978-94-017- 2057-1Pittalis, M. (2023). Young Students’ Arithmetic-Algebraic Structure Sense: an Empirical Model and Profiles of Students. International Journal of Science and Mathematics Education, 21(6), 1865–1887. https://doi.org/10.1007/s10763-022-10333-yPittalis, M., Pitta-Pantazi, D., & Christou, C. (2020). Young Students’ Functional Thinking Modes: The Relation Between Recursive Patterning, Covariational Thinking, and Correspondence Relations. Journal for Research in Mathematics Education, 51(5), 631–674. https://doi.org/10.5951/jresematheduc-2020- 0164Pitta-Pantazi, D., Chimoni, M., & Christou, C. (2019). Different Types of Algebraic Thinking: an Empirical Study Focusing on Middle School Students. International Journal of Science and Mathematics Education, 18(5), 965–984. https://doi.org/10.1007/s10763-019-10003-6Pitta-Pantazi, D., Chimoni, M., & Christou, C. (2020). Different Types of Algebraic Thinking: an Empirical Study Focusing on Middle School Students. International Journal of Science and Mathematics Education, 18(5), 965–984. https://doi.org/10.1007/s10763-019-10003-6Plothová, L., & Naštická, Z. (2017). An analysis of errors in algebraization of a math word problem and the Rosnick-Clement phenomenon. In L. P. P. M. Szarkova D. Richtarikova D. (Ed.), 16th Conference on Applied Mathematics, APLIMAT 2017 - Proceedings (pp. 1197–1206). Slovak University of Technology in Bratislava.Pollack, C. (2019). Same-different judgments with alphabetic characters: The case of literal symbol processing. Journal of Numerical Cognition, 5(2), 241–259. https://doi.org/10.5964/jnc.v5i2.163Pollack, C., Leon Guerrero, S., & Star, J. R. (2016). Exploring mental representations for literal symbols using priming and comparison distance effects. ZDM, 48(3), 291–303. https://doi.org/10.1007/s11858-015- 0745-9Pollack, C., & Price, G. R. (2020). Mapping letters to numbers: Potential mechanisms of literal symbol processing. Learning and Individual Differences, 77. https://doi.org/10.1016/j.lindif.2019.101809Pottage, J. (1969). Jacob Klein, (1968): Greek Mathematical Thought and the Origin of Algebra . (tr. by Eva Brann, with an appendix containing Vieta’s Introduction to the Analytic Art. The British Journal for the Philosophy of Science, 20(4). https://doi.org/10.1093/bjps/20.4.374Powell, S. R., Berry, K. A., & Barnes, M. A. (2019). The role of pre-algebraic reasoning within a wordproblem intervention for third-grade students with mathematics difficulty. ZDM - Mathematics Education. https://doi.org/10.1007/s11858-019-01093-1Powell, S. R., Kearns, D. M., & Driver, M. K. (2016). Exploring the connection between arithmetic and prealgebraic reasoning at first and second grade. Journal of Educational Psychology, 108(7), 943–959. https://doi.org/10.1037/edu0000112Pramesti, T. I., & Retnawati, H. (2019). Difficulties in learning algebra: An analysis of students’ errors. Journal of Physics: Conference Series, 1320(1). https://doi.org/10.1088/1742-6596/1320/1/012061Pratiwi, V., Herman, T., & Suryadi, D. (2019). Algebraic thinking obstacles of elementary school students: A Hermeneutics-phenomenology study. In A. A. G. S. P. I. A. R. R. Sutarno Nandiyanto A.B.D. (Ed.), Journal of Physics: Conference Series (Vol. 1157, Issue 3). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1157/3/032115Prendergast, M., & Treacy, P. (2018). Curriculum reform in Irish secondary schools–a focus on algebra. Journal of Curriculum Studies, 50(1), 126–143. https://doi.org/10.1080/00220272.2017.1313315Preston, C. M., Hubber, P. J., & Xu, L. (2022). Teaching About Electricity in Primary School Multimodality and Variation Theory as Analytical Lenses. RESEARCH IN SCIENCE EDUCATION, 52(3, SI), 949–973. https://doi.org/10.1007/s11165-022-10047-9Priya, A. (2021). Case Study Methodology of Qualitative Research: Key Attributes and Navigating the Conundrums in Its Application. Sociological Bulletin, 70(1), 94–110. https://doi.org/10.1177/0038022920970318Puig, L. (2003). HISTORIA DE LAS IDEAS ALGEBRAICAS: COMPONENTES Y PREGUNTAS DE INVESTIGACIÓN DESDE EL PUNTO DE VISTA DE LA MATEMÁTICA EDUCATIVA. In P. F. Castro, T. Ortega, L. Rico, & A. Vallecillos (Eds.), Investigación en Educación Matemática. Actas del Séptimo Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 97–108). Universidad de Granada.Puig, L. (2006). Sentido y elaboración del componente de competencia de los modelos teóricos locales en la investigación de la enseñanza y aprendizaje de contenidos matemáticos específicos. X Simposio de La SEIEM, 2, 87–107.Qiu, H., Wang, Q., Wu, Q., & Zhou, H. (2022). Does flattening the curve make a difference? An investigation of the COVID-19 pandemic based on an SIR model. International Review of Economics and Finance, 80. https://doi.org/10.1016/j.iref.2022.02.063Queiroz, J., & Atã, P. (2019). Intersemiotic Translation, Cognitive Artefact, and Creativity. Adaptation, 12(3). https://doi.org/10.1093/adaptation/apz001Radford, L. (1994). La enseñanza de la demostración: aspectos teóricos y prácticos. Educacion Matematica, funes.uniandes.edu.co.Radford, L. (2001). Introducción Semiótica y Educación Matemática. In Otte. Steinbring.Radford, L. (2003). Gestures, Speech, and the Sprouting of Signs: A Semiotic-Cultural Approach to Students’ Types of Generalization Algebraic thinking View project. Mathematical Thinking and Learning, 5(1), 37–70. https://doi.org/10.1207/S15327833MTL0501_02Radford, L. (2006a). Algebraic Thinking and the Generalization of Patterns: A Semiotic Perspective. 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 1–21(March 1987), 2–21. http://www.academia.edu/download/34739146/Book_from_conference.pdf#page=28Radford, L. (2006b). Elementos de una teoría cultural de la objetivación. Relime, Número Especial, 103–129.Radford, L. (2006c). Semiótica cultural y cognición. Matemática Educativa En Latinoamérica.Radford, L. (2006d). The Anthropology of Meaning. Educational Studies in Mathematics, 41–65. https://doi.org/10.1007/s10649-006-7136-7Radford, L. (2008a). Iconicity and contraction: a semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM, 40(1), 83–96. https://doi.org/10.1007/s11858-007-0061-0Radford, L. (2008b). The ethics of being and knowing: Towards a cultural theory of learning.Radford, L. (2010a). Algebraic thinking from a cultural semiotic perspective Algebraic thinking View project Embodiment View project. Article in Research in Mathematics Education. https://doi.org/10.1080/14794800903569741Radford, L. (2012). On the development of early algebraic thinking. Revista Investigación Didáctica de Las Matemmáticas.Radford, L. (2013a). En torno a tres problemas de la generalización. Investigación En Didáctica de La Matemática.Radford, L. (2013b). Three Key Concepts of the Theory of Objectification: Knowledge, Knowing, and Learning. REDIMAT - Journal of Research in Mathematics Education, 2(1), 7–44. https://doi.org/10.4471/redimat.2013.19Radford, L. (2014a). De la teoría de la objetivación. In Revista Latinoamericana de Etnomatemática (Vol. 7, Issue 2).Radford, L. (2014b). The Progressive Development of Early Embodied Algebraic Thinking. Mathematics Education Research Journal, 26(2), 257–277. https://doi.org/10.1007/s13394-013-0087-2Radford, L. (2014c). Towards an embodied, cultural, and material conception of mathematics cognition. ZDM - International Journal on Mathematics Education, 46(3), 349–361. https://doi.org/10.1007/s11858-014- 0591-1Radford, L. (2016). The epistemic, the cognitive, the human: a commentary on the mathematical working space approach. ZDM - Mathematics Education, 48(6), 925–933. https://doi.org/10.1007/s11858-016-0811-yRadford, L., Bardini, C., & Sabena, C. (2007). Perceiving the general: The multisemiotic dimension of students’ algebraic activity. Journal for Research in Mathematics Education, 38(5), 507–530. https://doi.org/10.2307/30034963Radford, L., & D’Amore, B. (2006). Semiotics, culture, and mathematical thinking. Revista de Investigación Educativa.Radford, L., Dettori, G., National, I., & Garuti, R. (2002). Perspectives on School Algebra. Perspectives on School Algebra, April 2001. https://doi.org/10.1007/0-306-47223-6Radford, L., & Puig, L. (2007). Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in Mathematics, 66(2), 145–164. https://doi.org/10.1007/s10649-006-9024-6Raffa Rodrigues, R. V., Oliveira, H. M., & de Costa Trindade Cyrino, M. C. (2022). Promoting Prospective Mathematics Teachers’ Professional Vision on a Whole-class Reflective Discussion: Contributions of Digital Resources. INTERNATIONAL JOURNAL OF EDUCATION IN MATHEMATICS SCIENCE AND TECHNOLOGY, 10(4), 773–794. https://doi.org/10.46328/ijemst.2181Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H. E. A., & Cheng, P. C. H. (2020). Dissecting Representations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12169 LNAI. https://doi.org/10.1007/978-3- 030-54249-8_11Rahardjoni, A. S., Hasanah, I. N., & ... (2020). Developing critical thinking competence in algebraic thinking using augmented reality for junior high school. … Nasional Matematika, 3.Rahmawati, D. I. (2018). Characteristics of Algebraic Thinking of Junior High School Students. Journal of Physics: Conference Series, 1097(1), 012110. https://doi.org/10.1088/1742-6596/1097/1/012110Rahmawati, D. I., Priatna, N., & Juandi, D. (2019). Algebraic thinking characteristics of eighth grade junior high school students based on Superitem Test of SOLO model. In P. I. A. A. G. N. A. B. D. S. Agustin R.R. Sutarno (Ed.), Journal of Physics: Conference Series (Vol. 1157, Issue 4). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1157/4/042087Rakes, C. R. (2011). Misconceptions in rational numbers, probability, algebra, and geometry. Dissertation Abstracts International Section A: Humanities and Social Sciences, 2811. https://www.lib.uwo.ca/cgibin/ ezpauthn.cgi?url=http://search.proquest.com/docview/863421468?accountid=15115%5Cnhttp://sfx.sc holarsportal.info/western?url_ver=Z39.88- 2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:Ralston, N. C., Benner, G. J., Tssai, S.-F., Riccomini, P. J., & Nelson, J. R. (2014). Mathematics instruction for students with emotional and behavioral disorders: A best-evidence synthesis. Preventing School Failure, 58(1), 1–16. https://doi.org/10.1080/1045988X.2012.726287Ralston, N., & Li, M. (2022). Student Conceptions of the Equal Sign. The Elementary School Journal, 122(3). https://doi.org/10.1086/717999Ramirez, R., Brizuela, B. M., & Ayala-Altamirano, C. (2022). Word problems associated with the use of functional strategies among grade 4 students. MATHEMATICS EDUCATION RESEARCH JOURNAL, 34(2), 317–341. https://doi.org/10.1007/s13394-020-00346-7Reif, F. (2008). Applying cognitive science to education. In Applying cognitive science to education (pp. 391– 407).Reiss, M. J. (2020). Science Education in the Light of COVID-19: The Contribution of History, Philosophy and Sociology of Science. Science and Education, 29(4). https://doi.org/10.1007/s11191-020-00143-5Rojas, S. (2021). Observing the epidemiological SIR model on the COVID-19 data. Revista Mexicana de Fisica E, 18(1). https://doi.org/10.31349/REVMEXFISE.18.35Romiti, A. (2013). The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. REVIEW OF METAPHYSICS, 66(4), 839–841.Roth, W.-M., & Radford, L. (2011). SEMIOTIC PERSPECTIVES ON THE TEACHING AND LEARNING OF MATHEMATICS SERIES S e n s e P u b l i s h e r s S e n s e P u b l i s h e r s SEMI 2 SEMIOTIC PERSPECTIVES ON THE TEACHING AND LEARNING OF MATHEMATICS SERIES A Cultural- Historical Perspective on Mathe.Rowlands, S., Gloria Ann, S., Gabriele, K., Werner, B., & Jill P., B. (2015). Teaching Mathematical Modelling: Connecting to Research and Practice. Science & Education, 24(4). https://doi.org/10.1007/s11191-014-9734-6Rusdiana, Sutawidjaja, A., Irawan, E. B., & Sudirman. (2018). Students perception on a problem of pattern generalization. Journal of Physics: Conference Series, 1116(2). https://doi.org/10.1088/1742- 6596/1116/2/022040Salimipour, A., Mehraban, T., Ghafour, H. S., Arshad, N. I., & Ebadi, M. J. (2023). SIR model for the spread of COVID-19: A case study. In Operations Research Perspectives (Vol. 10). https://doi.org/10.1016/j.orp.2022.100265Santia, I., Purwanto, Sutawidjadja, A., Sudirman, & Subanji. (2019). Exploring mathematical representations in solving ill-structured problems: The case of quadratic function. Journal on Mathematics Education, 10(3), 