Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática
Tablas, figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/26137
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/26137
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
1. Ciencias Naturales
Monzogranito de Mocoa
Jurásico
Zona de subducción
Geoquímica
Petrogénesis
Mocoa Monzogranite
Jurassic
Subduction zone
Geochemistry
Petrogenesis
Geología
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_582ed04f3562a25edfc727494b2688ee |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/26137 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| title |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| spellingShingle |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 1. Ciencias Naturales Monzogranito de Mocoa Jurásico Zona de subducción Geoquímica Petrogénesis Mocoa Monzogranite Jurassic Subduction zone Geochemistry Petrogenesis Geología |
| title_short |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| title_full |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| title_fullStr |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| title_full_unstemmed |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| title_sort |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática |
| dc.contributor.none.fl_str_mv |
Quiceno Colorado, July Astrid Hernández-González, Juan S. Naranjo Sierra, Edwin Osorio Ocampo, Susana |
| dc.subject.none.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 1. Ciencias Naturales Monzogranito de Mocoa Jurásico Zona de subducción Geoquímica Petrogénesis Mocoa Monzogranite Jurassic Subduction zone Geochemistry Petrogenesis Geología |
| topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 1. Ciencias Naturales Monzogranito de Mocoa Jurásico Zona de subducción Geoquímica Petrogénesis Mocoa Monzogranite Jurassic Subduction zone Geochemistry Petrogenesis Geología |
| description |
Tablas, figuras |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11-11T21:40:53Z 2025-11-11T21:40:53Z 2025-11-10 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26137 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26137 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
Amaya, C. A., & Centanaro, J. (1997). Ambiente deposicional y modelamiento del yacimiento Caballos en el campo Orito, cuenca, Putumayo, Colombia. VI, Simposio, Exploracion Petrolera En Las Cuencas Subandinas, Memoria 2, 26–29 Arango, M. I., Rodríguez, G., Zapata, G., & Bermúdez, J. G. (2015). Catálogo de Unidades Litoestratigraficas de Colombia, Monzogranito de Mocoa, Cordillera Oriental, Departamentos de Putumayo, Huila, Cauca y Nariño. Boletín de Geología. www.sgc.gov.co Bayona, G., Bustamante, C., Nova, G., & Salazar Franco, A. M. (2020). Jurassic Evolution of the Northwestern corner of Gondwana:Present Knowledge and Future Challenges in Stuying Colombian Jurassic Rocks. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia, volumen 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36 (pp. 171–207). https://doi.org/10.32685/pub.esp.36.2019.05 Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J., & Cordani, U. (2010). Paleomagnetic data and K–Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4), 817–831. https://doi.org/10.1016/J.JSAMES.2009.10.005 Bayona, G., Rapalini, A. E., & Costanzo-Alvarez, V. (2006). Paleomagnetism in Mesozoic rocks of the Northern Andes and its implications in Mesozoic tectonics of northwestern South America. Earth, Planets and Space, 58(10), 1255–1272. https://doi.org/10.1186/BF03352621/METRICS Best, M. G. (2003). Igneous and Metamorphic Petrology Second Edition (Second Edition). Blackwell Publishing. Blatter, D. L., Sisson, T. W., & Hankins, W. Ben. (2013). Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis. Contributions to Mineralogy and Petrology, 166(3), 861–886. https://doi.org/10.1007/S00410-013-0920-3/METRICS Bowen, Norman. L. (1929). The evolution of the igneous rocks. Nature, 124(3126), 474–475 Brown, G. C., Thorpe, R. S., & Webb, P. C. (1984). The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3), 413–426. https://doi.org/10.1144/GSJGS.141.3.0413 Bustamante, C., Archanjo, C. J., Cardona, A., Bustamante, A., & Valencia, V. A. (2017). U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. The Journal of Geology, 125(5), 487–500. https://doi.org/10.1086/693014 Bustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11–12), 1762–1779. https://doi.org/10.1130/B31307.1 Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS Geochronology and regional correlation of middel jurassic intrusive rocks from the Garzon massif, upper magdalena valley and central cordillera, southern colombia. Boletín de Geología, 32 Cao, M., Evans, N. J., Reddy, S. M., Fougerouse, D., Hollings, P., Saxey, D. W., McInnes, B. I. A., Cooke, D. R., McDonald, B. J., & Qin, K. (2019). Micro- A nd nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: Implications for magmatic processes. American Mineralogist, 104(3), 391–402. https://doi.org/10.2138/AM-2019-6609/MACHINEREADABLECITATION/RIS Cao, M., Qin, K. Z., Li, G. M., Yang, Y. H., Evans, N. J., Zhang, R., & Jin, L. Y. (2014). Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Journal of Asian Earth Sciences, 82, 136–150. https://doi.org/10.1016/J.JSEAES.2013.12.019 Cardona, A., León, S., Jaramillo, J. S., Valencia, V. A., Zapata, S., Pardo-Trujillo, A., Schmitt, A. K., Mejía, D., & Arenas, J. C. (2020). Cretaceous Record from a Mariana-to an Andean-Type Margin in the Central Cordillera of the Colombian Andes. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia, Volumen 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36 (pp. 335–373). https://doi.org/10.32685/pub.esp.36.2019.10 Castro-Dorado, A. (2015). Petrografía de rocas Ígneas y Metamórficas (1st ed.). Ediciones Parafino, SA. Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. In The Circum-Gulf of Mexico and the caribbean:Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir79 (pp. 815–884). Chavarría, L., Bustamante, C., Cardona, A., & Bayona, G. (2022). Quantifying crustal thickness and magmatic temperatures of the Jurassic to Early Cretaceous North-Andean arc. International Geology Review, 64(18), 2544–2564. https://doi.org/10.1080/00206814.2021.1992301 Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6). https://doi.org/10.1029/1999GC000010 Cochrane, R. (2013). U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the for the volume blance of continents [PhD, Univ. Geneve]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2738f194cb38eadf3765360fe77f008ead3969a3 Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014a). