Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B

Figuras, tablas, estadísticas

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/22712
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/22712
Palabra clave:
570 - Biología
1. Ciencias Naturales
Cotalus
Veneno
Crotoxina
Caracterización bioquímica
Reconstrucción filogenética
Caracteres ancestrales
Ecología evolutiva
Biología
Rights
License
https://creativecommons.org/licenses/by/4.0/
id REPOUCALDA_ae0957085483df9a3918f292e1bf0bcf
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/22712
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
title Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
spellingShingle Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
570 - Biología
1. Ciencias Naturales
Cotalus
Veneno
Crotoxina
Caracterización bioquímica
Reconstrucción filogenética
Caracteres ancestrales
Ecología evolutiva
Biología
title_short Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
title_full Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
title_fullStr Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
title_full_unstemmed Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
title_sort Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B
dc.contributor.none.fl_str_mv Rodríguez-Rey, Ghennie Tatiana
Franco Vásquez, Adrián Marcelo
Mejía-Sanchez Miguel Ángel
Arreguín-Espinosa Roberto
Grupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B)
dc.subject.none.fl_str_mv 570 - Biología
1. Ciencias Naturales
Cotalus
Veneno
Crotoxina
Caracterización bioquímica
Reconstrucción filogenética
Caracteres ancestrales
Ecología evolutiva
Biología
topic 570 - Biología
1. Ciencias Naturales
Cotalus
Veneno
Crotoxina
Caracterización bioquímica
Reconstrucción filogenética
Caracteres ancestrales
Ecología evolutiva
Biología
description Figuras, tablas, estadísticas
publishDate 2025
dc.date.none.fl_str_mv 2025-09-11T16:17:47Z
2025-09-11T16:17:47Z
2025-09-10
2055-12-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/22712
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/22712
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Aguilar, I., Guerrero, B., Maria Salazar, A., Girón, M. E., Pérez, J. C., Sánchez, E. E., y Rodríguez-Acosta, A. (2007). Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon, 50(2), 214-224. Aird, S. D., y Kaiser, I. I. (1985). Comparative studies on three rattlesnake toxins. Toxicon, 23(3), 361-374.
Aird, S. D., Steadman, B. L., Russell Middaugh, C., y Kaiser, I. I. (1989). Comparative spectroscopic studies of four crotoxin homologs and their subunits. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 997(3), 211-218. Arnaud-Franco, G., Cordero-Tapia, A., Ortíz-Ávila, V., Moctezuma-González, C. L., Tejocote-Pérez, M., y Carbajal-Saucedo, A. (2018). Comparison of biological and biochemical characteristics of venom from rattlesnakes in the southern Baja California Peninsula. Toxicon, 148, 197-201.
Arias-Sosa, L. A., Ruiz-Gómez, F. J., Betancourt, E., y Vargas-Ramírez, M. (2025). Extending the phylogeography and conservation strategies in the South American rattlesnake Crotalus durissus using molecular data. Herpetological Journal, 35(1), 52-72.
Boldrini-França, J., Corrêa-Netto, C., Silva, M. M. S., Rodrigues, R. S., De La Torre, P., Pérez, A., Soares, A. M., Zingali, R. B., Nogueira, R. A., Rodrigues, V. M., Sanz, L., y Calvete, J. J. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics, 73(9), 1758-1776.
Borja, M., Neri-Castro, E., Castañeda-Gaytán, G., Strickland, J., Parkinson, C., Castañeda Gaytán, J., Ponce-López, R., Lomonte, B., Olvera-Rodríguez, A., Alagón, A., y Pérez-Morales, R. (2018). Biological and proteolytic variation in the venom of Crotalus scutulatus scutulatus from mexico. Toxins, 10(1), 35.
Borja, M., Castañeda-Gaytán, G., Alagón, A., Strickland, J. L., Parkinson, C. L., Gutiérrez Martínez, A., Rodriguez-López, B., Zarzosa, V., Lomonte, B., Saviola, A. J., Fernández, J., Smith, C. F., Hansen, K. C., Pérez-Robles, A., Castañeda-Pérez, S., Hirst, S. R., Olvera-Rodríguez, F., Fernández-Badillo, L., Sigala, J., … Neri-Castro, E. (2025). Venom variation and ontogenetic changes in the Crotalus molossus complex: Insights into composition, activities, and antivenom neutralization. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 290, 110129.
Castro, E. N., Lomonte, B., Del Carmen Gutiérrez, M., Alagón, A., y Gutiérrez, J. M. (2013). Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. Journal of Proteomics, 87, 103-121. Casewell, N. R. (2016). Venom evolution: Gene loss shapes phenotypic adaptation. Current Biology, 26(18), R849-R851.
Calvete, J. J., Sanz, L., Cid, P., De La Torre, P., Flores-Díaz, M., Dos Santos, M. C., Borges, A., Bremo, A., Angulo, Y., Lomonte, B., Alape-Girón, A., y Gutiérrez, J. M. (2010). Snake venomics of the central american rattlesnake Crotalus simus and the south american Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in south america. Journal of Proteome Research, 9(1), 528-544.
Calvete, J. J., Pérez, A., Lomonte, B., Sánchez, E. E., y Sanz, L. (2012). Snake venomics of Crotalus tigris: The minimalist toxin arsenal of the deadliest neartic rattlesnake venom. Evolutionary clues for generating a pan-specific antivenom against crotalid type ii venoms. Journal of Proteome Research, 11(2), 1382-1390.
Campbell, J. A., & Lamar, W. W. (2004). The venomous reptiles of the Western Hemisphere. Comstock Publishing Associates.
Chen, Y.-H., Wang, Y.-M., Hseu, M.-J., y Tsai, I.-H. (2004). Molecular evolution and structure–function relationships of crotoxin-like and asparagine-6-containing phospholipases A2 in pit viper venoms. Biochemical Journal, 381(1), 25-34.
