Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo

Ilustraciones, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/22407
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/22407
Palabra clave:
Fermentación de café
Beneficio húmedo
Diversidad fúngica
Hongos filamentosos
Ocratoxina A
Coffee fermentation
Wet fermentation
Fungal diversity
Filamentous fungí
Ochratoxin A
Biología
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_526ffe9bb713c3f0654eac49e9597f66
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/22407
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
title Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
spellingShingle Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
Fermentación de café
Beneficio húmedo
Diversidad fúngica
Hongos filamentosos
Ocratoxina A
Coffee fermentation
Wet fermentation
Fungal diversity
Filamentous fungí
Ochratoxin A
Biología
title_short Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
title_full Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
title_fullStr Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
title_full_unstemmed Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
title_sort Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
dc.contributor.none.fl_str_mv Peñuela Martínez, Aida Esther
Toro Castaño, Daniel R.
Ortiz, Juan Carlos
Peñuela Martínez, Aida E.
Osorio Giraldo, Carol V.
dc.subject.none.fl_str_mv Fermentación de café
Beneficio húmedo
Diversidad fúngica
Hongos filamentosos
Ocratoxina A
Coffee fermentation
Wet fermentation
Fungal diversity
Filamentous fungí
Ochratoxin A
Biología
topic Fermentación de café
Beneficio húmedo
Diversidad fúngica
Hongos filamentosos
Ocratoxina A
Coffee fermentation
Wet fermentation
Fungal diversity
Filamentous fungí
Ochratoxin A
Biología
description Ilustraciones, gráficas
publishDate 2025
dc.date.none.fl_str_mv 2025-06-12T23:14:12Z
2025-06-12T23:14:12Z
2026-07-30
2026-07-30
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/22407
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/22407
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Akbar, A., Medina, A., & Magan, N. (2020). Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms, 8(9), Article 9. https://doi.org/10.3390/microorganisms8091268
Alster, C. J., Allison, S. D., Johnson, N. G., Glassman, S. I., & Treseder, K. K. (2021). Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Communications, 1(1), 43. https://doi.org/10.1038/s43705-021-00045-9
AOAC 2004.10-2008. Ochratoxin A in green coffee. (2004).
Arias, E. L., & Piñeros, P. A. (2008). Aislamiento e identificación de hongos filamentosos de muestra de suelo de los páramos de Guasca y Cruz Verde [Pontificia Universidad Javeriana]. http://repository.javeriana.edu.co/handle/10554/8233
Barnett, H. L., & Hunter, B. B. (1986). Illustrated Genera of Imperfect Fungi. APS Press.
Beugre, G. C., Kadjo, A. C., Yao, K. M., Kone, K. M., Piro-Metayer, I., Poss, C., Durand, N., Fontana, A., & Guehi, T. S. (2023). Sensory Quality of Coffee Beverrage Produced Thereof Linked to the Inhibition of Molds Growth and Ochratoxin a Removal from Coffee Cherries Using Lactobacillus Plantarum Strains. Current Journal of Applied Science and Technology, 42(13), 10-20. https://doi.org/10.9734/cjast/2023/v42i134112
Cardoso, W. S., Agnoletti, B., de Freitas, R., & Pinheiro, F. de A. (2021). Biochemical Aspects of Coffee Fermentation | Request PDF. En Quality Determinants In Coffee Production (pp. 149-208). https://doi.org/10.1007/978-3-030-54437-9_4
Czapek-Dox Modified Agar. (2020).
da Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, 109482. https://doi.org/10.1016/j.foodres.2020.109482
de Carvalho Neto, D. P., de Melo Pereira, G. V., Finco, A. M. O., Letti, L. A. J., da Silva, B. J. G., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Bioscience, 26, 80-87. https://doi.org/10.1016/j.fbio.2018.10.005
de Melo Pereira, G. V., de Mello Sampaio, V., Wiele, N., da Silva Vale, A., de Carvalho Neto, D. P., Souza, A. de F. D. de, Nogueira dos Santos, D. V., Ruiz, I. R., Rogez, H., & Soccol, C. R. (2024). How yeast has transformed the coffee market by creating new flavors and aromas through modern post-harvest fermentation systems. Trends in Food Science & Technology, 151, 104641. https://doi.org/10.1016/j.tifs.2024.104641
de Melo Pereira, G. V., Neto, E., Soccol, V. T., Medeiros, A. B. P., Woiciechowski, A. L., & Soccol, C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International, 75, 348-356. https://doi.org/10.1016/j.foodres.2015.06.027
de Melo Pereira, G. V., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Andrade Lara, J. M. R., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60-66. https://doi.org/10.1016/j.ijfoodmicro.2014.07.008
de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Coral Medina, J. D., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9(1), 8794. https://doi.org/10.1038/s41598-019-45002- 8
Di Francesco, A., Zajc, J., & Stenberg, J. A. (2023). Aureobasidium spp.: Diversity, Versatility, and Agricultural Utility. Horticulturae, 9(1), Article 1. https://doi.org/10.3390/horticulturae9010059
Elhalis, H., Cox, J., & Zhao, J. (2023). Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 3(1), 100253. https://doi.org/10.1016/j.afres.2022.100253
Ferreira Ludmilla, J. C., de Souza Gomes, M., de Oliveira, L. M., & Santos, L. D. (2023). Coffee fermentation process: A review. Food Research International (Ottawa, Ont.), 169, 112793. https://doi.org/10.1016/j.foodres.2023.112793
Frąc, M., Kaczmarek, J., & Jędryczka, M. (2022). Metabolic Capacity Differentiates Plenodomus lingam from P. biglobosus Subclade ‘brassicae’, the Causal Agents of Phoma Leaf Spotting and Stem Canker of Oilseed Rape (Brassica napus) in Agricultural Ecosystems. Pathogens, 11(1), 50. https://doi.org/10.3390/pathogens11010050
Frisvad, J. C., Frank, J., Houbraken, J., Kujipers, A., & Samson, R. (2004). New ochratoxin A producing species of Aspergillus section Circumdati. STUDIES IN MYCOLOGY, 50(23-43). https://orbit.dtu.dk/en/publications/new-ochratoxin-a-producingspecies-of-aspergillus-section-circumd
IARC, I. A. for R. on C. (1993). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS (Vol. 97).
Iturrieta-González, I., Gené, J., Wiederhold, N., & García, D. (2020). Three new Curvularia species from clinical and environmental sources. Mycokeys, 68, 1-21. https://doi.org/10.3897/mycokeys.68.51667
Katati, B., van Diepeningen, A. D., Njapau, H., Kachapulula, P. W., Zwaan, B. J., & Schoustra, S. E. (2024). Niche partitioning association of fungal genera correlated with lower Fusarium and fumonisin-B1 levels in maize. BioControl, 69(2), 185-197. https://doi.org/10.1007/s10526-024-10249-2
Khalil, N. M., Rodríguez-Couto, S., & El-Ghany, M. N. A. (2021). Characterization of Penicillium crustosum l-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 203(5), 2625-2637. https://doi.org/10.1007/s00203-021-02198-6
Khaneghah, A. M., Fakhri, Y., Abdi, L., Coppa, C. F. S. C., Franco, L. T., & de Oliveira, C. A. F. (2019). The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and metaregression. Fungal Biology, 123(8), 611-617. https://doi.org/10.1016/j.funbio.2019.05.012
