Gestión de la humedad del suelo para la producción sostenible de alimentos

La disponibilidad de agua es esencial para todos los seres vivos a lo largo de su ciclo de vida, y las plantas no son una excepción, Un factor determinante en su desarrollo es la humedad del suelo, ya que su cantidad y distribución afectan directamente la capacidad de adaptación y crecimiento de las...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/20223
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/20223
https://repositorio.ucaldas.edu.co
Palabra clave:
Humedad del suelo
Sostenibilidad
Producción de alimentos
Tensiometro
Ciencias de la tierra
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUCALDA_903de29694106f308f7530d2ff3dac4d
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/20223
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Gestión de la humedad del suelo para la producción sostenible de alimentos
title Gestión de la humedad del suelo para la producción sostenible de alimentos
spellingShingle Gestión de la humedad del suelo para la producción sostenible de alimentos
Humedad del suelo
Sostenibilidad
Producción de alimentos
Tensiometro
Ciencias de la tierra
title_short Gestión de la humedad del suelo para la producción sostenible de alimentos
title_full Gestión de la humedad del suelo para la producción sostenible de alimentos
title_fullStr Gestión de la humedad del suelo para la producción sostenible de alimentos
title_full_unstemmed Gestión de la humedad del suelo para la producción sostenible de alimentos
title_sort Gestión de la humedad del suelo para la producción sostenible de alimentos
dc.contributor.none.fl_str_mv Hernández Jorge , Freddy Eliseo
dc.subject.none.fl_str_mv Humedad del suelo
Sostenibilidad
Producción de alimentos
Tensiometro
Ciencias de la tierra
topic Humedad del suelo
Sostenibilidad
Producción de alimentos
Tensiometro
Ciencias de la tierra
description La disponibilidad de agua es esencial para todos los seres vivos a lo largo de su ciclo de vida, y las plantas no son una excepción, Un factor determinante en su desarrollo es la humedad del suelo, ya que su cantidad y distribución afectan directamente la capacidad de adaptación y crecimiento de las plantas ante diversas condiciones ambientales, cada planta extrae el agua y los nutrientes necesarios en proporciones específicas, lo que le permite expresar su máximo potencial fenotípico y genotípico, en el contexto actual, los fenómenos asociados al cambio climático están alterando significativamente los niveles de humedad del suelo, ya sea provocando exceso o déficit de agua en determinados ecosistemas, ante esta realidad, es crucial adoptar las ventajas que ofrece la tecnología para enfrentar estas condiciones adversas sin comprometer la producción de alimentos ni la sostenibilidad ambiental a largo plazo, en este sentido, la gestión eficiente del suelo, respaldada por tecnologías avanzadas, se presenta como una estrategia fundamental para abordar los retos cambiantes de la agricultura en un mundo afectado por el cambio climático.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-24T22:28:33Z
2024-09-24T22:28:33Z
2024-09-24
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/20223
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/20223
https://repositorio.ucaldas.edu.co
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Abdelmoneim, A. A., Khadra, R., Derardja, B., & Dragonetti, G. (2023). Internet of Things (IoT) for Soil Moisture Tensiometer Automation. Micromachines, 14(2). https://doi.org/10.3390/mi14020263
Akkamis, M., & Caliskan, S. (2023). Responses of yield, quality and water use efficiency of potato grown under different drip irrigation and nitrogen levels. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36934-3