365–378. https://doi.org/10.22342/jme.10.3.7600.365-378Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The Approximate Number System is not Predictive for Symbolic Number Processing in Kindergarteners. Quarterly Journal of Experimental Psychology, 67(2), 271–280. https://doi.org/10.1080/17470218.2013.803581Sasanguie, D., & Reynvoet, B. (2014). Adults’ Arithmetic Builds on Fast and Automatic Processing of Arabic Digits: Evidence from an Audiovisual Matching Paradigm. PLoS ONE, 9(2), e87739. https://doi.org/10.1371/journal.pone.0087739Saxena, R., Jadeja, M., & Bhateja, V. (2023). Propagation Analysis of COVID-19: An SIR Model-Based Investigation of the Pandemic. Arabian Journal for Science and Engineering, 48(8). https://doi.org/10.1007/s13369-021-05904-0Schanzer, E. (2015). Algebraic Functions, Computer Programming, and the Challenge of Transfer (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Schmidt, Q. (2006). Estándares básicos de competencias en lenguaje, matemáticas, ciencias y ciudadanas: guía sobre lo que los estudiantes deben saber y saber hacer con lo que aprenden. Ministerio de Educación Nacional.Schmittau, J. (2005). The development of algebraic thinking. Zentralblatt Für Didaktik Der Mathematik, 37(1), 16–22. https://doi.org/10.1007/bf02655893Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning-epistemology, history, and semiotics interacting: To the memory of Carl Menger (1902-1985). Educational Studies in Mathematics, 77(1), 79–104. https://doi.org/10.1007/s10649-011-9301-xSchueler, S., & Roesken-Winter, B. (2014). Exploring Students’ Mental Models in Linear Algebra and Analytic Geometry: Obstacles for Understanding Basic Concepts. North American Chapter of the International Group for the Psychology of Mathematics Education, 5.Sebsibe, A. S., & Feza, N. N. (2020). Assessment of Students’ Conceptual Knowledge in Limit of Functions. INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION, 15(2). https://doi.org/10.29333/iejme/6294Šedivý, J. (1976). A note on the role of parameters in mathematics teaching. Educational Studies in Mathematics, 7(1–2). https://doi.org/10.1007/BF00144365Sfard, A. (1987). TWO CONCEPTIONS OF MATHEMATICAL NOTIONS: OPERATIONAL AND STRUCTURAL. Proceedings of the International Conference on the Psychology of Mathematics Education (PME), 11, 119.Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. The Journal of Mathematical Behavior, 14(1), 15–39. https://doi.org/10.1016/0732-3123(95)90022-5Sfard, A. (2002). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. In Educational Studies in Mathematics (Vol. 46, Issue 1/3). https://doi.org/10.1023/A:1014097416157Sfard, A. (2008). Aprendizaje de las matemáticas escolares desde un enfoque comunicacional.Sfard, A., & Kieran, C. (2001). Cognition as Communication: Rethinking Learning-by-Talking Through Multi- Faceted Analysis of Students’ Mathematical Interactions. Mind, Culture, and Activity, 8(1), 42–76. https://doi.org/10.1207/S15327884MCA0801_04Sfard, A., & Linchevski, L. (1994). The Gains and the Pitfalls of Reification — The Case of Algebra. In Learning Mathematics (pp. 87–124). Springer Netherlands. https://doi.org/10.1007/978-94-017-2057-1_4Shutler, P. M. E. (2017). A symbolical approach to negative numbers. Mathematics Enthusiast, 14(1–3), 207– 240. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85011298699&partnerID=40&md5=1ffb001f3e1894a74c270263f242903fSibgatullin, I. R., Korzhuev, A. V., Khairullina, E. R., Sadykova, A. R., Baturina, R. V., & Chauzova, V. (2022). A Systematic Review on Algebraic Thinking in Education. Eurasia Journal of Mathematics, Science and Technology Education, 18(1), em2065. https://doi.org/10.29333/ejmste/11486Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361. https://doi.org/10.1111/desc.12395Singh, A., & Chattopadhyay, A. (2020). COVID-19 recovery rate and its association with development. Indian Journal of Medical Sciences, 0. https://doi.org/10.25259/ijms_229_2020Smith, D., & Moore, L. (2020a). The SIR Model for Spread of Disease - The Differential Equation Model. Mathematical Association of America.Socas, M. (2011). La enseñanza del