Kusumaningrum, H. D., & Rasyidah, M. M. (2019). Prevalence of spoilage mold in coffee before and after brewing. Food Research, 720-726. https://doi.org/10.26656/fr.2017.3(6).142
Lee, B.-H., Huang, C.-H., Liu, T.-Y., Liou, J.-S., Hou, C.-Y., & Hsu, W.-H. (2023). Microbial Diversity of Anaerobic-Fermented Coffee and Potential for Inhibiting Ochratoxin-Produced Aspergillus niger. Foods, 12(15), Article 15. https://doi.org/10.3390/foods12152967
Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 7(1-2), 149-163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x
Lorenzoni, T. L., Da Luz, J. M. R., Veloso, T. G. R., Pereira, L. L., Menezes, K. M. S., Brioschi Júnior, D., Kasuya, M. C. M., & Da Silva, M. D. C. S. (2024). Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation. 3 Biotech, 14(11), 272. https://doi.org/10.1007/s13205-024-04099-z
Manamgoda, D. S., Cai, L., McKenzie, E. H. C., Crous, P. W., Madrid, H., Chukeatirote, E., Shivas, R. G., Tan, Y. P., & Hyde, K. D. (2012). A phylogenetic and taxonomic re-evaluation of the Bipolaris—Cochliobolus—Curvularia Complex. Fungal Diversity, 56(1), 131-144. https://doi.org/10.1007/s13225-012-0189-2
Muñoz, K., Vega, M., Rios, G., Geisen, R., & Degen, G. H. (2011). Mycotoxin production by different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based media. Mycotoxin Research, 27(4), 239-247. https://doi.org/10.1007/s12550- 011-0100-0
Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. https://doi.org/10.1007/s11947-011-0565-z
Patiño Moscoso, M. A., Osorio Guerrero, K. V., Flórez Gómez, D. L., Sarmiento Moreno, L. F., Vargas Ramírez, D. N., & Mérida, M. J. (2023). Manual ilustrado de hongos presentes en semillas de cultivos semestrales: Arroz, maíz, soya y sorgo | Editorial AGROSAVIA. https://editorial.agrosavia.co/index.php/publicaciones/catalog/book/383
Peñuela-Martínez, A. E., García-Duque, J. F., & Sanz-Uribe, J. R. (2023a). Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation, 9(11), Article 11. https://doi.org/10.3390/fermentation9110976
Peñuela-Martínez, A. E., Pabón, J., & Sanz-Uribe, J. R. (2013). Método fermaestro: Para determinar la finalización de la fermentación del mucílago de café. Avances Técnicos Cenicafé, 431, 1-8. https://doi.org/10.38141/10779/0431
Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad—Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546
Peñuela-Martínez, A. E., Velasquez-Emiliani, A. V., & Angel, C. A. (2023b). Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation, 9(4), Article 4. https://doi.org/10.3390/fermentation9040343
Pereira, L. L., Junior, D. B., de Souza, L. H., & Gomes, W. S. (2021). Relationship Between Coffee Processing and Fermentation | Request PDF. En Quality Determinants In Coffee Production. https://doi.org/10.1007/978-3-030-54437-9_6
Pereira, T. S., Batista, N. N., Santos Pimenta, L. P., Martinez, S. J., Ribeiro, L. S., Oliveira Naves, J. A., & Schwan, R. F. (2022). Selfinduced anaerobiosis coffee fermentation: Impact on microbial communities, chemical composition and sensory quality of coffee. Food Microbiology, 103, 103962. https://doi.org/10.1016/j.fm.2021.103962
Pierzgalski, A., Bryła, M., Kanabus, J., Modrzewska, M., & Podolska, G. (2021). Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins, 13(11), Article 11. https://doi.org/10.3390/toxins13110768
Pitt, J. I., & Hocking, A. (2022). Fungi and Food Spoilage (4.a ed.). https://www.researchgate.net/publication/363241358_Fungi_and_Food_Spoilage
Plate Count Agar. (s. f.).
Potato Dextrose Agar. (s. f.)