Allen, R., Mazis, A., Wardlow, B., Cherubini, P., Hiller, J., Wedin, D., & Awada, T. (2023). Coupling dendroecological and remote sensing techniques to assess the biophysical traits of Juniperus virginiana and Pinus ponderosa within the Semi-Arid grasslands of the Nebraska Sandhills. Forest Ecology and Management, 544. https://doi.org/10.1016/j.foreco.2023.121184
Amsili, J. P., van Es, H. M., Aller, D. M., & Schindelbeck, R. R. (2023). Empirical approach for developing production environment soil health benchmarks. Geoderma Regional, 34. https://doi.org/10.1016/j.geodrs.2023.e00672
BOHAİENKO, V., MATİASH, T., & ROMASHCHENKO, M. (2023). Simulation of irrigation in southern Ukraine incorporating soil moisture state in evapotranspiration assessments. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 12(3), 267–276. https://doi.org/10.18393/ejss.1277096
Bozal-Leorri, A., Arregui, L. M., Torralbo, F., González-Moro, M. aB, González-Murua, C., & AparicioTejo, P. (2023). Soil moisture modulates biological nitrification inhibitors release in sorghum plants. Plant and Soil, 487(1–2), 197–212. https://doi.org/10.1007/s11104-023-05913-y
Brown, W. G., Cosh, M. H., Dong, J., & Ochsner, T. E. (2023). Upscaling soil moisture from point scale to field scale: Toward a general model. Vadose Zone Journal, 22(2). https://doi.org/10.1002/vzj2.20244
Bwambale, E., Abagale, F. K., & Anornu, G. K. (2023). Data-Driven Modelling of Soil Moisture Dynamics for Smart Irrigation Scheduling. Smart Agricultural Technology, 5. https://doi.org/10.1016/j.atech.2023.100251
Cahn, M., Smith, R., & Melton, F. (2023). Field evaluations of the cropmanage decision support tool for improving irrigation and nutrient use of cool season vegetables in California. Agricultural Water Management, 287. https://doi.org/10.1016/j.agwat.2023.108401
Chow, C. W. K., Rameezdeen, R., Chen, G. Y., Xu, H., Rahman, M. M., Ma, X., Zhuge, Y., Gorjian, N., & Gao, J. (2023). Real-Time Humidity Monitoring Using Distributed Optical Sensor for Water Asset Condition Assessment. Water Conservation Science and Engineering, 8(1). https://doi.org/10.1007/s41101-023-00195-y
Ghoveisi, H., Kadyampakeni, D. M., Qureshi, J., & Diepenbrock, L. (2023). Water Use Efficiency in Young Citrus Trees on Metalized UV Reflective Mulch Compared to Bare Ground. Water (Switzerland), 15(11). https://doi.org/10.3390/w15112098
González-Teruel, J. D., Jones, S. B., Robinson, D. A., Giménez-Gallego, J., Zornoza, R., & TorresSánchez, R. (2022). Measurement of the broadband complex permittivity of soils in the frequency domain with a low-cost Vector Network Analyzer and an Open-Ended coaxial probe. Computers and Electronics in Agriculture, 195. https://doi.org/10.1016/j.compag.2022.106847
Hasnain, S., & Singh, A. (2022). Development of Electronic Wetting Front Detector for irrigation scheduling. Agricultural Water Management, 274. https://doi.org/10.1016/j.agwat.2022.107980
Hendrawan, V. S. A., Kim, W., & Komori, D. (2023). Crop response pattern to several drought t imescales and its possible determinants: A global-scale analysis during the last decades. Anthropocene, 43. https://doi.org/10.1016/j.ancene.2023.100389
Howells, O. D., Petropoulos, G. P., Triantakonstantis, D., Ioannou, Z., Srivastava, P. K., Detsikas, S. E., & Stavroulakis, G. (2023). Examining the variation of soil moisture from cosmic-ray neutron probes footprint: experimental results from a COSMOS-UK site. Environmental Earth Sciences, 82(1). https://doi.org/10.1007/s12665-022-10721-1
Huang, W., Lai, H., Du, J., Zhou, C., Liu, Z., & Ni, Q. (2022). Effect of polymer water retaining agent on physical properties of silty clay. Chemical and Biological Technologies in Agriculture, 9(1). https://doi.org/10.1186/s40538-022-00309-z
Jiang, K., Pan, Z., Pan, F., Teuling, A. J., Han, G., An, P., Chen, X., Wang, J., Song, Y., Cheng, L., Zhang, Z., Huang, N., Ma, S., Gao, R., Zhang, Z., Men, J., Lv, X., & Dong, Z. (2023). Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background. IScience, 26(6). https://doi.org/10.1016/j.isci.2023.106837