Chippaux, J. P., Williams, V., y White, J. (1991). Snake venom variability: methods of study, results and interpretation. Toxicon, 29(11), 1279-1303.
Colis-Torres, A., Neri-Castro, E., Strickland, J. L., Olvera-Rodríguez, A., Borja, M., Calvete, J., Jones, J., Parkinson, C. L., Bañuelos, J., López de León, J., y Alagón, A. (2022). Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie, 192, 111-124.
Daltry, J. C., Wüster, W., y Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537-540.
Deshwal, A., Phan, P., Datta, J., Kannan, R., y Thallapuranam, S. K. (2021). A meta analysis of the protein components in rattlesnake venom. Toxins, 13(6), 372.
Díaz-Ricaurte, J., Fiorillo, B., y Maciel, J. (2018). Crotalus durissus (Linnaeus, 1758). Catálogo de Anfibios y Reptiles de Colombia (Vol. 4, pp. 29-36).
Dowell, N. L., Giorgianni, M. W., Kassner, V. A., Selegue, J. E., Sanchez, E. E., y Carroll, S. B. (2016). The deep origin and recent loss of venom toxin genes in rattlesnakes. Current Biology, 26(18), 2434-2445.
Durban, J., Sanz, L., Trevisan-Silva, D., Neri-Castro, E., Alagón, A., y Calvete, J. J. (2017). Integrated venomics and venom gland transcriptome analysis of juvenile and adult mexican rattlesnakes Crotalus simus , C. Tzabcan , and C. culminatus revealed mirna-modulated ontogenetic shifts. Journal of Proteome Research, 16(9), 3370-3390.
Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792–1797.
Esquivel Soto, E. E., y Leal Guadarrama, L. I. (2004). Métodos fisicoquímicos en Biotecnología: Cromatografía de fase reversa. Instituto de Biotecnología, 50.
ESRI Inc. (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands. <https://www.esri.com/en-us/home/>.
Faure, G., Choumet, V., Bouchier, C., Camoin, L., Guillaume, J., Monegier, B., Vuilhorgne, M., y Bon, C. (1994). The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. European Journal of Biochemistry, 223(1), 161-164.
Faure, G., Xu, H., y Saul, F. A. (2011). Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric β-neurotoxin. Journal of Molecular Biology, 412(2), 176-191.
Faure, G., Porowinska, D., y Saul, F. (2015). Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. En P. Gopalakrishnakone (Ed.), Toxins and Drug Discovery (pp. 1-19).
Franco-Vásquez, A. M. (2021). Aislamiento, identificación y caracterización de fosfolipasas a2 del veneno de serpiente Lachesis acrochorda [Tesis de Maestría, Universidad Nacional Autónoma de México]. Repositorio Institucional – Universidad Nacional Autónoma de México.
Franco-Vásquez, A. M. (2025). Venómica comparativa de las serpientes del género Lachesis de Colombia [Tesis de Doctorado, Universidad Nacional Autónoma de México]. Repositorio Institucional – Universidad Nacional Autónoma de México.
Franco-Vásquez, A. M., Lazcano-Pérez, F., Carbajal-Saucedo, A., Mejía-Sánchez, M. A., Meléndez-Martínez, D., Corzo, G., y Arreguín-Espinosa, R. (2025). Comparative venomics reveals intra, interspecific and ontogenetic changes in the venom composition of Lachesis snakes from Colombia. PLoS Neglected Tropical Diseases.
Glenn, J. L., Straight, R. C., Wolfe, M. C., y Hardy, D. L. (1983). Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon, 21(1), 119-130.
Glenn, J. L., y Straight, R. C. (1985). Venom properties of the rattlesnakes (Crotalus) inhabiting the Baja California region of Mexico. Toxicon, 23(5), 769-775.
Grabowsky, E. R., y Mackessy, S. P. (2019). Predator-prey interactions and venom composition in a high elevation lizard specialist, Crotalus pricei (Twin-spotted Rattlesnake). Toxicon, 170, 29-40
Grabowsky, E. R., Saviola, A. J., Alvarado-Díaz, J., Mascareñas, A. Q., Hansen, K. C., Yates, J. R., y Mackessy, S. P. (2023). Montane rattlesnakes in méxico: Venoms of Crotalus tancitarensis and related species within the Crotalus intermedius group. Toxins, 15(1), 72.
Gutiérrez, J. M., Dos Santos, M. C., De Fatima Furtado, M., y Rojas, G. (1991). Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes. Toxicon, 29(10), 1273-1277.
Hofmann, E. P., Rautsaw, R. M., Strickland, J. L., Holding, M. L., Hogan, M. P., Mason, A. J., Rokyta, D. R., y Parkinson, C. L. (2018). Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Scientific Reports, 8(1), 15534.
Kaiser, I. I., y Middlebrook, J. L. (1988). Preparation of a crotoxin neutralizing monoclonal antibody. Toxicon, 26(9), 855-865.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., y Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589.
Klauber, L. M. (1997). Rattlesnakes: Their habits, life histories, and influence on mankind (2nd ed). Zoological Society of San Diego. University of California Press. Kumar, S., Nei, M., Dudley, J. y Tamura, K. (2008). MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9(4), 299–306.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature, 227(5259), 680-685.
Li, M., Fry, B. G., y Kini, R. M. (2005). Eggs-only diet: Its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). Journal of Molecular Evolution, 60(1), 81-89.
Lomonte, B., y Calvete, J. J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 26.
Mackessy, S. P. (1988). Venom ontogeny in the pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia, 1988(1), 92.
Mackessy, S. P. (2008). Venom composition in rattlesnakes: trends and biological significance. In The Biology of Rattlesnakes (ed. W. K. Hayes), pp. 495–510. Loma Linda University Press, Loma Linda.
Mackessy, S. P. (2010). Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): Toxicity vs. tenderizers. Toxicon, 55(8).