Reglamento (CE) N.o 1881/2006 de la Comisión Europea, de 19 de diciembre de 2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. (2006). https://eur-lex.europa.eu/eli/reg/2022/1370/oj
Rojas-Pablo, M., Toledo-Hernández, E., Rodríguez-Barrera, M. A., Toribio-Jiménez, J., Torreblanca-Ramírez, C., Rosas-Guerrero, V. M., Salgado-Souto, S. A., Álvarez-Fitz, P., Bolaños-Dircio, A., & Romero-Ramírez, Y. (2024). Bacillus licheniformis M2-7 Decreases Ochratoxin A Concentrations in Coffee Beans During Storage. Current Microbiology, 81(2), 62. https://doi.org/10.1007/s00284-023-03575-8
Schoch, C. L., Shoemaker, R. A., Seifert, K. A., Hambleton, S., Spatafora, J. W., & Crous, P. W. (2017). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia, 98(6), 1041-1052. https://doi.org/10.1080/15572536.2006.11832632
Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2024). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), 5. https://doi.org/10.3390/fermentation11010005
Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2025). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), Article 1. https://doi.org/10.3390/fermentation11010005
Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008a). Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiology, 25(8), 951-957. https://doi.org/10.1016/j.fm.2008.07.003
Silva, C. F., Batista, L. R., & Schwan, R. F. (2008b). Incidence and distribution of filamentous fungi during fermentation, drying and storage of coffee (Coffea arabica L.) beans. Brazilian Journal of Microbiology, 39, 521-526. https://doi.org/10.1590/S1517- 83822008000300022
Teixeira, Brandão, R. M., Barbosa, R. B., Cardoso, M. D. G., Batista, L. R., & Silva, C. F. (2021). Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. LWT, 148, 111610. https://doi.org/10.1016/j.lwt.2021.111610
Teixeira, Cassimiro, D. M. D. J., De Souza, J. G. D. L., Castro, C. R. D. S., Schwan, R. F., Batista, L. R., & Silva, C. F. (2024). Inhibition of Aspergillus spp. Growth and ochratoxin A production in Conilon and Arabica coffees based-medium by Saccharomyces cerevisiae. International Journal of Food Microbiology, 425, 110875. https://doi.org/10.1016/j.ijfoodmicro.2024.110875
Velmourougane, K. (2013). Impact of Natural Fermentation on Physicochemical, Microbiological and Cup Quality Characteristics of Arabica and Robusta Coffee. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83(2), 233-239. https://doi.org/10.1007/s40011-012-0130-1
Yeast Extract Glucose Chloramphenicol Agar (FIL-IDF). (s. f.).
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
dc.format.none.fl_str_mv 19 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836144994230992896
spelling Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. CastilloFermentación de caféBeneficio húmedoDiversidad fúngicaHongos filamentososOcratoxina ACoffee fermentationWet fermentationFungal diversityFilamentous fungíOchratoxin ABiologíaIlustraciones, gráficasLa fermentación es un proceso clave en la poscosecha del café, tanto por la degradación del mucílago, como por la formación de compuestos que enriquecen el perfil sensorial del grano. Sin embargo, fermentaciones prolongadas pueden comprometer la calidad e inocuidad del producto. En este estudio se identificaron géneros de hongos filamentosos presentes en fermentaciones prolongadas bajo dos condiciones de procesamiento, semianaerobio y anaerobio autoinducido (SIAF), utilizando café despulpado y en fruto. Para ello, se aplicaron técnicas microscópicas, metabólicas y metataxonómicas mediante secuenciación de la región ITS del ADNr de eucariotes. Adicionalmente, se identificó la presencia de Ocratoxina A mediante HPLC. Se identificaron 3,838 OTUs de hongos filamentosos distribuidos en 12 órdenes, 21 familias y 19 géneros. Penicillium y Aspergillus se presentaron en fermentaciones semianaerobias, y