Álgebra en la Educación Obligatoria. Aportaciones de la investigación. NUMEROS. Revista de Didáctica de Las Matemáticas, 77, 5–34.Solares, A., & Kieran, C. (2013). Articulating syntactic and numeric perspectives on equivalence: the case of rational expressions. Educational Studies in Mathematics, 84(1), 115–148. http://www.jstor.org/stable/43589775Somasundram, P., Akmar, S. N., & Eu, L. K. (2019). Year five pupils’ number sense and algebraic thinking: The mediating role of symbol and pattern sense. New Educational Review, 55(1), 100–111. https://doi.org/10.15804/tner.2019.55.1.08Soto-Johnson, H. (2014). Visualizing the arithmetic of complex numbers. International Journal for Technology in Mathematics Education, 21(3), 103–114. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84908367475&partnerID=40&md5=b43100ab64d9c84ac1534b12a4a45393Stacey, K., & MacGregor, M. (1997). Ideas about Symbolism That Students Bring To Algebra. Mathematics Teacher, 90(2), 110–113.Stallings, Lynn. (2000). A brief history of algebraic notation. School Science and Mathematics, 100(5), 230– 235.Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 41–54. https://doi.org/10.1016/j.cedpsych.2014.05.005Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Murphy Gardiner, A. (2017). A Learning Progression for Elementary Students’ Functional Thinking. Mathematical Thinking and Learning, 19(3), 143–166. https://doi.org/10.1080/10986065.2017.1328636Stevens, A. L., & Gentner, D. (1983). Mental Models (D. Gentner & A. L. Stevens, Eds.). Psychology Press. https://doi.org/10.4324/9781315802725Stillman, G. A. (2019). State of the Art on Modelling in Mathematics Education—Lines of Inquiry. https://doi.org/10.1007/978-3-030-14931-4_1Strachota, S. M. (2016). Supporting Calculus learning through “smooth” covariation. Proceedings of International Conference of the Learning Sciences, ICLS, 2, 982–985. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84988023727&partnerID=40&md5=050c61e3bfe895740d8c4bbbefc3977dSuarez Gomez, L. J., & Suarez Avila, N. Y. (2020). Configurations of mathematical objects and mathematical processes of integral calculus. PRAXIS & SABER, 11(26). https://doi.org/10.19053/22160159.v11.n26.2020.10992Sugiarti, L., & Retnawati, H. (2019). Analysis of student difficulties on algebra problem solving in junior high school. Journal of Physics: Conference Series, 1320(1). https://doi.org/10.1088/1742- 6596/1320/1/012103Swafford, J. O., & Kepner, H. S. (2020). The Evaluation of an Application-Oriented First-Year Algebra Program. Journal for Research in Mathematics Education, 11(3). https://doi.org/10.5951/jresematheduc.11.3.0190Swafford, J. O., & Langrall, C. W. (2000). Grade 6 students’ preinstructional use of equations to describe and represent problem situations. Journal for Research in Mathematics Education, 31(1), 89–112. https://doi.org/10.2307/749821Switzer, J. M. (2018). U.S. grade 4–6 students’ rational-number substitutions for odd-sum unknown addend tasks. Investigations in Mathematics Learning, 10(1), 33–53. https://doi.org/10.1080/19477503.2017.1371999Tall, D., & Katz, M. (2014). A cognitive analysis of Cauchy’s conceptions of function, continuity, limit and infinitesimal, with implications for teaching the calculus. EDUCATIONAL STUDIES IN MATHEMATICS, 86(1), 97–124. https://doi.org/10.1007/s10649-014-9531-9Tamayo Alzate, O. E., Orrego Cardozo, M., & Dávila Posada, A. R. (2014). MODELOS EXPLICATIVOS DE ESTUDIANTES ACERCA DEL CONCEPTO DE RESPIRACIÓN. Revista Bio-Grafía Escritos Sobre La Biología y Su Enseñanza, 7(13). https://doi.org/10.17227/20271034.vol.7num.13bio-grafia129.145Tamayo-Alzate, Ó. E. (2006). Representaciones semióticas y evolución conceptual en la enseñanza de las ciencias y las matemáticas. Revista Educación y Pedagogía, XVIII(45 (mayo-agosto)), 37–49.Tamayo-Alzate, Ó. E. (2012). La argumentación como constituyente del pensamiento crítico en niños. Hallazgos, 9(17). https://doi.org/10.15332/s1794-3841.2012.0017.10Tamayo-Alzate, Ó. E. (2013). Modelos y modelización en la enseñanza y el aprendizaje de las ciencias. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 0(Extra).Tamayo-Alzate, Ó. E. (2014). Pensamiento crítico dominio- específico en la didáctica de las ciencias. Tecné, Episteme y Didaxis: TED, n.36(0121–3814).Tamayo-Alzate, Ó. E., López-Rúa, A. M., & Orrego-Cardozo, M. (2017). Modelización en la didáctica de las ciencias. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, Extra, 4313.Tamayo-Alzate, Ó. E., & Sanmartí Puig, N. (2007). High‐school Students’ Conceptual Evolution of the Respiration Concept from the Perspective of Giere’s Cognitive Science Model. International Journal of Science Education, 29(2), 215–248. https://doi.org/10.1080/09500690600620854Tamayo-Alzate, Ó. E., Zona, R., & Loaiza, Y. (2015). Pensamiento critico en la educacion. Revista Latinoamericana de Estudios Educativos (Colombia), 11(2).Tham, J. C. K., Burnham, K. D., Hocutt, D. L., Ranade, N., Misak, J., Duin, A. H., Pedersen, I., & Campbell, J. L. (2021). Metaphors, mental models, and multiplicity: Understanding student perception of digital literacy. Computers and Composition, 59. https://doi.org/10.1016/j.compcom.2021.102628Thomas, M. O. J., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM - International Journal on Mathematics Education, 42(6), 607–619. https://doi.org/10.1007/s11858-010- 0272-7Thompson, P., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically (pp. 421–456).Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among U.S. and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95– 111. https://doi.org/10.1016/j.jmathb.2017.08.001Thomson, S., & Fleming, N. (2004). Summing it up: Mathematicsachievement in Australian schoolsin TIMSS 2002 (Vol. 3).Torres, M. D., Canadas, M. C., & Moreno, A. (2022). Functional thinking of 2nd primary student: structures and representations. PNA-REVISTA DE INVESTIGACION EN DIDACTICA DE LA MATEMATICA, 16(3), 215–236. https://doi.org/10.30827/pna.v16i3.23637Trigueros, M., Quintero, R., Reyes, A., & Ursini, S. (1996). Diseño de un cuestionario de diagnóstico acerca del manejo del concepto de variable en el álgebra. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 14(3), 351–364.Ureña, J., Ramírez, R., & Molina, M. (2019). Representations of the generalization of a functional relationship and the relation with the interviewer’s mediation / Representaciones de la generalización de una relación funcional y el vínculo con la mediación del entrevistador. Infancia y Aprendizaje, 42(3), 570–614. https://doi.org/10.1080/02103702.2019.1604020Ursini, S., & Trigueros, M. (1999). A model for the uses of variable in elementary algebra. Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education.Ursini, S., & Trigueros, M. (2004). How do High School Students Interpret Parameters in Algebra? Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4(2001), 361–368.Usiskin, Z. (1988). Conceptions of School Algebra and uses of Variabels. Algebraic Thinking, Grades K-12, 8, 7–13.Usiskin, Z. (1995). Why is Algebra Important To Learn? In American Educator: Vol. Spring.Usiskin, Z. (1997). Doing algebra in grades K-4. Teaching Children Mathematics, 3.Usiskin, Z. (1999). Conceptions of school algebra and uses of variables. Algebraic Thinking, Grades K–12, 5, 8–19.Usiskin, Z. (2004). A significant amount of algebra. NAW, 5(2), 147–151.Usiskin, Z. (2010). The current state of the school mathematics curriculum. Mathematics Curriculum: Issues, Trends, and Future Directions: Seventy-Second Yearbook.Usiskin, Z., Lins, R., Romano, T., Sfard, A., Hosokawa, H., & Lerman, S. (2004). TSG 1: The Teaching and Learning of Algebra. Proceedings of the Ninth International Congress on Mathematical Education, 293– 296. https://doi.org/10.1007/978-94-010-9046-9_71Usta, N., & Ozdemir, B. G. (2018). Examination of Algebraic Thinking Levels of Middle School Students. JOURNAL OF QUALITATIVE RESEARCH IN EDUCATION-EGITIMDE NITEL ARASTIRMALAR DERGISI, 6(3), 427–453. https://doi.org/10.14689/issn.2148-2624.1.6c3s20mVamvakoussi, X. (2017). Using analogies to facilitate conceptual change in mathematics learning. ZDM - Mathematics Education, 49(4), 497–507. https://doi.org/10.1007/s11858-017-0857-5Vasco, C. E. (1985). El enfoque de sistemas en el nuevo programa de matemáticas. Revista de La Universidad Nacional (1944 - 1992), 1(2).Vasco, C. E. (2003). El pensamiento variacional y la modelación matemática. Conferencia Interamericana de Educación Matemática, Blumenau (Vol. 9).van den Kieboom, L. A., Magiera, M. T., & Moyer, J. C. (2014). Exploring the relationship between K-8 prospective teachers’ algebraic thinking proficiency and the questions they pose during diagnostic algebraic thinking interviews. Journal of Mathematics Teacher Education, 17(5), 429–461. https://doi.org/10.1007/s10857-013-9264-1Veith, J. M., Beste, M.