Mackessy, S. P., Leroy, J., Mociño-Deloya, E., Setser, K., Bryson, R. W., y Saviola, A. J. (2018). Venom ontogeny in the mexican lance-headed rattlesnake (Crotalus polystictus). Toxins, 10(7), 271.
Marchi-Salvador, D. P., Corrêa, L. C., Salvador, G. H. M., Magro, A. J., Oliveira, C. Z., Iulek, J., ... y Fontes, M. R. M. (2007). Preliminary X-ray crystallographic studies of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Structural Biology and Crystallization Communications, 63(12), 1067-1069.
Meier, J., y Theakston, R. D. G. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24(4), 395-401.
Mejía-Sánchez, M. A., Clement, H., Corrales-García, L. L., Olamendi-Portugal, T., Carbajal, A., y Corzo, G. (2022). Crotoxin B: Heterologous expression, protein folding, immunogenic properties, and irregular presence in crotalid venoms. Toxins, 14(6), 382.
Mejía-Sánchez, M. A., Cardoso-Arenas, S., Miranda-Blancas, R., Franco-Vásquez, A. M., Carbajal-Saucedo, A., Olamendi-Portugal, T., Zamudio, F., Arreguín-Espinosa, R., y Corzo, G. (2025). Isolation, purification, structure elucidation, and antibody recognition of two phospholipases A2 and Crotoxin variation in the venom of the Tamaulipan rattlesnake Crotalus morulus. Acta Tropica, 267, 107690.
Miller, M. A., Pfeiffer, W., y Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R. y Teeling, E. (2020). Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5), 1530–1534.
Molina, D. A. M., Guerra-Duarte, C., Costal-Oliveira, F., Rocha, E. A., Rodrigues, C. R., Machado-de-Ávila, R. A., ... y Chávez-Olórtegui, C. (2020). Engineered protein containing crotoxin epitopes induces neutralizing antibodies in immunized rabbits. Molecular Immunology, 119, 144 153.
Neri-Castro, E., Hernández-Dávila, A., Olvera-Rodríguez, A., Cardoso-Torres, H., Bénard Valle, M., Bastiaans, E., López-Gutierrez, O., y Alagón, A. (2019). Detection and quantification of a β-neurotoxin (Crotoxin homologs) in the venom of the rattlesnakes Crotalus simus, C. culminatus and C. tzabcan from Mexico. Toxicon: X, 2, 100007.
Neri-Castro, E., Strickland, J. L., Carbajal-Márquez, R. A., Zuñiga Adán, J., Ponce-López, R., Olvera-Rodríguez, F., y Alagón, A. (2022). Characterization of the venom and external morphology of a natural hybrid between Crotalus atrox and Crotalus mictlantecuhtli. Toxicon, 207, 43-47.
Neri-Castro, E., Zarzosa, V., Colis-Torres, A., Fry, B. G., Olvera-Rodríguez, A., Jones, J., Reyes-Velasco, J., Zamudio, F., Borja, M., Alagón, A., y Lomonte, B. (2022). Proteomic and toxicological characterization of the venoms of the most enigmatic group of rattlesnakes: The long tailed rattlesnakes. Biochimie, 202, 226-236.
Nget-Hong, T., y Ponnudurai, G. (1991). A comparative study of the biological activities of rattlesnake (genera Crotalus and Sistrurus) venoms. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 98(2-3), 455-461.
Olamendi-Portugal, T., Batista, C. V. F., Pedraza-Escalona, M., Restano-Cassulini, R., Zamudio, F. Z., Benard-Valle, M., de Roodt, A. R., y Possani, L. D. (2018). New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom. Toxicon, 153, 23-31.
Oliveira, A., Bleicher, L., Schrago, C. G., y Silva Junior, F. P. (2018). Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA₂s): Insights into the structure-function relationships of snake venom toxins. Toxicon, 146, 50 60.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933-938.
Pereañez, J. A., Núñez, V., Huancahuire-Vega, S., Marangoni, S., y Ponce-Soto, L. A. (2009). Biochemical and biological characterization of a PLA₂ from crotoxin complex of Crotalus durissus cumanensis. Toxicon, 53(5), 534-542.
Place, A. J., y Abramson, C. I. (2004). A quantitative analysis of the ancestral area of rattlesnakes. Journal of Herpetology, 38(1), 152-156.
Queiroz, G. P., Pessoa, L. A., Portaro, F. C. V., Furtado, M. D. F. D., y Tambourgi, D. V. (2008). Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon, 52(8), 842-851
R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>. Rambaut, A. (2018). FigTree v1.4.4 [software]. Institute of Evolutionary Biology, University of Edinburgh.
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. y Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901–904.
Rangel-Santos, A., Dos-Santos, E. C., Lopes-Ferreira, M., Lima, C., Cardoso, D. F., y Mota, I. (2004). A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus. Toxicon, 43(7), 801-810.
Revell, L. J. (2024). Phytools 2. 0: An updated r ecosystem for phylogenetic comparative methods(And other things). PeerJ, 12, e16505.
Rivas, E., Neri-Castro, E., Bénard-Valle, M., Hernánez-Dávila, A. I., Zamudio, F., y Alagón, A. (2017). General characterization of the venoms from two species of rattlesnakes and an intergrade population (C. lepidus x aquilus) from Aguascalientes and Zacatecas, Mexico. Toxicon, 138, 191-195.
Rodríguez-Vargas, A., Vega, N., Reyes-Montaño, E., Corzo, G., Neri-Castro, E., Clement, H., y Ruiz-Gómez, F. (2022). Intraspecific differences in the venom of Crotalus durissus cumanensis from Colombia. Toxins, 14(8), 532.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., y Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61, 539–542.
Rosenfeld, G. (1971). Symptomatology, pathology, and treatment of snake bites in South America. In Venomous animals and their venoms (pp. 345-384). Academic Press.