Jiang, Y., Zhang, Y., Fan, B., Wen, J., Liu, H., Mello, C. R., Cui, J., Yuan, C., & Guo, L. (2023). Preferential flow influences the temporal stability of soil moisture in a headwater catchment. Geoderma, 437. https://doi.org/10.1016/j.geoderma.2023.116590
Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. In Sustainability (Switzerland) (Vol. 13, Issue 9). MDPI AG. https://doi.org/10.3390/su13094883
Kumar S, V., Singh, C. D., Rao, K. V. R., Kumar, M., Rajwade, Y. A., Babu, B., & Singh, K. (2023). Evaluation of IoT based smart drip irrigation and ETc based system for sweet corn. Smart Agricultural Technology, 5. https://doi.org/10.1016/j.atech.2023.100248
Lago-Olveira, S., El-Areed, S. R. M., Moreira, M. T., & González-García, S. (2023). Improving environmental sustainability of agriculture in Egypt through a life-cycle perspective. Science of the Total Environment, 890. https://doi.org/10.1016/j.scitotenv.2023.164335
Lee, C. H., Ramasamy, M., Deivasigamani, S., & Ahamed Khan, M. K. A. (2022). IoT Based Farming System. Advances in Transdisciplinary Engineering, 30, 1059–1069. https://doi.org/10.3233/ATDE221132
Li, Q., Gao, M., & Li, Z. L. (2022). Ground Hyper-Spectral Remote-Sensing Monitoring of Wheat Water Stress during Different Growing Stages. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102267
Nascimento, G., Villegas, D., & Cantero-Martínez, C. (2023). Crop diversification and digestate application effect on the productivity and efficiency of irrigated winter crop systems. European Journal of Agronomy, 148. https://doi.org/10.1016/j.eja.2023.126873
Oulehle, F., Urban, O., Tahovská, K., Kolář, T., Rybníček, M., Büntgen, U., Hruška, J., Čáslavský, J., & Trnka, M. (2023). Calcium availability affects the intrinsic water-use efficiency of temperate forest trees. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247023-00822-5
Pieterson, C., Thomas, B., Everham, E. M., Bovard, B., & Owen, M. (2023). POTENTIAL DRIVERS OF SPATIAL DISTRIBUTION OF THE GHOST ORCHID, DENDROPHYLAX LINDENII, IN A SOUTH FLORIDA CYPRESS STRAND: A PRELIMINARY STUDY. Lankesteriana, 23(1), 81–90. https://doi.org/10.15517/lank.v23i1.54576
Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14, 100776. https://doi.org/10.1016/j.jafr.2023.100776
Rubio, E., Rubio-Alfaro, M. D. S., & Hernández-Marín, M. (2022). Wetting Front Velocity Determination in Soil Infiltration Processes: An Experimental Sensitivity Analysis. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051155
Sambuco, E. N., Mark, B. G., Patrick, N., DeGrand, J. Q., Porinchu, D. F., Reinemann, S. A., Baker, G. M., & Box, J. E. (2020). Mountain Temperature Changes From Embedded Sensors Spanning 2000 m in Great Basin National Park, 2006–2018. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00292
Sanches, A. C., Alves, C. de O., de Jesus, F. L. F., Theodoro, F. L., da Cruz, T. A. C., & Gomes, E. P. (2022). Low-cost and high-efficiency automated tensiometer for real-time irrigation monitoring1. Revista Brasileira de Engenharia Agricola e Ambiental, 26(5), 390–395. https://doi.org/10.1590/1807-1929/agriambi.v26n5p390-395
Sangha, L., Shortridge, J., & Frame, W. (2023). The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates. Agricultural Water Management, 283. https://doi.org/10.1016/j.agwat.2023.108314
Sanogo, K., Birhanu, B. Z., Sanogo, S., & Ba, A. (2023). Landscape pattern analysis using GIS and remote sensing to diagnose soil erosion and nutrient availability in two agroecological zones of Southern Mali. Agriculture and Food Security, 12(1). https://doi.org/10.1186/s40066-02300408-6
Santana, L. R., da Silva, L. N., Tavares, G. G., Batista, P. F., Cabral, J. S. R., & Souchie, E. L. (2023). Arbuscular mycorrhizal fungi associated with maize plants during hydric deficit. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28744-4
Sgroi, F. (2023). Innovation and value creation in agriculture: Results of an experimental analysis of the use of sensors on sicilian vineyards of chardonnay cultivars. Smart Agricultural Technology, 6. https://doi.org/10.1016/j.atech.2023.100339