Fusarium y Beauveria en las anaerobias. Los niveles de OTA estuvieron por debajo de 0.8 ppb, indicando un bajo riesgo toxicológico. Los resultados sugieren que la contaminación por hongos filamentosos en fermentaciones prolongadas es mayormente ambiental y no compromete la inocuidad del café; no obstante, se observó una mayor presencia de géneros productores de micotoxinas en fermentaciones extendidas en el tiempo, especialmente en condiciones semianaerobias. Estos hallazgos aportan información clave para el control microbiológico de esta etapa del proceso, contribuyendo a mejorar la calidad y seguridad del producto final.Fermentation is a key postharvest process for coffee, both for the degradation of mucilage and for the formation of compounds that enrich the sensory profile of the bean. However, prolonged fermentations can compromise product quality and safety. In this study, genera of filamentous fungi present in prolonged fermentations were identified under two processing conditions: semi-anaerobic and self-induced anaerobic fermentation (SIAF), using pulped coffee and fruit. Microscopic, metabolic, and metataxonomic techniques were applied through sequencing of the ITS region of eukaryotic rDNA. Additionally, the presence of Ochratoxin A was identified by HPLC. A total of 3,838 OTUs of filamentous fungi were identified, distributed across 12 orders, 21 families, and 19 genera. Penicillium and Aspergillus were present in semi-anaerobic fermentations, and Fusarium and Beauveria in anaerobic fermentations. OTA levels were below 0.8 ppb, indicating a low toxicological risk. The results suggest that filamentous fungal contamination in prolonged fermentations is mostly environmental and does not compromise coffee safety; however, a higher presence of mycotoxin-producing genera was observed in prolonged fermentations, especially under semi-anaerobic conditions. These findings provide key information for microbiological control at this stage of the process, contributing to improved quality and safety of the final product.PregradoEn este estudio se identificaron géneros de hongos filamentosos presentes en fermentaciones prolongadas bajo dos condiciones de procesamiento, semianaerobio y anaerobio autoinducido (SIAF), utilizando café despulpado y en fruto. Para ello, se aplicaron técnicas microscópicas, metabólicas y metataxonómicas mediante secuenciación de la región ITS del ADNr de eucariotes. Adicionalmente, se identificó la presencia de Ocratoxina A mediante HPLCBiólogo(a)Agrícultura-FermentaciónUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesColombia, Caldas, ManizalesBiologíaPeñuela Martínez, Aida EstherToro Castaño, Daniel R.Ortiz, Juan CarlosPeñuela Martínez, Aida E.Osorio Giraldo, Carol V.Buitrago Zuluaga, Camila2025-06-12T23:14:12Z2026-07-302025-06-12T23:14:12Z2026-07-30Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a8519 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22407Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAkbar, A., Medina, A., & Magan, N. (2020). Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms, 8(9), Article 9. https://doi.org/10.3390/microorganisms8091268Alster, C. J., Allison, S. D., Johnson, N. G., Glassman, S. I., & Treseder, K. K. (2021). Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Communications, 1(1), 43. https://doi.org/10.1038/s43705-021-00045-9AOAC 2004.10-2008. Ochratoxin A in green coffee. (2004).Arias, E. L., & Piñeros, P. A. (2008). Aislamiento e identificación de hongos filamentosos de muestra de suelo de los páramos de Guasca y Cruz Verde [Pontificia Universidad Javeriana]. http://repository.javeriana.edu.co/handle/10554/8233Barnett, H. L., & Hunter, B. B. (1986). Illustrated Genera of Imperfect Fungi. APS Press.Beugre, G. C., Kadjo, A. C., Yao, K. M., Kone, K. M., Piro-Metayer, I., Poss, C., Durand, N., Fontana, A., & Guehi, T. S. (2023). Sensory