Salazar, A. M., Aguilar, I., Guerrero, B., Girón, M. E., Lucena, S., Sánchez, E. E., y Rodríguez-Acosta, A. (2008). Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagulation & Fibrinolysis, 19(6), 525-530.
Sampaio, S. C., Hyslop, S., Fontes, M. R. M., Prado-Franceschi, J., Zambelli, V. O., Magro, A. J., Brigatte, P., Gutierrez, V. P., y Cury, Y. (2010). Crotoxin: Novel activities for a classic β neurotoxin. Toxicon, 55(6), 1045-1060.
Sanchez, E. F., Freitas, T. V., Ferreira-Alves, D. L., Velarde, D. T., Diniz, M. R., Cordeiro, M. N., ... y Diniz, C. R. (1992). Biological activities of venoms from South American snakes. Toxicon, 30(1), 95-103.
Sanz, L., Gibbs, H. L., Mackessy, S. P., y Calvete, J. J. (2006). Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. Journal of Proteome Research, 5(9), 2098-2112.
Saravia, P., Rojas, E., Arce, V., Guevara, C., López, J. C., Chaves, E., Velásquez, R., Rojas, G., y Gutiérrez, J. M. (2002). Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: Pathophysiological and therapeutic implications. Revista de Biología Tropical, 50(1), 337-346.
Saviola, A. J., Gandara, A. J., Bryson, R. W., y Mackessy, S. P. (2017). Venom phenotypes of the rock rattlesnake (Crotalus lepidus) and the ridge-nosed rattlesnake (Crotalus willardi) from México and the United States. Toxicon, 138, 119-129.
Straight, R. C., Glenn, J. L., Wolt, T. B., y Wolfe, M. C. (1992). North-south regional variation in phospholipase a activity in the venom of Crotalus ruber. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(3), 635-639.
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., y Minh, B. Q. (2016). W-iq-tree: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232 W235.
Wooten, J. A., y Gibbs, H. L. (2012). Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. Journal of Evolutionary Biology, 25(2), 317-328.
Zamudio, K. R., y Greene, H. W. (1997). Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society, 62, 421–442.
Zancolli, G., Baker, T., Barlow, A., Bradley, R., Calvete, J., Carter, K., De Jager, K., Owens, J., Price, J., Sanz, L., Scholes-Higham, A., Shier, L., Wood, L., Wüster, C., y Wüster, W. (2016). Is hybridization a source of adaptive venom variation in rattlesnakes? A test, using a Crotalus scutulatus × viridis hybrid zone in southwestern new mexico. Toxins, 8(6), 188.
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_f1cf
dc.format.none.fl_str_mv 59 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas, Colombia
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas, Colombia
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532577594540032
spelling Crotoxina en cascabeles de Latinoamérica: Caracterización bioquímica en Crotalus durissus cumanensis y análisis evolutivo de la subunidad B570 - Biología1. Ciencias NaturalesCotalusVenenoCrotoxinaCaracterización bioquímicaReconstrucción filogenéticaCaracteres ancestralesEcología evolutivaBiologíaFiguras, tablas, estadísticasResumen. Los elementos proteicos del veneno pueden variar de forma intra o interespecífica por factores geográficos, ecológicos, genéticos, sexuales y estacionales. Sin embargo, existen pocos estudios sobre la variación intraespecífica en componentes particulares y que consideren un marco evolutivo. La subunidad B de la crotoxina (CB), una fosfolipasa A2 básica, con actividad neurotóxica y letal, constituye un componente principal del veneno en algunas especies del género Crotalus. Su caracterización permite predecir cuadros clínicos y comprender su papel en la toxicidad del veneno, además, su estudio en un contexto evolutivo permite entender mejor la trayectoria de la crotoxina en el género. El objetivo de este estudio fue caracterizar bioquímicamente la variación intraespecífica de la CB en Crotalus durissus cumanensis de tres ecorregiones colombianas: Llanos Orientales (Orn), Magdalena Medio (And) y Caribe (Car), y reconstruir sus estados ancestrales de la presencia, abundancia y masa, con el fin de explorar su evolución en el género Crotalus. Para ello, se analizó la composición y variación de los venenos por técnicas electroforéticas (SDS-PAGE) y cromatográficas (RP-HPLC), y se determinó la presencia de la CB mediante ensayos inmunoquímicos como Western-blot y ELISA. La CB fue aislada por RP-HPLC, su identidad confirmada mediante espectrometría de masas (MALDI-TOF y LC-MS/MS), y su secuencia primaria fue obtenida por digestión proteolítica. Posteriormente, se probó su actividad enzimática in vitro y letalidad in vivo. Las relaciones filogenéticas de las especies de Crotalus se reconstruyeron empleando máxima verosimilitud e inferencia bayesiana a partir de secuencias de dos genes mitocondriales y uno nuclear. Finalmente, la reconstrucción de caracteres ancestrales se realizó mediante mapeo estocástico de caracteres para la presencia, mientras que la abundancia y la masa fueron modeladas bajo un proceso de evolución Browniana. Los resultados confirman la variación bioquímica y funcional entre ecorregiones, siendo el veneno de la ecorregión Orn el más letal de los tres. En cuanto a la CB, las proteínas de las ecorregiones Car y And comparten tanto el mismo peso molecular como secuencia de aminoácidos, mientras que la de Orn difiere en ambos aspectos; asimismo, fue la única en presentar diferencias con una mayor actividad enzimática respecto al grupo control, y el análisis de secuencias confirmó que es la más divergente, tanto a nivel genético como funcional. Finalmente, la reconstrucción ancestral indicó que el ancestro común del género ya presentaba CB con un peso molecular comparable al actual y que esta proteína se ha perdido independientemente en múltiples ocasiones a lo largo de la historia evolutiva