-L., Kindervater, M., Krause, M., Straulino, M., Greinert, F., & Bitzenbauer, P. (2023). Mathematics education research on algebra oveVeith, J. M., Bitzenbauer, P., & Girnat, B. (2022). Towards Describing Student Learning of Abstract Algebra: Insights into Learners’ Cognitive Processes from an Acceptance Survey. MATHEMATICS, 10(7). https://doi.org/10.3390/math10071138Vergel, R. (2014). Formas de pensamiento algebraico temprano en alumnos de cuarto y quinto grados de Educación Básica Primaria (9-10 años). Universidad Distrital Francisco José de Caldas.Vergel, R. (2015). Generalización de patrones y formas de pensamiento algebraico temprano. PNA, 9(3), 193- 215.Vergel, R., Godino, J. D., Font, V., & Pantano, Ó. L. (2023). Comparing the views of the theory of objectification and the onto-semiotic approach on the school algebra nature and learning. Mathematics Education Research Journal, 35(3), 475-496.Vermeulen, C., & Meyer, B. (2017). The equal sign: Teachers’ knowledge and students’ misconceptions. African Journal of Research in Mathematics, Science and Technology Education, 21(2). https://doi.org/10.1080/18117295.2017.1321343Verschaffel, L., Greer, B., & De Corte, E. (2010). Mathematics learning. International Encyclopedia of Education, 401–406. https://doi.org/10.1016/B978-0-08-044894-7.00517-0Villalba Baza, C. A., & Tamayo Alzate, O. E. (2017). Concepciones Y Modelos Acerca De La Enseñanza De Las Ciencias Naturales En Estudiantes De La Licenciatura En Pedagogía Infantil De La Universidad Tecnológica De Pereira (Pag: 95-116). Revista Bio-Grafía Escritos Sobre La Biología y Su Enseñanza, 5(8). https://doi.org/10.17227/20271034.vol.5num.8bio-grafia95.116Vinitsky, S. I., Gusev, A. A., Derbov, V. L., Krassovitskiy, P. M., Pen’kov, F. M., & Chuluunbaatar, G. (2021). Reduced SIR Model of COVID-19 Pandemic. Computational Mathematics and Mathematical Physics, 61(3). https://doi.org/10.1134/S0965542521030155Vlassis, J., & Demonty, I. (2022). The role of algebraic thinking in dealing with negative numbers. Zdm- Mathematics Education, 54(6, SI), 1243–1255. https://doi.org/10.1007/s11858-022-01402-1Volmik, J. (1994). Mathematics by all. Springer Cultural Perspectives on the Mathematics.Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69. https://doi.org/10.1016/0959-4752(94)90018-3Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585. https://doi.org/10.1016/0010-0285(92)90018-WVosniadou, S. (2002). Model-Based Reasoning. Model-Based Reasoning, January 2002. https://doi.org/10.1007/978-1-4615-0605-8Wagner, S. (1981). Conservation of equation and function under transformations of variable. Journal for Research in Mathematics Education, 12(2), 107–118.Wagner, S. (1983). What are these things called variables? The Mathematics Teacher, 76(7), 474–479.Wagner, S., & Kieran, C. (1989). Research issues in the learning and teaching of algebra, Vol. 4. This Monograph Contains Revisions of Papers Presented at The Research Agenda Conference on Algebra, Which Was Held in Mar, 1987, at the University of Georgia, Athens, under the Auspices of the National Council of Teachers of Mathematics, Inc.Wagner, S., & Kieran, C. (2018). An Agenda for Research on the Learning and Teaching of Algebra. In Research Issues in the Learning and Teaching of Algebra (pp. 220–237). Routledge. https://doi.org/10.4324/9781315044378-17Wagner, S., & Parker, S. (1993). Advancing Algebra. Research Ideas for the Classroom: High School Mathematics, 119–139.Wahyuni, R., & Herman, T. (2020). Students’ Understanding of the Equal Sign: A Case in Suburban School. https://doi.org/10.5220/0009057100240028Wang, X. (2015). The Literature Review of Algebra Learning: Focusing on the Contributions to Students’ Difficulties. Creative Education, 06(02), 144–153. https://doi.org/10.4236/ce.2015.62013Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of Algebra. In The Second Handbook of Research on the Psychology of Mathematics Education: The Journey Continues. Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_3Wasserman, N. H. (2014). Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers. PRIMUS, 24(3), 191–214. https://doi.org/10.1080/10511970.2013.857374Weinberg, A., Dresen, J., & Slater, T. (2016). Students’ understanding of algebraic notation: A semiotic systems perspective. Journal of Mathematical Behavior, 43, 70–88. https://doi.org/10.1016/j.jmathb.2016.06.001Wilkie, K. J. (2016). Learning to teach upper primary school algebra: changes to teachers’ mathematical knowledge for teaching functional thinking. Mathematics Education Research Journal, 28(2), 245–275. https://doi.org/10.1007/s13394-015-0151-1Wilkie, K. J., & Clarke, D. (2015). Pathways to professional growth: Investigating upper primary school teachers’ perspectives on learning to teach algebra. Australian Journal of Teacher Education, 40(4), 87– 118. https://doi.org/10.14221/ajte.2015v40n4.6Wilkie, K. J., & Clarke, D. M. (2016). Developing students’ functional thinking in algebra through different visualizations of a growing pattern’s structure. Mathematics Education Research Journal, 28(2), 223– 243. https://doi.org/10.1007/s13394-015-0146-yWille, A. (2010). Steps Towards a Structural Conception of the Notion of Variable. Proceedings of CERME 6, 659–668.Wilkie, K. J. (2019). Investigating secondary students’ generalization, graphing, and construction of figural patterns for making sense of quadratic functions. Journal of Mathematical Behavior, 54. https://doi.org/10.1016/j.jmathb.2019.01.005Windsor, W. (2010). Algebraic Thinking: A Problem-Solving Approach. Proceedings of the 33rd Annual Conference of the Mathematics Education Research Group of Australasia, 33, 665–672.Witzel, B. S., Mercer, C. D., & Miller, M. D. (2003). Teaching Algebra to Students with Learning Difficulties: An Investigation of an Explicit Instruction Model. Learning Disabilities Research and Practice, 18(2), 121–131. https://doi.org/10.1111/1540-5826.00068Xin, Y. P. (2019). The effect of a conceptual model-based approach on ‘additive’ word problem solving of elementary students struggling in mathematics. ZDM - Mathematics Education, 51(1), 139–150. https://doi.org/10.1007/s11858-018-1002-9Xu, L., Ferguson, J., & Tytler, R. (2021). Student Reasoning About the Lever Principle Through Multimodal Representations: a Socio-Semiotic Approach. International Journal Of Science And Mathematics Education, 19(6), 1167–1186. https://doi.org/10.1007/s10763-020-10102-9Yin, R. K. (1992). The case study method as a tool for doing evaluation. Current Sociology, 40(1). https://doi.org/10.1177/001139292040001009Young, J. W., Denton, W. W., & Mitchell, U. G. (1911). Lectures on fundamental concepts of algebra and geometry. Macmillan.Yuniati, S., Nusantara, T., Subanji, & Made Sulandra, I. (2019). The use of multiple representation in functional thinking. International Journal of Recent Technology and Engineering, 8(1C2), 672–678. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85069932406&partnerID=40&md5=8c5ae18d2532055bbd4c8ffad9f62e98Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between aegebraic thinking and aegebraic notation. Educational Studies in Mathematics, 49(3), 361–378. https://doi.org/10.1023/A:1020291317178Zeljić, M. (2015). Modelling the Relationships Between Quantities: Meaning in Literal Expressions. EURASIA Journal of Mathematics, Science and Technology Education, 11(2), 431–442. https://doi.org/10.12973/eurasia.2015.1362aZhang, J., Feng, W., & Zhang, Z. (2019). Holistic representation of negative numbers: Evidence from duration comparison tasks. Acta Psychologica, 193, 123–131. https://doi.org/10.1016/j.actpsy.2018.12.012Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/201932024-09-18T08:00:27Z |