Souza, L. F. T., Hirmas, D. R., Sullivan, P. L., Reuman, D. C., Kirk, M. F., Li, L., Ajami, H., Wen, H., Sarto, M. V. M., Loecke, T. D., Rudick, A. K., Rice, C. W., & Billings, S. A. (2023). Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions. Geoderma, 437. https://doi.org/10.1016/j.geoderma.2023.116569
Sun, W., Li, S., Zhang, G., Fu, G., Qi, H., & Li, T. (2023). Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Global Ecology and Conservation, 45. https://doi.org/10.1016/j.gecco.2023.e02532
Wang, L., Wu, X., Guo, J., Zhou, J., Wu, X., & Huang, J. (2023). Spatiotemporal pattern of vegetation water use efficiency between 2003 and 2017 and its coupling relationship with artificial carbon sequestration in the karst region of Southwestern China. Ecological Indicators, 154. https://doi.org/10.1016/j.ecolind.2023.110566
Wilson, T. B., Kochendorfer, J., Diamond, H. J., Meyers, T. P., Hall, M., French, B., Myles, L. T., & Saylor, R. D. (2023). A field evaluation of the SoilVUE10 soil moisture sensor. Vadose Zone Journal, 22(2). https://doi.org/10.1002/vzj2.20241
Yang, B., Feng, L., Li, X., Yang, G., Ma, Y., & Li, Y. (2022). Effects of plastic film mulching on the spatiotemporal distribution of soil water, temperature, and photosynthetic active radiation in a cotton field. PeerJ, 10. https://doi.org/10.7717/peerj.13894
Zhang, F., Wang, H., Qin, T., Rojas, R., Qiu, L., Yang, S., Fang, Z., & Xue, S. (2023). Towards sustainable management of agricultural resources: A framework to assess the relationship between water, soil, economic factors, and grain production. Journal of Environmental Management, 344. https://doi.org/10.1016/j.jenvman.2023.118401
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 16 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Agropecuarias
Manizales
Ingeniería Agronómica
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Agropecuarias
Manizales
Ingeniería Agronómica
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145029566955520
spelling Gestión de la humedad del suelo para la producción sostenible de alimentosHumedad del sueloSostenibilidadProducción de alimentosTensiometroCiencias de la tierraLa disponibilidad de agua es esencial para todos los seres vivos a lo largo de su ciclo de vida, y las plantas no son una excepción, Un factor determinante en su desarrollo es la humedad del suelo, ya que su cantidad y distribución afectan directamente la capacidad de adaptación y crecimiento de las plantas ante diversas condiciones ambientales, cada planta extrae el agua y los nutrientes necesarios en proporciones específicas, lo que le permite expresar su máximo potencial fenotípico y genotípico, en el contexto actual, los fenómenos asociados al cambio climático están alterando significativamente los niveles de humedad del suelo, ya sea provocando exceso o déficit de agua en determinados ecosistemas, ante esta realidad, es crucial adoptar las ventajas que ofrece la tecnología para enfrentar estas condiciones adversas sin comprometer la producción de alimentos ni la sostenibilidad ambiental a largo plazo, en este sentido, la gestión eficiente del suelo, respaldada por tecnologías avanzadas, se presenta como una estrategia fundamental para abordar los retos cambiantes de la agricultura en un mundo afectado por el cambio climático.The availability of water is essential for all living beings throughout their life cycle, and plants are no exception. A determining factor in their development is soil moisture, since its quantity and distribution directly affects the ability . adaptation and growth of plants in the face of various environmental conditions, each plant extracts the necessary water and nutrients in specific proportions, which allows it to express its maximum phenotypic and genotypic potential, in the current context, the phenomena associated with climate change are altering significantly