de Crotalus. En conjunto, estos hallazgos muestran que la variación geográfica influye tanto en la composición y actividad de la CB como en la letalidad del veneno, además, se evidenció una clara separación de estas características en concordancia con las relaciones filogenéticas entre las tres ecorregiones, lo que sugiere que la CB ha sido un componente clave en la diversificación de Crotalus, aportando nuevas perspectivas sobre la ecología evolutiva y la adaptación de la especie a diferentes entornos.Abstract. The protein elements of venom can differ intra- or interspecifically due to geographic, ecological, genetic, sexual, and seasonal factors. However, there are few studies on intraspecific variation in particular components that consider an evolutionary framework. The B subunit of crotoxin (CB), a basic phospholipase A2 with neurotoxic and lethal activity, is a major component of the venom in some species of the genus Crotalus. Its characterization allows us to predict clinical patterns and understand its role in venom toxicity. Furthermore, its study in an evolutionary context allows us to better understand the trajectory of crotoxin in the genus. The objective of this study was to biochemically characterize the intraspecific variation of CB in Crotalus durissus cumanensis from three Colombian ecoregions: Llanos Orientales (Orn), Magdalena Medio (And), and Caribe (Car), and to reconstruct their ancestral states of presence, abundance, and mass in order to explore their evolution in the genus Crotalus. To this purpose, the composition and variation of the venoms were analyzed by electrophoretic (SDS-PAGE) and chromatographic (RP-HPLC) techniques, and the presence of CB was determined by immunochemical assays such as Western blot and ELISA. CB was isolated by RP-HPLC, their identity confirmed by mass spectrometry (MALDI-TOF and LC-MS/MS), and their primary sequence obtained by proteolytic digestion. Subsequently, their enzymatic activity was tested in vitro and their lethality in vivo. The phylogenetic relationships of Crotalus species were reconstructed using maximal likelihood and Bayesian inference from sequences of two mitochondrial genes and one nuclear gene. Finally, ancestral characters were reconstructed using stochastic character mapping for presence, while abundance and mass were modeled under a Brownian evolution process. The results confirm biochemical and functional variation between ecoregions, the venom from the Orn ecoregion being the most lethal of the three. In terms of CB, the proteins from the Car and And ecoregions both share the same molecular weight and amino acid sequence, while that from Orn differs in both respects; it was also the only one to show differences with higher enzymatic activity compared to the control group, and sequence analysis confirmed that it is the most divergent, both genetically and functionally. Finally, ancestral reconstruction indicated that the common ancestor of the genus already had CB with a molecular weight comparable to the current one and that this protein has been lost independently on multiple occasions throughout the evolutionary history of Crotalus. Altogether, these findings show that geographic variation influences both the composition and activity of CB and the lethality of the venom. Furthermore, a clear separation of these characteristics was evident in accordance with the phylogenetic relationships between the three ecoregions, suggesting that CB has been a key component in the diversification of Crotalus, providing new insights into the evolutionary ecology and adaptation of the species to different environments.Introducción -- Materiales y métodos -- Obtención del material biológico -- Caracterización bioquímica del veneno de Crotalus durissus cumanensis -- Cuantificación de proteínas -- Electroforesis en gel de poliacrilamida (SDS-PAGE) -- Purificación del veneno y aislamiento de la crotoxina de Crotalus durissus cumanensis -- Identificación inmunoquímica de CB -- Pruebas de actividad -- Letalidad (DL50) -- Espectrometría de masas -- Secuenciación de aminoácidos -- Análisis filogenéticos y reconstrucción de caracteres ancestrales -- Resultados -- Electroforesis SDS-PAGE veneno crudo C. d. cumanensis -- Aislamiento, purificación y cuantificación de la crotoxina subunidad B (CB) por cromatografía de fase reversa RP-HPLC y electroforesis SDS-PAGE -- Electroforesis SDS-PAGE crotoxina subunidad B (CB) aislada del veneno crudo de C. d. cumanensis -- Reconocimiento de la crotoxina por el anticuerpo anti-subunidad B -- Actividad PLA₂ en veneno crudo y crotoxina B purificada -- Letalidad (DL50) -- Secuencia de aminoácidos -- Análisis filogenéticos -- Reconstrucción de caracteres ancestrales -- Discusión -- Conclusiones -- Referencias bibliográficas.PregradoSe trabajó con cuatro pools de veneno de tres ecorregiones de Colombia de la especie C. d. cumanensis, con un total de 10 mg cada uno. Las ecorregiones fueron: (i) Magdalena medio, con muestras del municipio de Armero Guayabal, Tolima (And1), y del municipio de Villavieja, Huila (And3); (ii) Caribe, con una muestra del municipio de Valledupar, Cesar (Car); y (iii) Llanos Orientales, con una muestra del municipio de Puerto Gaitán, Meta (Orn) (Figura 1). La ecorregión Andina se dividió en dos muestras con el fin de evaluar si la distancia geográfica entre departamentos, aun perteneciendo a la misma ecorregión, era suficiente para detectar diferencias bioquímicas y funcionales en la CB.Biólogo(a)ProteómicaUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, Caldas, ColombiaBiologíaRodríguez-Rey, Ghennie TatianaFranco Vásquez, Adrián MarceloMejía-Sanchez Miguel ÁngelArreguín-Espinosa RobertoGrupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B)Correa, EstefaníaMarínOspina, Milton David2025-09-11T16:17:47Z2055-12-312025-09-11T16:17:47Z2025-09-10Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis59 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22712Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAguilar, I., Guerrero, B., Maria Salazar, A., Girón, M. E., Pérez, J. C., Sánchez, E. E., y Rodríguez-Acosta, A. (2007). Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon, 50(2), 214-224. Aird, S. D., y Kaiser, I. I. (1985). Comparative studies on three rattlesnake toxins. Toxicon, 23(3), 361-374.Aird, S. D., Steadman, B. L., Russell Middaugh, C., y Kaiser, I. I. (1989). Comparative spectroscopic studies of four crotoxin homologs and their subunits. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 997(3), 211-218. Arnaud-Franco, G., Cordero-Tapia, A., Ortíz-Ávila, V., Moctezuma-González, C. L., Tejocote-Pérez, M., y Carbajal-Saucedo, A. (2018). Comparison of biological and biochemical characteristics of venom from rattlesnakes in the southern Baja California Peninsula. Toxicon, 148, 197-201.Arias-Sosa, L. A., Ruiz-Gómez, F. J., Betancourt, E., y Vargas-Ramírez, M. (2025). Extending the phylogeography and conservation strategies in the South American rattlesnake Crotalus durissus using molecular data. Herpetological Journal, 35(1), 52-72.Boldrini-França, J., Corrêa-Netto, C., Silva, M. M. S., Rodrigues, R. S., De La Torre, P., Pérez, A., Soares, A. M., Zingali, R. B., Nogueira, R. A., Rodrigues, V. M., Sanz, L., y Calvete, J. J. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics, 73(9), 1758-1776.Borja, M., Neri-Castro, E., Castañeda-Gaytán, G., Strickland, J., Parkinson, C., Castañeda Gaytán, J., Ponce-López, R., Lomonte, B., Olvera-Rodríguez, A., Alagón, A., y Pérez-Morales, R. (2018). Biological and proteolytic variation in the venom of Crotalus scutulatus scutulatus from mexico. Toxins, 10(1), 35.Borja, M., Castañeda-Gaytán, G., Alagón, A., Strickland, J. L., Parkinson, C. L., Gutiérrez Martínez, A., Rodriguez-López, B., Zarzosa, V., Lomonte, B., Saviola, A. J., Fernández, J., Smith, C. F., Hansen, K. C., Pérez-Robles, A., Castañeda-Pérez, S., Hirst, S. R., Olvera-Rodríguez, F., Fernández-Badillo, L., Sigala, J., … Neri-Castro, E. (2025). Venom variation and ontogenetic changes in the Crotalus molossus complex: Insights into composition, activities, and antivenom neutralization. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 290, 110129.Castro, E. N., Lomonte, B., Del Carmen Gutiérrez, M., Alagón, A., y Gutiérrez, J. M. (2013). Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. Journal of Proteomics, 87, 103-121. Casewell, N. R. (2016). Venom evolution: Gene loss shapes phenotypic adaptation. Current Biology, 26(18), R849-R851.Calvete, J. J., Sanz, L., Cid, P., De La Torre, P., Flores-Díaz, M., Dos Santos, M. C., Borges, A., Bremo, A., Angulo, Y., Lomonte, B., Alape-Girón, A., y Gutiérrez, J. M. (2010). Snake venomics of the central american rattlesnake Crotalus simus and the south american Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in south america. Journal of Proteome Research, 9(1), 528-544.Calvete, J. J., Pérez, A., Lomonte, B., Sánchez, E. E., y Sanz, L. (2012). Snake venomics of Crotalus tigris: The minimalist toxin arsenal of the deadliest neartic rattlesnake venom. Evolutionary clues for generating a pan-specific antivenom against crotalid type ii venoms. Journal of Proteome Research, 11(2), 1382-1390.Campbell, J. A., & Lamar, W. W. (2004). The venomous reptiles of the Western Hemisphere. Comstock Publishing Associates.Chen, Y.-H., Wang, Y.-M., Hseu, M.-J., y Tsai, I.-H. (2004). Molecular evolution and structure–function relationships of crotoxin-like and asparagine-6-containing phospholipases A2 in pit viper venoms. Biochemical Journal, 381(1), 25-34.Chippaux, J. P., Williams, V., y White, J. (1991). Snake venom variability: methods of study, results and interpretation. Toxicon, 29(11), 1279-1303.Colis-Torres, A., Neri-Castro, E., Strickland, J. L., Olvera-Rodríguez, A., Borja, M., Calvete, J., Jones, J., Parkinson, C. L., Bañuelos, J., López de León, J., y Alagón, A. (2022). Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie, 192, 111-124.Daltry, J. C., Wüster, W., y Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537-540.Deshwal, A., Phan, P., Datta, J., Kannan, R., y Thallapuranam, S. K. (2021). A meta analysis of the protein components in rattlesnake venom. Toxins, 13(6), 372.Díaz-Ricaurte, J., Fiorillo, B., y Maciel, J. (2018). Crotalus durissus (Linnaeus, 1758). Catálogo de Anfibios y Reptiles de Colombia (Vol. 4, pp. 29-36).Dowell, N. L., Giorgianni, M. W., Kassner, V. A., Selegue, J. E., Sanchez, E. E., y Carroll, S. B. (2016). The deep origin and recent loss of venom toxin genes in rattlesnakes. Current Biology, 26(18), 2434-2445.Durban, J., Sanz, L., Trevisan-Silva, D., Neri-Castro, E., Alagón, A., y Calvete, J. J. (2017). Integrated venomics and venom gland transcriptome analysis of juvenile and adult mexican rattlesnakes Crotalus simus , C. Tzabcan , and C. culminatus revealed mirna-modulated ontogenetic shifts. Journal of Proteome Research, 16(9), 3370-3390.Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792–1797.Esquivel Soto, E. E., y Leal Guadarrama, L. I. (2004). Métodos fisicoquímicos en Biotecnología: Cromatografía de fase reversa. Instituto de Biotecnología, 50.ESRI Inc. (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands. <https://www.esri.com/en-us/home/>.Faure, G., Choumet, V., Bouchier, C., Camoin, L., Guillaume, J., Monegier, B., Vuilhorgne, M., y Bon, C. (1994). The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. European Journal of Biochemistry, 223(1), 161-164.Faure, G., Xu, H., y Saul, F. A. (2011). Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric β-neurotoxin. Journal of Molecular Biology, 412(2), 176-191.Faure, G., Porowinska, D., y Saul, F. (2015). Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. En P. Gopalakrishnakone (Ed.), Toxins and Drug Discovery (pp. 1-19).Franco-Vásquez, A. M. (2021). Aislamiento, identificación y caracterización de fosfolipasas a2 del veneno de serpiente Lachesis acrochorda [Tesis de Maestría, Universidad Nacional Autónoma de México]. Repositorio Institucional – Universidad Nacional Autónoma de México.Franco-Vásquez, A. M. (2025). Venómica comparativa de las serpientes del género Lachesis de Colombia [Tesis de Doctorado, Universidad Nacional Autónoma de México]. Repositorio Institucional – Universidad Nacional Autónoma de México.Franco-Vásquez, A. M., Lazcano-Pérez, F., Carbajal-Saucedo, A., Mejía-Sánchez, M. A., Meléndez-Martínez, D., Corzo, G., y Arreguín-Espinosa, R. (2025). Comparative venomics reveals intra, interspecific and ontogenetic changes in the venom composition of Lachesis snakes from Colombia. PLoS Neglected Tropical Diseases.Glenn, J. L., Straight, R. C., Wolfe, M. C., y Hardy, D. L. (1983). Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon, 21(1), 119-130.Glenn, J. L., y Straight, R. C. (1985). Venom properties of the rattlesnakes (Crotalus) inhabiting the Baja California region of Mexico. Toxicon, 23(5), 769-775.Grabowsky, E. R., y Mackessy, S. P. (2019). Predator-prey interactions and venom composition in a high elevation lizard specialist, Crotalus pricei (Twin-spotted Rattlesnake). Toxicon, 170, 29-40Grabowsky, E. R., Saviola, A. J., Alvarado-Díaz, J., Mascareñas, A. Q., Hansen, K. C., Yates, J. R., y Mackessy, S. P. (2023). Montane rattlesnakes in méxico: Venoms of Crotalus tancitarensis and related species within the Crotalus intermedius group. Toxins, 15(1), 72.Gutiérrez, J. M., Dos Santos, M. C., De Fatima Furtado, M., y Rojas, G. (1991). Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes. Toxicon, 29(10), 1273-1277.Hofmann, E. P., Rautsaw, R. M., Strickland, J. L., Holding, M. L., Hogan, M. P., Mason, A. J., Rokyta, D. R., y Parkinson, C. L. (2018). Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Scientific Reports, 8(1), 15534.Kaiser, I. I., y Middlebrook, J. L. (1988). Preparation of a crotoxin neutralizing monoclonal antibody. Toxicon, 26(9), 855-865.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., y Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589.Klauber, L. M. (1997). Rattlesnakes: Their habits, life histories, and influence on mankind (2nd ed). Zoological Society of San Diego. University of California Press. Kumar, S., Nei, M., Dudley, J. y Tamura, K. (2008). MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9(4), 299–306.Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature, 227(5259), 680-685.Li, M., Fry, B. G., y Kini, R. M. (2005). Eggs-only diet: Its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). Journal of Molecular Evolution, 60(1), 81-89.Lomonte, B., y Calvete, J. J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 26.Mackessy, S. P. (1988). Venom ontogeny in the pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia, 1988(1), 92.Mackessy, S. P. (2008). Venom composition in rattlesnakes: trends and biological significance. In The Biology of Rattlesnakes (ed. W. K. Hayes), pp. 495–510. Loma Linda University Press, Loma Linda.Mackessy, S. P. (2010). Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): Toxicity vs. tenderizers. Toxicon, 55(8).Mackessy, S. P., Leroy, J., Mociño-Deloya, E., Setser, K., Bryson, R. W., y Saviola, A. J. (2018). Venom ontogeny in the mexican lance-headed rattlesnake (Crotalus polystictus). Toxins, 10(7), 271.Marchi-Salvador, D. P., Corrêa, L. C., Salvador, G. H. M., Magro, A. J., Oliveira, C. Z., Iulek, J., ... y Fontes, M. R. M. (2007). Preliminary X-ray crystallographic studies of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Structural Biology and Crystallization Communications, 63(12), 1067-1069.Meier, J., y Theakston, R. D. G. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24(4), 395-401.Mejía-Sánchez, M. A., Clement, H., Corrales-García, L. L., Olamendi-Portugal, T., Carbajal, A., y Corzo, G. (2022). Crotoxin B: Heterologous expression, protein folding, immunogenic properties, and irregular presence in crotalid venoms. Toxins, 14(6), 382.Mejía-Sánchez, M. A., Cardoso-Arenas, S., Miranda-Blancas, R., Franco-Vásquez, A. M., Carbajal-Saucedo, A., Olamendi-Portugal, T., Zamudio, F., Arreguín-Espinosa, R., y Corzo, G. (2025). Isolation, purification, structure elucidation, and antibody recognition of two phospholipases A2 and Crotoxin variation in the venom of the Tamaulipan rattlesnake Crotalus morulus. Acta Tropica, 267, 107690.Miller, M. A., Pfeiffer, W., y Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8.Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R. y Teeling, E. (2020). Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5), 1530–1534.Molina, D. A. M., Guerra-Duarte, C., Costal-Oliveira, F., Rocha, E. A., Rodrigues, C. R., Machado-de-Ávila, R. A., ... y Chávez-Olórtegui, C. (2020). Engineered protein containing crotoxin epitopes induces neutralizing antibodies in immunized rabbits. Molecular Immunology, 119, 144 153.Neri-Castro, E., Hernández-Dávila, A., Olvera-Rodríguez, A., Cardoso-Torres, H., Bénard Valle, M., Bastiaans, E., López-Gutierrez, O., y Alagón, A. (2019). Detection and quantification of a β-neurotoxin (Crotoxin homologs) in the venom of the rattlesnakes Crotalus simus, C. culminatus and C. tzabcan from Mexico. Toxicon: X, 2, 100007.Neri-Castro, E., Strickland, J. L., Carbajal-Márquez, R. A., Zuñiga Adán, J., Ponce-López, R., Olvera-Rodríguez, F., y Alagón, A. (2022). Characterization of the venom and external morphology of a natural hybrid between Crotalus atrox and Crotalus mictlantecuhtli. Toxicon, 207, 43-47.Neri-Castro, E., Zarzosa, V., Colis-Torres, A., Fry, B. G., Olvera-Rodríguez, A., Jones, J., Reyes-Velasco, J., Zamudio, F., Borja, M., Alagón, A., y Lomonte, B. (2022). Proteomic and toxicological characterization of the venoms of the most enigmatic group of rattlesnakes: The long tailed rattlesnakes. Biochimie, 202, 226-236.Nget-Hong, T., y Ponnudurai, G. (1991). A comparative study of the biological activities of rattlesnake (genera Crotalus and Sistrurus) venoms. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 98(2-3), 455-461.Olamendi-Portugal, T., Batista, C. V. F., Pedraza-Escalona, M., Restano-Cassulini, R., Zamudio, F. Z., Benard-Valle, M., de Roodt, A. R., y Possani, L. D. (2018). New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom. Toxicon, 153, 23-31.Oliveira, A., Bleicher, L., Schrago, C. G., y Silva Junior, F. P. (2018). Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA₂s): Insights into the structure-function relationships of snake venom toxins. Toxicon, 146, 50 60.Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933-938.Pereañez, J. A., Núñez, V., Huancahuire-Vega, S., Marangoni, S., y Ponce-Soto, L. A. (2009). Biochemical and biological characterization of a PLA₂ from crotoxin complex of Crotalus durissus cumanensis. Toxicon, 53(5), 534-542.Place, A. J., y Abramson, C. I. (2004). A quantitative analysis of the ancestral area of rattlesnakes. Journal of Herpetology, 38(1), 152-156.Queiroz, G. P., Pessoa, L. A., Portaro, F. C. V., Furtado, M. D. F. D., y Tambourgi, D. V. (2008). Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon, 52(8), 842-851R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>. Rambaut, A. (2018). FigTree v1.4.4 [software]. Institute of Evolutionary Biology, University of Edinburgh.Rambaut, A., Drummond, A.J., Xie, D., Baele, G. y Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901–904.Rangel-Santos, A., Dos-Santos, E. C., Lopes-Ferreira, M., Lima, C., Cardoso, D. F., y Mota, I. (2004). A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus. Toxicon, 43(7), 801-810.Revell, L. J. (2024). Phytools 2. 0: An updated r ecosystem for phylogenetic comparative methods(And other things). PeerJ, 12, e16505.Rivas, E., Neri-Castro, E., Bénard-Valle, M., Hernánez-Dávila, A. I., Zamudio, F., y Alagón, A. (2017). General characterization of the venoms from two species of rattlesnakes and an intergrade population (C. lepidus x aquilus) from Aguascalientes and Zacatecas, Mexico. Toxicon, 138, 191-195.Rodríguez-Vargas, A., Vega, N., Reyes-Montaño, E., Corzo, G., Neri-Castro, E., Clement, H., y Ruiz-Gómez, F. (2022). Intraspecific differences in the venom of Crotalus durissus cumanensis from Colombia. Toxins, 14(8), 532.Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., y Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61, 539–542.Rosenfeld, G. (1971). Symptomatology, pathology, and treatment of snake bites in South America. In Venomous animals and their venoms (pp. 345-384). Academic Press.Salazar, A. M., Aguilar, I., Guerrero, B., Girón, M. E., Lucena, S., Sánchez, E. E., y Rodríguez-Acosta, A. (2008). Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagulation & Fibrinolysis, 19(6), 525-530.Sampaio, S. C., Hyslop, S., Fontes, M. R. M., Prado-Franceschi, J., Zambelli, V. O., Magro, A. J., Brigatte, P., Gutierrez, V. P., y Cury, Y. (2010). Crotoxin: Novel activities for a classic β neurotoxin. Toxicon, 55(6), 1045-1060.Sanchez, E. F., Freitas, T. V., Ferreira-Alves, D. L., Velarde, D. T., Diniz, M. R., Cordeiro, M. N., ... y Diniz, C. R. (1992). Biological activities of venoms from South American snakes. Toxicon, 30(1), 95-103.Sanz, L., Gibbs, H. L., Mackessy, S. P., y Calvete, J. J. (2006). Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. Journal of Proteome Research, 5(9), 2098-2112.Saravia, P., Rojas, E., Arce, V., Guevara, C., López, J. C., Chaves, E., Velásquez, R., Rojas, G., y Gutiérrez, J. M. (2002). Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: Pathophysiological and therapeutic implications. Revista de Biología Tropical, 50(1), 337-346.Saviola, A. J., Gandara, A. J., Bryson, R. W., y Mackessy, S. P. (2017). Venom phenotypes of the rock rattlesnake (Crotalus lepidus) and the ridge-nosed rattlesnake (Crotalus willardi) from México and the United States. Toxicon, 138, 119-129.Straight, R. C., Glenn, J. L., Wolt, T. B., y Wolfe, M. C. (1992). North-south regional variation in phospholipase a activity in the venom of Crotalus ruber. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(3), 635-639.Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., y Minh, B. Q. (2016). W-iq-tree: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232 W235.Wooten, J. A., y Gibbs, H. L. (2012). Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. Journal of Evolutionary Biology, 25(2), 317-328.Zamudio, K. R., y Greene, H. W. (1997). Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society, 62, 421–442.Zancolli, G., Baker, T., Barlow, A., Bradley, R., Calvete, J., Carter, K., De Jager, K., Owens, J., Price, J., Sanz, L., Scholes-Higham, A., Shier, L., Wood, L., Wüster, C., y Wüster, W. (2016). Is hybridization a source of adaptive venom variation in rattlesnakes? A test, using a Crotalus scutulatus × viridis hybrid zone in southwestern new mexico. Toxins, 8(6), 188.https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/227122025-09-12T08:01:28Z