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/J.LITHOS.2013.12.020 Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., & Chiaradia, M. (2014b). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202–203, 382–394. https://doi.org/10.1016/J.LITHOS.2014.05.031 Dal Zilio, L., Kissling, E., Gerya, T., & van Dinther, Y. (2020). Slab Rollback Orogeny Model: A Test of Concept. Geophysical Research Letters, 47(18). https://doi.org/10.1029/2020GL089917 Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662A0;KWRD Dilek, Y., & Furnes, H. (2014). Ophiolites and Their Origins. Elements, 10(2), 93–100. https://doi.org/10.2113/GSELEMENTS.10.2.93 Etayo-Serna, F., Renzoni, G., & Barrero, B. (1969). Contornos sucesivos del mar cretaceo en Colombia. Primer Congreso Colombiano de Geología. Memoria, 217–253. Feininger, T., Barrero, D. L., & Castro, N. Q. (1972). Geología de Parte de los Departamentos de Antioquia y Caldas (sub-zona 11-B). Boletín Geológico, 20 (2). Frost, B. R., & Frost, C. D. (2008). A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11), 1955–1969. https://doi.org/10.1093/PETROLOGY/EGN054 Frost, B. Ronald., & Frost, C. D. (2014). Essentials of igneous and metamorphic petrology (segunda). Cambridge University Press. García-Chinchilla, D. A., & Vlach, S. R. F. (2024). Jurassic magmatism in the Garzón region of the Colombian Andes: insights from whole-rock geochemistry and zircon isotope analysis of granites and subvolcanic rocks. International Geology Review. https://doi.org/10.1080/00206814.2024.2424222 Ginibre, C., Wörner, G., & Kronz, A. (2007). Crystal Zoning as an Archive for Magma Evolution. Elements, 3(4), 261–266. https://doi.org/10.2113/GSELEMENTS.3.4.261 Gómez, J., Montes, N. E., & Marín, E. (2023). Plancha 5-18 del Atlas Geológico de Colombia 2023. Escala 1.500.000. In Servicio Geológico Colombiano. González, H. I., & Nuñez, A. (2001). Catálogo de Unidades Litoestratigráficas de Colombia Monzogranito de Mocoa (Batolito de Mocoa) (Jmm), Cordillera Oriental, Departamentos deHuila, Nariño, Cauca, Caquetá y Putumayo. Green, T. H., & Pearson, N. J. (1986). Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chemical Geology, 54(3–4), 185–201. https://doi.org/10.1016/0009-2541(86)90136-1 Gündüz, M., & Asan, K. (2021). PetroGram: An excel-based petrology program for modeling of magmatic processes. Geoscience Frontiers, 12(1), 81–92. https://doi.org/10.1016/J.GSF.2020.06.010 Halley, S. (2020). Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722 Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W., & Van Calsteren, P. (1997). U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312), 551–555. https://doi.org/10.1126/SCIENCE.276.5312.551 Hernández-González, J. S., & Terraza-Melo, R. (2019). Exploración geológica de magnesio en el flanco oriental de la cordillera central de Colombia, bloque Huila. Bogotá: Servicio Geológico Colombiano. Hibbard, M. J. (1981). The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2), 158–170. https://doi.org/10.1007/BF00371956/METRICS Hughes, C. J. (1972). Spilites, Keratophyres, and the igneous spectrum. Geological Magazine, 109(6), 513–527. Ibañez-Mejia, M. (2020). The Putumayo orogen of Amazonia: a Synthesis. In J. Gómez & Mateus-Zabala (Eds.), The Geology of Colombia, Volumen 1 Proterozoic - Paleozoic. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.06 Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous rocks: a clasification and glossary terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (R. W. Le Maitre, Ed.; 2nd ed.). Cambridge University Press. Leal-Mejía, H. (2011). Phanerozoic Gold Metallogeny in The Colombia Andes:a Tectono-Magmatic Approach. [Ph. D. Tesis]. Universidad de Barcelona, Barcelona. Leal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In Frontiers in Earth Sciences (pp. 253–410). Springer Verlag. https://doi.org/10.1007/978-3-319-76132-9_5 L’heureux, I., & Fowler, A. D. (1994). A nonlinear dynamical model of oscillatory zoning in plagioclase. American Mineralogist, 79(9–10), 885–891. https://www.scopus.com/pages/publications/0028669079 Mackenzie, W. S., Donaldson, C. H., & Guilford, C. (1996). Atlas de rocas igneas y sus texturas (MASSON, Ed.; española). Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–429. https://doi.org/10.1016/S0024-4937(98)00076-0 Microsoft. (2015). Image composite Editor (2.0.3 (64bits)). Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. Mojica, J., & Kammer, A. (1995). Eventos Jurásicos en Colombia. Geología Colombiana, 19(0), 165–172. https://revistas.unal.edu.co/index.php/geocol/article/view/31352 Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., & Valencia, V. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research: Solid Earth, 117(4). https://doi.org/10.1029/2011JB008959 Mora, A., Venegas, D., & Vergara, L. (1998). Estratigrafía del cretácico Superior y Terciario Inferior en el sector Norte de la cuenca del Putumayo, Departamento del Caquetá, Colombia. In Noviembre (Issue 23). Murcia L, A., & Picher, H. (1986). Geoquimica y dataciones radiometricas de las ignimbritas cenozoicas del sw de Colombia. In Simposio internacional sobre neotectonica y riesgos volcanicos (pp. 217–253). Nédélec, A., & Bouchez, J.-L. (2015). Granites: Petrology, Structure Geological Setting, and Metallogeny. Oxford University Press. Nuñez, A. (2003). Reconocimiento geológico regional de las planchas 411 la cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Pieamonte, 448 Monopamba, 449 Orito y 465 Churuyaco. Memoria explicativa, escala 1:100.000. Ingeominas. www.ingeominas.gov.co Palme, H., & O’Neill, H. (2014). Cosmochemical Estimates of Mantle Composition. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry: Second Edition (2nd ed., Vol. 3, pp. 1–39). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00201-1 Peacock, S. M. (1991). Numerical simulation of subduction zone pressure-temperature-time paths: constraints on fluid production and arc magmatism. Philosophical Transactions the Royal Society a Mathematical, Physical and Engineering Sciences, 335-341–353. https://royalsocietypublishing.org/ Pearce, J. (1983). The role of subcontinental lithosphere in magma genesis at destructive plate margins. In C. J. Hawkeswrth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Birkhaeuser. Pearce, J. (1996). A user’s guide to basalt discrimination diagrams. In D. A. Whyman (Ed.). In Trace element geochemistry of volcanic rocks: aplications for massive sulphide exploration (pp. 79–113). Geological Association of Canada, Short Course Notes. Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaris. In R. S. Thorpe (Ed.), Andesites: Orogenic Andesites and Related Rocks (pp. 525–548). Birkhauser. Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for archean oceanic crust. Lithos, 100(1-4), 14–48. Pearce. J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. Peccerillo, A., & Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. Plank, T., & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. In Earth and Planetary Science Letters (Vol. 90). Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/SREP17786;SUBJMETA Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Memoir of the Geological Society of America, 204, 31–65. https://doi.org/10.1130/2009.1204(02) Rasband, W. (1997). ImageJ (1.53). REFLEX. (2018). IoGAS (7.0). Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 111. https://doi.org/10.1016/j.jsames.2021.103439 Richards, J. P. (2003). Tectono-Magmatic Precursors for porphyry Cu-(Mo-Au) Deposit Formation. In Economic Geology (Vol. 98, pp. 1515–1533). Rodríguez, G., Arango, M. I., Zapata, G., & Bermúdez, J. G. (2018). Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences, 81, 10–30. https://doi.org/10.1016/j.jsames.2017.10.012 Rodríguez, G., Arango, M. I., Zapata, G., & Bermúdez, J. G. (2022). Catálogo de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. (Vol. 2). Servicio Geológico Colombiano. https://doi.org/https://doi.org/10.32685/9789585313194 Rodríguez García, G., Arango M, M. I., Zapata G, Gilberto., & Bermúdez C, J. G. (2016). Catálogo de unidades litoestratigráficas de Colombia Formación Saldaña, Cordilleras Central y Oriental Tolima, Huila, Cauca y Putumayo. https://www.researchgate.net/publication/299560401 Rollinson, H., & Pease, V. (2021). Using Geochemical Data To Understand Geological Processes (2nd ed.). Cambridge University Press. https://doi.org/0.1017/9781108777834 Schmidt, M. W., Dardon, A., Chazot, G., & Vannucci, R. (2004). The dependence of Nb and Ta rutile–melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3–4), 415–432. https://doi.org/10.1016/J.EPSL.2004.08.010 Schmidt, M. W., & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361–379. https://doi.org/10.1016/s0012-821x(98)00142-3 Sen, G., & Stern, R. J. (2021). Subduction Zone Magmas. Encyclopedia of Geology: Volume 1-6, Second Edition, 2, 33–51. https://doi.org/10.1016/B978-0-08-102908-4.00086-2 Shand, S. J. (1943). Eruptive Rocks. Their Genesis, Composition, Classification, and their Relation to Ore-Deposits with a chapter on Meteorites (John Wiley y Sons). Siachoque, A., García-Chinchilla, D. A., Zapata, S., Cardona, A., Vlach, S. R. F., Bustamante, C., & Chavarría, L. F. (2024a). Mineral chemistry and thermobarometry of Jurassic arc granitoids: implications for petrotectonic and unroofing history of the southern Colombian Andes. Geological Magazine, 161, e5. https://doi.org/10.1017/S0016756824000256 Siachoque, A., Morales, A., Cardona, A., Marulanda, U. M., & Zapata, S. (2024b). Mineral fabrics unravel syn-magmatic deformation and constrain Permian and Jurassic tectonic regimes in arc plutons from the southern Colombian Andes. International Geology Review. https://doi.org/10.1080/00206814.2024.2415098 Sillitoe, R. H., Jaramillo, L., Damon, P. E., Shafiqullah, M., & Escovar, R. (1982). Setting, characteristics, and age of the Andean porphyry copper belt in Colombia. Economic Geology, 77(8), 1837–1850. https://doi.org/10.2113/GSECONGEO.77.8.1837 Sousa, C. S., Conceição, H., Soares, H. S., Fernandes, D. M., & Rosa, M. de L. da S. (2022). Magmatic processes recorded in plagioclase crystals of the Rio Jacaré Batholith, Sergipano Orogenic System, Northeast Brazil. Journal of South American Earth Sciences, 118. https://doi.org/10.1016/j.jsames.2022.103942 Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95–139. https://doi.org/10.1016/J.GR.2014.06.004 Spikings, R., & Paul, A. (2019). The Permian - Triassic History of Magmatic Rocks of the Northern Andes (Colombia and Ecuador): Supercontinent Assembly and Disassembly. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia (Vol. 2, pp. 1–33). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36. https://doi.org/10.32685/pub.esp.36.2019.01 Stern, C. R. (2011). Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research, 20(2–3), 284–308. https://doi.org/10.1016/J.GR.2011.03.006 Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108 Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12(1), 1–33. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787–813. https://doi.org/10.1029/2000TC900004 Tarney, J., & Jones, C. E. (1994). Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal Ofthe Geological Society, London, 151, 855–868. https://www.lyellcollection.org Taylor, B., & Martinez, F. (2003). Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3–4), 481–497. https://doi.org/10.1016/S0012-821X(03)00167-5 Vermeesch, P., & Pease, V. (2021). A genetic classification of the tholeiitic and calc-alkaline magma series. Geochemical Perspectives Letters, 19, 1–6. https://doi.org/10.7185/GEOCHEMLET.2125 Vigneresse, J. L., & Clemens, J. D. (2000). Granitic magma ascent and emplacement: Neither diapirism nor neutral buoyancy. Geological Society Special Publication, 174, 1–19. https://doi.org/10.1144/GSL.SP.1999.174.01.01 Vinasco, C. (2019). The Romeral Shear Zone. In F.Cediel & R.P. Shaw (Eds.), Geology and Tectonics of Northwestern South America (pp. 833–876). Springer Nature Switzerland. https://doi.org/10.1007/978-3-319-76132-9_12 Vinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007 Weber, M., Duque, J. F., Hoyos, S., Cárdenas-Rozo, A., Tapias, J. G., & Wilson, R. (2020). The Combia Volcanic Province: Miocene Post-Collisional in the Northern Andes. In J. Gómez & D. Mateus-Zabala (Eds.), The Geology of Colombia, volumen 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37 (pp. 335–394). https://doi.org/10.32685/pub.esp.37.2019.12 Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). S-type granites: geochemical and petrogenesis. Contributions to Mineralogy and Petrology, (95), 407–419. Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. Wilson, M. (2007). Igneous petrogenesis: a global tectonic approach. Springer. https://doi.org/10.1007/978-1-4020-6788-4 Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson Education. Yang, H., Ge, W. C., Zhao, G. C., Dong, Y., Xu, W. L., Ji, Z., & Yu, J. J. (2015). Late Triassic intrusive complex in the Jidong region, Jiamusi–Khanka Block, NE China: Geochemistry, zircon U–Pb ages, Lu–Hf isotopes, and implications for magma mingling and mixing. Lithos, 224–225, 143–159. https://doi.org/10.1016/J.LITHOS.2015.03.001 Zapata, S., Cardona, A., Jaramillo, C., Valencia, V., & Vervoort, J. (2016). U-Pb LA-ICP-MS geochronology and geochemistry of jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): Tectonic setting and regional correlations. Boletin de Geologia, 38(2), 21–38. https://doi.org/10.18273/revbol.v38n2-2016001 Zapata-Cardona, E., Hernández-González, J. S., Quiceno-Colorado, J. A., Ruiz-Jiménez, E. C., Moreno-Sánchez, M., Naranjo-Sierra, E., Toro-Toro, L. M., & Rincón-Alape, J. (2024). Petrogenesis and tectonic implications of the carboniferous El Carmen Pluton, central Colombian Andes: insights from whole-rock and mineral geochemistry, in situ zircon Lu–Hf isotopes and U–Pb geochronology. International Geology Review, 66(13), 2469–2494. https://doi.org/10.1080/00206814.2023.2286481 Zhao, D., Fujisawa, M., & Toyokuni, G. (2017). Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9). Scientific Reports, 7. https://doi.org/10.1038/SREP44487 Zheng, Y. F. (2019). Subduction zone geochemistry. Geoscience Frontiers, 10(4), 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003 Zheng, Y. F., Xia, Q. X., Chen, R. X., & Gao, X. Y. (2011). Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. In Earth-Science Reviews (Vol. 107, Issues 3–4, pp. 342–374). https://doi.org/10.1016/j.earscirev.2011.04.004 Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen, J., Singer, B. Jicha, B., Mandeville, C., & Nye, C. J. (2010). The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index. Journal of Petrology, 51(12), 2411–2444. https://doi.org/10.1093/PETROLOGY/EGQ062 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| dc.format.none.fl_str_mv |
174 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas Geología |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas Geología |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532643047702528 |
| spelling |
Caracterización petrográfica y geoquímica del Monzogranito de Mocoa en el sur de los Andes Colombianos e implicaciones para su evolución magmática550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología1. Ciencias NaturalesMonzogranito de MocoaJurásicoZona de subducciónGeoquímicaPetrogénesisMocoa MonzograniteJurassicSubduction zoneGeochemistryPetrogenesisGeologíaTablas, figurasEl Monzogranito de Mocoa es un batolito de edad Jurásico Temprano a Medio (edades de cristalización U-Pb en circón que abarcan un intervalo entre 181.8 ± 1.3 Ma a 180.4 ± 1.6 Ma), localizado en el sur de los Andes Colombianos. Representa una importante unidad del basamento de la actual Cordillera Central y del Valle Superior del Magdalena. El batolito está emplazado en sucesiones metasedimentarias carbonatadas del Complejo Aleluya y en sucesiones volcanoclásticas de la Formación Saldaña. Petrográficamente el Monzogranito de Mocoa está conformado por tres facies principales: i) una facies máfica, que varía entre gabro-diorita de grano grueso-muy grueso y diorita con anfíbol de grano fino-medio, ii) una facies intermedia, que incluye cuarzodiorita de biotita y anfíbol, así como monzonita con anfíbol, y iii) una facies ácida, que comprende sienogranitos con variaciones a granodiorita, granodiorita con anfibol y granodiorita con biotita y anfíbol. Los análisis químicos de elementos mayores muestran composiciones calcoalcalinas para las tres facies. Los patrones de elementos traza normalizados a condrito muestran enriquecimiento sistemático en tierras raras livianas (LREE), empobrecimiento de tierras raras pesadas (HREE) y anomalías negativas de Eu particularmente marcadas en las facies félsicas. En diagramas multielementales normalizados a manto primitivo se observa enriquecimiento en elementos LILE (Sr, K, Rb, Ba) y empobrecimiento en HFSE (Nb, Ta, Ti, P), lo que evidencia una firma magmática típica de arcos de subducción. Además, se documentan caídas pronunciadas en Nb y Ta, rasgo diagnóstico del magmatismo supra-subducción. De acuerdo con los resultados petrográficos y geoquímicos de las rocas analizadas, la evolución magmática estuvo dominada por procesos de cristalización fraccionada, mostrando una transición entre las facies máficas e intermedias hacia las facies félsicas, y procesos de interacción de magmas (mingling) (recarga magmática) y asimilación magmática. El índice de saturación de alúmina (Metaluminoso a peraluminoso) y la afinidad química de los diferentes litotipos, sugiere una transición y maduración del arco. El Monzogranito de Mocoa se formó en un ambiente tectónico correspondiente a un arco volcánico continental, bajo condiciones de evolución magmática variables entre sus diferentes facies. Las facies máficas e intermedias registran condiciones oxidantes con baja fO₂, un carácter anhidro y una limitada asimilación cortical, desarrollándose en una corteza delgada. Estas características son consistentes con un escenario de slab rollback, asociado a una transición desde una subducción somera de bajo ángulo hacia una subducción más inclinada, lo cual genera relajación y adelgazamiento cortical, favoreciendo el ascenso del manto durante el Jurásico inferior en la base de la corteza del NW de Gondwana. En contraste, las facies félsicas reflejan condiciones igualmente oxidantes, pero con mayor fO₂, en presencia de agua y con un mayor aporte de fluidos y sedimentos derivados de la subducción, junto con una mayor asimilación cortical en una corteza ya engrosada. Este escenario sugiere una