the soil moisture levels, either causing excess or deficit of water in certain ecosystems, given this reality, it is crucial to adopt the advantages offered by technology to face these adverse conditions without compromising food production or long-term environmental sustainability. In the long term, in this sense, efficient soil management, supported by advanced technologies, is presented as a fundamental strategy to address the changing challenges of agriculture in a world affected by climate change.Contexto en la agricultura / Relevancia de la medición de la humedad del suelo. / Respuesta hidráulica de las plantas / Principales escenarios de la humedad del suelo / Importancia en la sostenibilidad agrícola y ecosistémica / Cambio climático / Influencia en la producción de alimentos / Perspectiva biológica y adaptabilidad de las plantas / Pronósticos de eventos climáticos / Composición del suelo y características hidráulicas / Precisión del instrumento e interpretación de los datos / Tecnología y competitividad en un contexto sostenible / Sistemas multivariables para soluciones alimentarias oportunas / Conservación de suelos / ConclusiónPregradoMONOGRAFIAIngeniero(a) Agronómico(a)Universidad de CaldasFacultad de Ciencias AgropecuariasManizalesIngeniería AgronómicaHernández Jorge , Freddy EliseoPinto Vinasco, Yimmi Leandro2024-09-24T22:28:33Z2024-09-24T22:28:33Z2024-09-24Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a8516 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/20223Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.cospaAbdelmoneim, A. A., Khadra, R., Derardja, B., & Dragonetti, G. (2023). Internet of Things (IoT) for Soil Moisture Tensiometer Automation. Micromachines, 14(2). https://doi.org/10.3390/mi14020263Akkamis, M., & Caliskan, S. (2023). Responses of yield, quality and water use efficiency of potato grown under different drip irrigation and nitrogen levels. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36934-3Allen, R., Mazis, A., Wardlow, B., Cherubini, P., Hiller, J., Wedin, D., & Awada, T. (2023). Coupling dendroecological and remote sensing techniques to assess the biophysical traits of Juniperus virginiana and Pinus ponderosa within the Semi-Arid grasslands of the Nebraska Sandhills. Forest Ecology and Management, 544. https://doi.org/10.1016/j.foreco.2023.121184Amsili, J. P., van Es, H. M., Aller, D. M., & Schindelbeck, R. R. (2023). Empirical approach for developing production environment soil health benchmarks. Geoderma Regional, 34. https://doi.org/10.1016/j.geodrs.2023.e00672BOHAİENKO, V., MATİASH, T., & ROMASHCHENKO, M. (2023). Simulation of irrigation in southern Ukraine incorporating soil moisture state in evapotranspiration assessments. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 12(3), 267–276. https://doi.org/10.18393/ejss.1277096Bozal-Leorri, A., Arregui, L. M., Torralbo, F., González-Moro, M. aB, González-Murua, C., & AparicioTejo, P. (2023). Soil moisture modulates biological nitrification inhibitors release in sorghum plants. Plant and Soil, 487(1–2), 197–212. https://doi.org/10.1007/s11104-023-05913-yBrown, W. G., Cosh, M. H., Dong, J., & Ochsner, T. E. (2023). Upscaling soil moisture from point scale to field scale: Toward a general model. Vadose Zone Journal, 22(2). https://doi.org/10.1002/vzj2.20244Bwambale, E., Abagale, F. K., & Anornu, G. K. (2023). Data-Driven Modelling of Soil Moisture Dynamics for Smart Irrigation Scheduling. Smart Agricultural Technology, 5. https://doi.org/10.1016/j.atech.2023.100251Cahn, M., Smith, R., & Melton, F. (2023). Field evaluations of the cropmanage decision support tool for improving irrigation and nutrient use of cool season vegetables in California. Agricultural Water Management, 287. https://doi.org/10.1016/j.agwat.2023.108401Chow, C. W. K., Rameezdeen, R., Chen, G. Y., Xu, H., Rahman, M. M., Ma, X., Zhuge, Y., Gorjian, N., & Gao, J. (2023). Real-Time Humidity Monitoring