Quality of Coffee Beverrage Produced Thereof Linked to the Inhibition of Molds Growth and Ochratoxin a Removal from Coffee Cherries Using Lactobacillus Plantarum Strains. Current Journal of Applied Science and Technology, 42(13), 10-20. https://doi.org/10.9734/cjast/2023/v42i134112Cardoso, W. S., Agnoletti, B., de Freitas, R., & Pinheiro, F. de A. (2021). Biochemical Aspects of Coffee Fermentation | Request PDF. En Quality Determinants In Coffee Production (pp. 149-208). https://doi.org/10.1007/978-3-030-54437-9_4Czapek-Dox Modified Agar. (2020).da Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, 109482. https://doi.org/10.1016/j.foodres.2020.109482de Carvalho Neto, D. P., de Melo Pereira, G. V., Finco, A. M. O., Letti, L. A. J., da Silva, B. J. G., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Bioscience, 26, 80-87. https://doi.org/10.1016/j.fbio.2018.10.005de Melo Pereira, G. V., de Mello Sampaio, V., Wiele, N., da Silva Vale, A., de Carvalho Neto, D. P., Souza, A. de F. D. de, Nogueira dos Santos, D. V., Ruiz, I. R., Rogez, H., & Soccol, C. R. (2024). How yeast has transformed the coffee market by creating new flavors and aromas through modern post-harvest fermentation systems. Trends in Food Science & Technology, 151, 104641. https://doi.org/10.1016/j.tifs.2024.104641de Melo Pereira, G. V., Neto, E., Soccol, V. T., Medeiros, A. B. P., Woiciechowski, A. L., & Soccol, C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International, 75, 348-356. https://doi.org/10.1016/j.foodres.2015.06.027de Melo Pereira, G. V., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Andrade Lara, J. M. R., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60-66. https://doi.org/10.1016/j.ijfoodmicro.2014.07.008de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Coral Medina, J. D., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9(1), 8794. https://doi.org/10.1038/s41598-019-45002- 8Di Francesco, A., Zajc, J., & Stenberg, J. A. (2023). Aureobasidium spp.: Diversity, Versatility, and Agricultural Utility. Horticulturae, 9(1), Article 1. https://doi.org/10.3390/horticulturae9010059Elhalis, H., Cox, J., & Zhao, J. (2023). Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 3(1), 100253. https://doi.org/10.1016/j.afres.2022.100253Ferreira Ludmilla, J. C., de Souza Gomes, M., de Oliveira, L. M., & Santos, L. D. (2023). Coffee fermentation process: A review. Food Research International (Ottawa, Ont.), 169, 112793. https://doi.org/10.1016/j.foodres.2023.112793Frąc, M., Kaczmarek, J., & Jędryczka, M. (2022). Metabolic Capacity Differentiates Plenodomus lingam from P. biglobosus Subclade ‘brassicae’, the Causal Agents of Phoma Leaf Spotting and Stem Canker of Oilseed Rape (Brassica napus) in Agricultural Ecosystems. Pathogens, 11(1), 50. https://doi.org/10.3390/pathogens11010050Frisvad, J. C., Frank, J., Houbraken, J., Kujipers, A., & Samson, R. (2004). New ochratoxin A producing species of Aspergillus section Circumdati. STUDIES IN MYCOLOGY, 50(23-43). https://orbit.dtu.dk/en/publications/new-ochratoxin-a-producingspecies-of-aspergillus-section-circumdIARC, I. A. for R. on C. (1993). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS (Vol. 97).Iturrieta-González, I., Gené, J., Wiederhold, N., & García, D. (2020). Three new Curvularia species from clinical and environmental sources. Mycokeys, 68, 1-21. https://doi.org/10.3897/mycokeys.68.51667Katati, B., van Diepeningen, A. D., Njapau, H., Kachapulula, P. W., Zwaan, B. J., & Schoustra, S. E. (2024). Niche partitioning association of fungal genera correlated with lower Fusarium and fumonisin-B1 levels in maize. BioControl, 69(2), 185-197. https://doi.org/10.1007/s10526-024-10249-2Khalil, N. M., Rodríguez-Couto, S., & El-Ghany, M. N. A. (2021). Characterization of