disminución del ángulo de subducción, generando un régimen compresivo local en el sur de Colombia y la migración hacia el este de las unidades magmáticas.The Mocoa Monzogranite is a batholith of Early to Middle Jurassic age (U–Pb zircon crystallization ages ranging from 181.8 ± 1.3 Ma to 180.4 ± 1.6 Ma), located in the southern Colombian Andes. It represents a major basement unit of the present-day Central Cordillera and the Upper Magdalena Valley. The batholith is emplaced within carbonate-rich metasedimentary sequences of the Aleluya Complex and volcaniclastic successions of the Saldaña Formation. Petrographically, the Mocoa Monzogranite comprises three main facies: i) a mafic facies, varying from coarse- to very coarse-grained gabbro–diorite to fine- to medium-grained amphibole-bearing diorite; ii) an intermediate facies, including biotite- and amphibole-bearing quartz diorite as well as amphibole monzonite; and iii) an acidic facies, consisting of syenogranites grading to granodiorite, amphibole-bearing granodiorite, and biotite–amphibole granodiorite. Major-element geochemistry indicates calc-alkaline compositions for all three facies. Chondrite-normalized trace element patterns display systematic enrichment in light rare earth elements (LREEs), depletion in heavy rare earth elements (HREEs), and pronounced negative Eu anomalies, particularly in the felsic facies. Primitive mantle–normalized multi-element diagrams reveal enrichment in large ion lithophile elements (LILEs) (Sr, K, Rb, Ba) and depletion in high field strength elements (HFSEs) (Nb, Ta, Ti, P), reflecting a magmatic signature typical of subduction-related arc settings. Strong negative Nb and Ta anomalies further support a supra-subduction magmatic affinity. Petrographic and geochemical evidence indicates that the magmatic evolution was dominated by fractional crystallization processes, showing a transition from mafic–intermediate to felsic facies, along with magma mingling/recharging and assimilation processes. The alumina saturation index (metaluminous to peraluminous) and the chemical affinity of the different lithotypes suggest an evolving and maturing magmatic arc. The Mocoa Monzogranite formed within a continental volcanic arc setting, under variable magmatic conditions across its facies. The mafic and intermediate facies record oxidizing conditions with low fO₂, an anhydrous character, and limited crustal assimilation, consistent with a thin crustal environment. These features are characteristic of a slab rollback scenario, associated with a transition from low-angle (flat) subduction to steeper subduction, producing crustal relaxation and thinning that favored mantle upwelling at the base of the crust in the northwestern margin of Gondwana during the Early Jurassic. In contrast, the felsic facies reflect similarly oxidizing but higher fO₂ conditions, in the presence of water-rich magmas, with a greater contribution of subduction-derived fluids and sediments and enhanced crustal assimilation within a thickened crust. This scenario suggests a decrease in the subduction angle, leading to a local compressive regime in southern Colombia and the eastward migration of magmatic units.Introducción -- Objetivos -- Objetivo general -- Objetivos específicos -- Marco geológico -- Contexto tectónico de la Cordillera Central de los Andes Colombianos -- Monzogranito de Mocoa -- Marco teórico -- Magmatismo en orógenos por subducción -- Magmatismo en arcos continentales -- Magmatismo en arcos de islas -- Mecanismos de emplazamiento -- Propagación por fracturas -- Diapirismo -- Evolución y cristalización de los magmas -- Tipos de cristalización -- Cristalización en equilibrio -- Cristalización fraccionada -- Contaminación cortical -- Mezcla de magmas -- Geoquímica de sistemas magmáticos en zonas de subducción -- Subducción corteza oceánica – corteza continental -- Subducción corteza oceánica – corteza oceánica -- Metodología -- Análisis macroscópico -- Elaboración de secciones delgadas pulidas -- Análisis petrográfico -- Geoquímica de elementos mayores y traza en roca total -- Resultados -- Descripción litológica y análisis macroscópico -- Facies máfica -- Gabro hornbléndico -- Facies intermedia -- Cuarzodiorita con biotita y anfíbol -- Facies félsica -- Granodiorita con biotita -- Cuarzomonzonita con anfíbol -- Enclave de cuarzogabro de anfíbol -- Monzogranito -- Petrografía -- Facies máfica -- Gabro hornbléndico -- Diorita de anfíbol -- Facies intermedia -- Cuarzodiorita con biotita y anfíbol -- Monzonita con anfíbol -- Facies félsica -- Granodiorita -- Enclave gabro hornbléndico -- Monzogranito -- Sienogranito -- Geoquímica -- Clasificación geoquímica y afinidad -- Clasificación de granitos e índice de saturación de alúmina del magma -- Diagramas Harker -- Elementos traza y elementos de tierras raras (REE) -- Discriminación tectónica -- Discusión -- Procesos de cristalización y evidencias petrográficas de desequilibrio -- Mecanismos de evolución magmática: fraccionamiento, recarga y mezcla -- Génesis del magma y controles fisicoquímicos -- Registro del magmatismo Jurásico al sur de los Andes Colombianos e implicaciones tectónicas -- Correlación entre el Monzogranito de Mocoa y otros plutones del Jurásico -- Espesor de la corteza durante el emplazamiento de los magmas -- Escenario tectónico para la génesis y emplazamiento del magma que dio origen al Monzogranito de Mocoa -- Conclusiones -- Recomendaciones -- Referencias -- AnexosPregradoLa metodología aplicada en este trabajo se basa en tres etapas principales correspondientes a una fase de descripción macroscópica de rocas, análisis petrográfico y análisis geoquímicoGeólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, CaldasGeologíaQuiceno Colorado, July AstridHernández-González, Juan S.Naranjo Sierra, EdwinOsorio Ocampo, SusanaSánchez Barragán, María Camila2025-11-11T21:40:53Z2025-11-11T21:40:53Z2025-11-10Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis174 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26137Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAmaya, C. A., & Centanaro, J. (1997). Ambiente deposicional y modelamiento del yacimiento Caballos en el campo Orito, cuenca, Putumayo, Colombia. VI, Simposio, Exploracion Petrolera En Las Cuencas Subandinas, Memoria 2, 26–29Arango, M. I., Rodríguez, G., Zapata, G., & Bermúdez, J. G. (2015). Catálogo de Unidades Litoestratigraficas de Colombia, Monzogranito de Mocoa, Cordillera Oriental, Departamentos de Putumayo, Huila, Cauca y Nariño. Boletín de Geología. www.sgc.gov.coBayona, G., Bustamante, C., Nova, G., & Salazar Franco, A. M. (2020). Jurassic Evolution of the Northwestern corner of Gondwana:Present Knowledge and Future Challenges in Stuying Colombian Jurassic Rocks. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia, volumen 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36 (pp. 171–207). https://doi.org/10.32685/pub.esp.36.2019.05Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J., & Cordani, U. (2010). Paleomagnetic data and K–Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4), 817–831. https://doi.org/10.1016/J.JSAMES.2009.10.005Bayona, G., Rapalini, A. E., & Costanzo-Alvarez, V. (2006). Paleomagnetism in Mesozoic rocks of the Northern Andes and its implications in Mesozoic tectonics of northwestern South America. Earth, Planets and Space, 58(10), 1255–1272. https://doi.org/10.1186/BF03352621/METRICSBest, M. G. (2003). Igneous and Metamorphic Petrology Second Edition (Second Edition). Blackwell Publishing.Blatter, D. L., Sisson, T. W., & Hankins, W. Ben. (2013). Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis. Contributions to Mineralogy and Petrology, 166(3), 861–886. https://doi.org/10.1007/S00410-013-0920-3/METRICSBowen, Norman. L. (1929). The evolution of the igneous rocks. Nature, 124(3126), 474–475Brown, G. C., Thorpe, R. S., & Webb, P. C. (1984). The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3), 413–426. https://doi.org/10.1144/GSJGS.141.3.0413Bustamante, C., Archanjo, C. J., Cardona, A., Bustamante, A., & Valencia, V. A. (2017). U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. The Journal of Geology, 125(5), 487–500. https://doi.org/10.1086/693014Bustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11–12), 1762–1779. https://doi.org/10.1130/B31307.1Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS Geochronology and regional correlation of middel jurassic intrusive rocks from the Garzon massif, upper magdalena valley and central cordillera, southern colombia. Boletín de Geología, 32Cao, M., Evans, N. J., Reddy, S. M., Fougerouse, D., Hollings, P., Saxey, D. W., McInnes, B. I. A., Cooke, D. R., McDonald, B. J., & Qin, K. (2019). Micro- A nd nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: Implications for magmatic processes. American Mineralogist, 104(3), 391–402. https://doi.org/10.2138/AM-2019-6609/MACHINEREADABLECITATION/RISCao, M., Qin, K. Z., Li, G. M., Yang, Y. H., Evans, N. J., Zhang, R., & Jin, L. Y. (2014). Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Journal of Asian Earth Sciences, 82, 136–150. https://doi.org/10.1016/J.JSEAES.2013.12.019Cardona, A., León, S., Jaramillo, J. S., Valencia, V. A., Zapata, S., Pardo-Trujillo, A., Schmitt, A. K., Mejía, D., & Arenas, J. C. (2020). Cretaceous Record from a Mariana-to an Andean-Type Margin in the Central Cordillera of the Colombian Andes. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia, Volumen 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36 (pp. 335–373). https://doi.org/10.32685/pub.esp.36.2019.10Castro-Dorado, A. (2015). Petrografía de rocas Ígneas y Metamórficas (1st ed.). Ediciones Parafino, SA.Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. In The Circum-Gulf of Mexico and the caribbean:Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir79 (pp. 815–884).Chavarría, L., Bustamante, C., Cardona, A., & Bayona, G. (2022). Quantifying crustal thickness and magmatic temperatures of the Jurassic to Early Cretaceous North-Andean arc. International Geology Review, 64(18), 2544–2564. https://doi.org/10.1080/00206814.2021.1992301Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6). https://doi.org/10.1029/1999GC000010Cochrane, R. (2013). U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the for the volume blance of continents [PhD, Univ. Geneve]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2738f194cb38eadf3765360fe77f008ead3969a3Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014a). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/J.LITHOS.2013.12.020Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., & Chiaradia, M. (2014b). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202–203, 382–394. https://doi.org/10.1016/J.LITHOS.2014.05.031Dal Zilio, L., Kissling, E., Gerya, T., & van Dinther, Y. (2020). Slab Rollback Orogeny Model: A Test of Concept. Geophysical Research Letters, 47(18). https://doi.org/10.1029/2020GL089917Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662A0;KWRDDilek, Y., & Furnes, H. (2014). Ophiolites and Their Origins. Elements, 10(2), 93–100. https://doi.org/10.2113/GSELEMENTS.10.2.93Etayo-Serna, F., Renzoni, G., & Barrero, B. (1969). Contornos sucesivos del mar cretaceo en Colombia. Primer Congreso Colombiano de Geología. Memoria, 217–253.Feininger, T., Barrero, D. L., & Castro, N. Q. (1972). Geología de Parte de los Departamentos de Antioquia y Caldas (sub-zona 11-B). Boletín Geológico, 20 (2).Frost, B. R., & Frost, C. D. (2008). A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11), 1955–1969. https://doi.org/10.1093/PETROLOGY/EGN054Frost, B. Ronald., & Frost, C. D. (2014). Essentials of igneous and metamorphic petrology (segunda). Cambridge University Press.García-Chinchilla, D. A., & Vlach, S. R. F. (2024). Jurassic magmatism in the Garzón region of the Colombian Andes: insights from whole-rock geochemistry and zircon isotope analysis of granites and subvolcanic rocks. International Geology Review. https://doi.org/10.1080/00206814.2024.2424222Ginibre, C., Wörner, G., & Kronz, A. (2007). Crystal Zoning as an Archive for Magma Evolution. Elements, 3(4), 261–266. https://doi.org/10.2113/GSELEMENTS.3.4.261Gómez, J., Montes, N. E., & Marín, E. (2023). Plancha 5-18 del Atlas Geológico de Colombia 2023. Escala 1.500.000. In Servicio Geológico Colombiano.González, H. I., & Nuñez, A. (2001). Catálogo de Unidades Litoestratigráficas de Colombia Monzogranito de Mocoa (Batolito de Mocoa) (Jmm), Cordillera Oriental, Departamentos deHuila, Nariño, Cauca, Caquetá y Putumayo.Green, T. H., & Pearson, N. J. (1986). Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chemical Geology, 54(3–4), 185–201. https://doi.org/10.1016/0009-2541(86)90136-1Gündüz, M., & Asan, K. (2021). PetroGram: An excel-based petrology program for modeling of magmatic processes. Geoscience Frontiers, 12(1), 81–92. https://doi.org/10.1016/J.GSF.2020.06.010Halley, S. (2020). Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W., & Van Calsteren, P. (1997). U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312), 551–555. https://doi.org/10.1126/SCIENCE.276.5312.551Hernández-González, J. S., & Terraza-Melo, R. (2019). Exploración geológica de magnesio en el flanco oriental de la cordillera central de Colombia, bloque Huila. Bogotá: Servicio Geológico Colombiano.Hibbard, M. J. (1981). The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2), 158–170. https://doi.org/10.1007/BF00371956/METRICSHughes, C. J. (1972). Spilites, Keratophyres, and the igneous spectrum. Geological Magazine, 109(6), 513–527.Ibañez-Mejia, M. (2020). The Putumayo orogen of Amazonia: a Synthesis. In J. Gómez & Mateus-Zabala (Eds.), The Geology of Colombia, Volumen 1 Proterozoic - Paleozoic. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.06Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5), 523–548.Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous rocks: a clasification and glossary terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (R. W. Le Maitre, Ed.; 2nd ed.). Cambridge University Press.Leal-Mejía, H. (2011). Phanerozoic Gold Metallogeny in The Colombia Andes:a Tectono-Magmatic Approach. [Ph. D. Tesis]. Universidad de Barcelona, Barcelona.Leal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In Frontiers in Earth Sciences (pp. 253–410). Springer Verlag. https://doi.org/10.1007/978-3-319-76132-9_5L’heureux, I., & Fowler, A. D. (1994). A nonlinear dynamical model of oscillatory zoning in plagioclase. American Mineralogist, 79(9–10), 885–891. https://www.scopus.com/pages/publications/0028669079Mackenzie, W. S., Donaldson, C. H., & Guilford, C. (1996). Atlas de rocas igneas y sus texturas (MASSON, Ed.; española).Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–429. https://doi.org/10.1016/S0024-4937(98)00076-0Microsoft. (2015). Image composite Editor (2.0.3 (64bits)).Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224.Mojica, J., & Kammer, A. (1995). Eventos Jurásicos en Colombia. Geología Colombiana, 19(0), 165–172. https://revistas.unal.edu.co/index.php/geocol/article/view/31352Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., & Valencia, V. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research: Solid Earth, 117(4). https://doi.org/10.1029/2011JB008959Mora, A., Venegas, D., & Vergara, L. (1998). Estratigrafía del cretácico Superior y Terciario Inferior en el sector Norte de la cuenca del Putumayo, Departamento del Caquetá, Colombia. In Noviembre (Issue 23).Murcia L, A., & Picher, H. (1986). Geoquimica y dataciones radiometricas de las ignimbritas cenozoicas del sw de Colombia. In Simposio internacional sobre neotectonica y riesgos volcanicos (pp. 217–253).Nédélec, A., & Bouchez, J.-L. (2015). Granites: Petrology, Structure Geological Setting, and Metallogeny. Oxford University Press.Nuñez, A. (2003). Reconocimiento geológico regional de las planchas 411 la cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Pieamonte, 448 Monopamba, 449 Orito y 465 Churuyaco. Memoria explicativa, escala 1:100.000. Ingeominas. www.ingeominas.gov.coPalme, H., & O’Neill, H. (2014). Cosmochemical Estimates of Mantle Composition. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry: Second Edition (2nd ed., Vol. 3, pp. 1–39). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00201-1Peacock, S. M. (1991). Numerical simulation of subduction zone pressure-temperature-time paths: constraints on fluid production and arc magmatism. Philosophical Transactions the Royal Society a Mathematical, Physical and Engineering Sciences, 335-341–353. https://royalsocietypublishing.org/Pearce, J. (1983). The role of subcontinental lithosphere in magma genesis at destructive plate margins. In C. J. Hawkeswrth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Birkhaeuser.Pearce, J. (1996). A user’s guide to basalt discrimination diagrams. In D. A. Whyman (Ed.). In Trace element geochemistry of volcanic rocks: aplications for massive sulphide exploration (pp. 79–113). Geological Association of Canada, Short Course Notes.Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaris. In R. S. Thorpe (Ed.), Andesites: Orogenic Andesites and Related Rocks (pp. 525–548). Birkhauser.Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for archean oceanic crust. Lithos, 100(1-4), 14–48.Pearce. J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983.Peccerillo, A., & Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81.Plank, T., & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. In Earth and Planetary Science Letters (Vol. 90).Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/SREP17786;SUBJMETARamos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Memoir of the Geological Society of America, 204, 31–65. https://doi.org/10.1130/2009.1204(02)Rasband, W. (1997). ImageJ (1.53).REFLEX. (2018). IoGAS (7.0).Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 111. https://doi.org/10.1016/j.jsames.2021.103439Richards, J. P. (2003). Tectono-Magmatic Precursors for porphyry Cu-(Mo-Au) Deposit Formation. In Economic Geology (Vol. 98, pp. 1515–1533).Rodríguez, G., Arango, M. I., Zapata, G., & Bermúdez, J. G. (2018). Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences, 81, 10–30. https://doi.org/10.1016/j.jsames.2017.10.012Rodríguez, G., Arango, M. I., Zapata, G., & Bermúdez, J. G. (2022). Catálogo de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. (Vol. 2). Servicio Geológico Colombiano. https://doi.org/https://doi.org/10.32685/9789585313194Rodríguez García, G., Arango M, M. I., Zapata G, Gilberto., & Bermúdez C, J. G. (2016). Catálogo de unidades litoestratigráficas de Colombia Formación Saldaña, Cordilleras Central y Oriental Tolima, Huila, Cauca y Putumayo. https://www.researchgate.net/publication/299560401Rollinson, H., & Pease, V. (2021). Using Geochemical Data To Understand Geological Processes (2nd ed.). Cambridge University Press. https://doi.org/0.1017/9781108777834Schmidt, M. W., Dardon, A., Chazot, G., & Vannucci, R. (2004). The dependence of Nb and Ta rutile–melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3–4), 415–432. https://doi.org/10.1016/J.EPSL.2004.08.010Schmidt, M. W., & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361–379. https://doi.org/10.1016/s0012-821x(98)00142-3Sen, G., & Stern, R. J. (2021). Subduction Zone Magmas. Encyclopedia of Geology: Volume 1-6, Second Edition, 2, 33–51. https://doi.org/10.1016/B978-0-08-102908-4.00086-2Shand, S. J. (1943). Eruptive Rocks. Their Genesis, Composition, Classification, and their Relation to Ore-Deposits with a chapter on Meteorites (John Wiley y Sons).Siachoque, A., García-Chinchilla, D. A., Zapata, S., Cardona, A., Vlach, S. R. F., Bustamante, C., & Chavarría, L. F. (2024a). Mineral chemistry and thermobarometry of Jurassic arc granitoids: implications for petrotectonic and unroofing history of the southern Colombian Andes. Geological Magazine, 161, e5. https://doi.org/10.1017/S0016756824000256Siachoque, A., Morales, A., Cardona, A., Marulanda, U. M., & Zapata, S. (2024b). Mineral fabrics unravel syn-magmatic deformation and constrain Permian and Jurassic tectonic regimes in arc plutons from the southern Colombian Andes. International Geology Review. https://doi.org/10.1080/00206814.2024.2415098Sillitoe, R. H., Jaramillo, L., Damon, P. E., Shafiqullah, M., & Escovar, R. (1982). Setting, characteristics, and age of the Andean porphyry copper belt in Colombia. Economic Geology, 77(8), 1837–1850. https://doi.org/10.2113/GSECONGEO.77.8.1837Sousa, C. S., Conceição, H., Soares, H. S., Fernandes, D. M., & Rosa, M. de L. da S. (2022). Magmatic processes recorded in plagioclase crystals of the Rio Jacaré Batholith, Sergipano Orogenic System, Northeast Brazil. Journal of South American Earth Sciences, 118. https://doi.org/10.1016/j.jsames.2022.103942Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95–139. https://doi.org/10.1016/J.GR.2014.06.004Spikings, R., & Paul, A. (2019). The Permian - Triassic History of Magmatic Rocks of the Northern Andes (Colombia and Ecuador): Supercontinent Assembly and Disassembly. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia (Vol. 2, pp. 1–33). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36. https://doi.org/10.32685/pub.esp.36.2019.01Stern, C. R. (2011). Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research, 20(2–3), 284–308. https://doi.org/10.1016/J.GR.2011.03.006Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12(1), 1–33.Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787–813. https://doi.org/10.1029/2000TC900004Tarney, J., & Jones, C. E. (1994). Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal Ofthe Geological Society, London, 151, 855–868. https://www.lyellcollection.orgTaylor, B., & Martinez, F. (2003). Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3–4), 481–497. https://doi.org/10.1016/S0012-821X(03)00167-5Vermeesch, P., & Pease, V. (2021). A genetic classification of the tholeiitic and calc-alkaline magma series. Geochemical Perspectives Letters, 19, 1–6. https://doi.org/10.7185/GEOCHEMLET.2125Vigneresse, J. L., & Clemens, J. D. (2000). Granitic magma ascent and emplacement: Neither diapirism nor neutral buoyancy. Geological Society Special Publication, 174, 1–19. https://doi.org/10.1144/GSL.SP.1999.174.01.01Vinasco, C. (2019). The Romeral Shear Zone. In F.Cediel & R.P. Shaw (Eds.), Geology and Tectonics of Northwestern South America (pp. 833–876). Springer Nature Switzerland. https://doi.org/10.1007/978-3-319-76132-9_12Vinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007Weber, M., Duque, J. F., Hoyos, S., Cárdenas-Rozo, A., Tapias, J. G., & Wilson, R. (2020). The Combia Volcanic Province: Miocene Post-Collisional in the Northern Andes. In J. Gómez & D. Mateus-Zabala (Eds.), The Geology of Colombia, volumen 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37 (pp. 335–394). https://doi.org/10.32685/pub.esp.37.2019.12Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). S-type granites: geochemical and petrogenesis. Contributions to Mineralogy and Petrology, (95), 407–419.Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187.Wilson, M. (2007). Igneous petrogenesis: a global tectonic approach. Springer. https://doi.org/10.1007/978-1-4020-6788-4Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson Education.Yang, H., Ge, W. C., Zhao, G. C., Dong, Y., Xu, W. L., Ji, Z., & Yu, J. J. (2015). Late Triassic intrusive complex in the Jidong region, Jiamusi–Khanka Block, NE China: Geochemistry, zircon U–Pb ages, Lu–Hf isotopes, and implications for magma mingling and mixing. Lithos, 224–225, 143–159. https://doi.org/10.1016/J.LITHOS.2015.03.001Zapata, S., Cardona, A., Jaramillo, C., Valencia, V., & Vervoort, J. (2016). U-Pb LA-ICP-MS geochronology and geochemistry of jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): Tectonic setting and regional correlations. Boletin de Geologia, 38(2), 21–38. https://doi.org/10.18273/revbol.v38n2-2016001Zapata-Cardona, E., Hernández-González, J. S., Quiceno-Colorado, J. A., Ruiz-Jiménez, E. C., Moreno-Sánchez, M., Naranjo-Sierra, E., Toro-Toro, L. M., & Rincón-Alape, J. (2024). Petrogenesis and tectonic implications of the carboniferous El Carmen Pluton, central Colombian Andes: insights from whole-rock and mineral geochemistry, in situ zircon Lu–Hf isotopes and U–Pb geochronology. International Geology Review, 66(13), 2469–2494. https://doi.org/10.1080/00206814.2023.2286481Zhao, D., Fujisawa, M., & Toyokuni, G. (2017). Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9). Scientific Reports, 7. https://doi.org/10.1038/SREP44487Zheng, Y. F. (2019). Subduction zone geochemistry. Geoscience Frontiers, 10(4), 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003Zheng, Y. F., Xia, Q. X., Chen, R. X., & Gao, X. Y. (2011). Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. In Earth-Science Reviews (Vol. 107, Issues 3–4, pp. 342–374). https://doi.org/10.1016/j.earscirev.2011.04.004Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen, J., Singer, B. Jicha, B., Mandeville, C., & Nye, C. J. (2010). The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index. Journal of Petrology, 51(12), 2411–2444. https://doi.org/10.1093/PETROLOGY/EGQ062https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/261372025-11-12T08:02:03Z |