Using Distributed Optical Sensor for Water Asset Condition Assessment. Water Conservation Science and Engineering, 8(1). https://doi.org/10.1007/s41101-023-00195-yGhoveisi, H., Kadyampakeni, D. M., Qureshi, J., & Diepenbrock, L. (2023). Water Use Efficiency in Young Citrus Trees on Metalized UV Reflective Mulch Compared to Bare Ground. Water (Switzerland), 15(11). https://doi.org/10.3390/w15112098González-Teruel, J. D., Jones, S. B., Robinson, D. A., Giménez-Gallego, J., Zornoza, R., & TorresSánchez, R. (2022). Measurement of the broadband complex permittivity of soils in the frequency domain with a low-cost Vector Network Analyzer and an Open-Ended coaxial probe. Computers and Electronics in Agriculture, 195. https://doi.org/10.1016/j.compag.2022.106847Hasnain, S., & Singh, A. (2022). Development of Electronic Wetting Front Detector for irrigation scheduling. Agricultural Water Management, 274. https://doi.org/10.1016/j.agwat.2022.107980Hendrawan, V. S. A., Kim, W., & Komori, D. (2023). Crop response pattern to several drought t imescales and its possible determinants: A global-scale analysis during the last decades. Anthropocene, 43. https://doi.org/10.1016/j.ancene.2023.100389Howells, O. D., Petropoulos, G. P., Triantakonstantis, D., Ioannou, Z., Srivastava, P. K., Detsikas, S. E., & Stavroulakis, G. (2023). Examining the variation of soil moisture from cosmic-ray neutron probes footprint: experimental results from a COSMOS-UK site. Environmental Earth Sciences, 82(1). https://doi.org/10.1007/s12665-022-10721-1Huang, W., Lai, H., Du, J., Zhou, C., Liu, Z., & Ni, Q. (2022). Effect of polymer water retaining agent on physical properties of silty clay. Chemical and Biological Technologies in Agriculture, 9(1). https://doi.org/10.1186/s40538-022-00309-zJiang, K., Pan, Z., Pan, F., Teuling, A. J., Han, G., An, P., Chen, X., Wang, J., Song, Y., Cheng, L., Zhang, Z., Huang, N., Ma, S., Gao, R., Zhang, Z., Men, J., Lv, X., & Dong, Z. (2023). Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background. IScience, 26(6). https://doi.org/10.1016/j.isci.2023.106837Jiang, Y., Zhang, Y., Fan, B., Wen, J., Liu, H., Mello, C. R., Cui, J., Yuan, C., & Guo, L. (2023). Preferential flow influences the temporal stability of soil moisture in a headwater catchment. Geoderma, 437. https://doi.org/10.1016/j.geoderma.2023.116590Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. In Sustainability (Switzerland) (Vol. 13, Issue 9). MDPI AG. https://doi.org/10.3390/su13094883Kumar S, V., Singh, C. D., Rao, K. V. R., Kumar, M., Rajwade, Y. A., Babu, B., & Singh, K. (2023). Evaluation of IoT based smart drip irrigation and ETc based system for sweet corn. Smart Agricultural Technology, 5. https://doi.org/10.1016/j.atech.2023.100248Lago-Olveira, S., El-Areed, S. R. M., Moreira, M. T., & González-García, S. (2023). Improving environmental sustainability of agriculture in Egypt through a life-cycle perspective. Science of the Total Environment, 890. https://doi.org/10.1016/j.scitotenv.2023.164335Lee, C. H., Ramasamy, M., Deivasigamani, S., & Ahamed Khan, M. K. A. (2022). IoT Based Farming System. Advances in Transdisciplinary Engineering, 30, 1059–1069. https://doi.org/10.3233/ATDE221132Li, Q., Gao, M., & Li, Z. L. (2022). Ground Hyper-Spectral Remote-Sensing Monitoring of Wheat Water Stress during Different Growing Stages. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102267Nascimento, G., Villegas, D., & Cantero-Martínez, C. (2023). Crop diversification and digestate application effect on the productivity and efficiency of irrigated winter crop systems. European Journal of Agronomy, 148. https://doi.org/10.1016/j.eja.2023.126873Oulehle, F., Urban, O., Tahovská, K., Kolář, T., Rybníček, M., Büntgen, U., Hruška, J., Čáslavský, J., & Trnka, M. (2023). Calcium availability affects the intrinsic water-use efficiency of temperate forest trees. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247023-00822-5Pieterson, C., Thomas, B., Everham, E. M., Bovard, B., & Owen, M. (2023). POTENTIAL DRIVERS OF SPATIAL DISTRIBUTION OF THE GHOST ORCHID, DENDROPHYLAX LINDENII, IN A SOUTH FLORIDA CYPRESS STRAND: A PRELIMINARY STUDY. Lankesteriana, 23(1), 81–90. https://doi.org/10.15517/lank.v23i1.54576Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14, 100776. https://doi.org/10.1016/j.jafr.2023.100776Rubio, E., Rubio-Alfaro, M. D. S., & Hernández-Marín, M. (2022). Wetting Front Velocity Determination in Soil Infiltration Processes: An Experimental Sensitivity Analysis. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051155Sambuco, E. N., Mark, B. G., Patrick, N., DeGrand, J. Q., Porinchu, D. F., Reinemann, S. A., Baker, G. M., & Box, J. E. (2020). Mountain Temperature Changes From Embedded Sensors Spanning 2000 m in Great Basin National Park, 2006–2018. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00292Sanches, A. C., Alves, C. de O., de Jesus, F. L. F., Theodoro, F. L., da Cruz, T. A. C., & Gomes, E. P. (2022). Low-cost and high-efficiency automated tensiometer for real-time irrigation monitoring1. Revista Brasileira de Engenharia Agricola e Ambiental, 26(5), 390–395. https://doi.org/10.1590/1807-1929/agriambi.v26n5p390-395Sangha, L., Shortridge, J., & Frame, W. (2023). The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates. Agricultural Water Management, 283. https://doi.org/10.1016/j.agwat.2023.108314Sanogo, K., Birhanu, B. Z., Sanogo, S., & Ba, A. (2023). Landscape pattern analysis using GIS and remote sensing to diagnose soil erosion and nutrient availability in two agroecological zones of Southern Mali. Agriculture and Food Security, 12(1). https://doi.org/10.1186/s40066-02300408-6Santana, L. R., da Silva, L. N., Tavares, G. G., Batista, P. F., Cabral, J. S. R., & Souchie, E. L. (2023). Arbuscular mycorrhizal fungi associated with maize plants during hydric deficit. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28744-4Sgroi, F. (2023). Innovation and value creation in agriculture: Results of an experimental analysis of the use of sensors on sicilian vineyards of chardonnay cultivars. Smart Agricultural Technology, 6. https://doi.org/10.1016/j.atech.2023.100339Souza, L. F. T., Hirmas, D. R., Sullivan, P. L., Reuman, D. C., Kirk, M. F., Li, L., Ajami, H., Wen, H., Sarto, M. V. M., Loecke, T. D., Rudick, A. K., Rice, C. W., & Billings, S. A. (2023). Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions. Geoderma, 437. https://doi.org/10.1016/j.geoderma.2023.116569Sun, W., Li, S., Zhang, G., Fu, G., Qi, H., & Li, T. (2023). Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Global Ecology and Conservation, 45. https://doi.org/10.1016/j.gecco.2023.e02532Wang, L., Wu, X., Guo, J., Zhou, J., Wu, X., & Huang, J. (2023). Spatiotemporal pattern of vegetation water use efficiency between 2003 and 2017 and its coupling relationship with artificial carbon sequestration in the karst region of Southwestern China. Ecological Indicators, 154. https://doi.org/10.1016/j.ecolind.2023.110566Wilson, T. B., Kochendorfer, J., Diamond, H. J., Meyers, T. P., Hall, M., French, B., Myles, L. T., & Saylor, R. D. (2023). A field evaluation of the SoilVUE10 soil moisture sensor. Vadose Zone Journal, 22(2). https://doi.org/10.1002/vzj2.20241Yang, B., Feng, L., Li, X., Yang, G., Ma, Y., & Li, Y. (2022). Effects of plastic film mulching on the spatiotemporal distribution of soil water, temperature, and photosynthetic active radiation in a cotton field. PeerJ, 10. https://doi.org/10.7717/peerj.13894Zhang, F., Wang, H., Qin, T., Rojas, R., Qiu, L., Yang, S., Fang, Z., & Xue, S. (2023). Towards sustainable management of agricultural resources: A framework to assess the relationship between water, soil, economic factors, and grain production. Journal of Environmental Management, 344. https://doi.org/10.1016/j.jenvman.2023.118401http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/202232024-09-25T08:00:43Z