Penicillium crustosum l-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 203(5), 2625-2637. https://doi.org/10.1007/s00203-021-02198-6Khaneghah, A. M., Fakhri, Y., Abdi, L., Coppa, C. F. S. C., Franco, L. T., & de Oliveira, C. A. F. (2019). The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and metaregression. Fungal Biology, 123(8), 611-617. https://doi.org/10.1016/j.funbio.2019.05.012Kusumaningrum, H. D., & Rasyidah, M. M. (2019). Prevalence of spoilage mold in coffee before and after brewing. Food Research, 720-726. https://doi.org/10.26656/fr.2017.3(6).142Lee, B.-H., Huang, C.-H., Liu, T.-Y., Liou, J.-S., Hou, C.-Y., & Hsu, W.-H. (2023). Microbial Diversity of Anaerobic-Fermented Coffee and Potential for Inhibiting Ochratoxin-Produced Aspergillus niger. Foods, 12(15), Article 15. https://doi.org/10.3390/foods12152967Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 7(1-2), 149-163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.xLorenzoni, T. L., Da Luz, J. M. R., Veloso, T. G. R., Pereira, L. L., Menezes, K. M. S., Brioschi Júnior, D., Kasuya, M. C. M., & Da Silva, M. D. C. S. (2024). Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation. 3 Biotech, 14(11), 272. https://doi.org/10.1007/s13205-024-04099-zManamgoda, D. S., Cai, L., McKenzie, E. H. C., Crous, P. W., Madrid, H., Chukeatirote, E., Shivas, R. G., Tan, Y. P., & Hyde, K. D. (2012). A phylogenetic and taxonomic re-evaluation of the Bipolaris—Cochliobolus—Curvularia Complex. Fungal Diversity, 56(1), 131-144. https://doi.org/10.1007/s13225-012-0189-2Muñoz, K., Vega, M., Rios, G., Geisen, R., & Degen, G. H. (2011). Mycotoxin production by different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based media. Mycotoxin Research, 27(4), 239-247. https://doi.org/10.1007/s12550- 011-0100-0Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. https://doi.org/10.1007/s11947-011-0565-zPatiño Moscoso, M. A., Osorio Guerrero, K. V., Flórez Gómez, D. L., Sarmiento Moreno, L. F., Vargas Ramírez, D. N., & Mérida, M. J. (2023). Manual ilustrado de hongos presentes en semillas de cultivos semestrales: Arroz, maíz, soya y sorgo | Editorial AGROSAVIA. https://editorial.agrosavia.co/index.php/publicaciones/catalog/book/383Peñuela-Martínez, A. E., García-Duque, J. F., & Sanz-Uribe, J. R. (2023a). Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation, 9(11), Article 11. https://doi.org/10.3390/fermentation9110976Peñuela-Martínez, A. E., Pabón, J., & Sanz-Uribe, J. R. (2013). Método fermaestro: Para determinar la finalización de la fermentación del mucílago de café. Avances Técnicos Cenicafé, 431, 1-8. https://doi.org/10.38141/10779/0431Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad—Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546Peñuela-Martínez, A. E., Velasquez-Emiliani, A. V., & Angel, C. A. (2023b). Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation, 9(4), Article 4. https://doi.org/10.3390/fermentation9040343Pereira, L. L., Junior, D. B., de Souza, L. H., & Gomes, W. S. (2021). Relationship Between Coffee Processing and Fermentation | Request PDF. En Quality Determinants In Coffee Production. https://doi.org/10.1007/978-3-030-54437-9_6Pereira, T. S., Batista, N. N., Santos Pimenta, L. P., Martinez, S. J., Ribeiro, L. S., Oliveira Naves, J. A., & Schwan, R. F. (2022). Selfinduced anaerobiosis coffee fermentation: Impact on microbial communities, chemical composition and sensory quality of coffee. Food Microbiology, 103, 103962. https://doi.org/10.1016/j.fm.2021.103962Pierzgalski, A., Bryła, M., Kanabus, J., Modrzewska, M., & Podolska, G. (2021). Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins, 13(11), Article 11. https://doi.org/10.3390/toxins13110768Pitt, J. I., & Hocking, A. (2022). Fungi and Food Spoilage (4.a ed.). https://www.researchgate.net/publication/363241358_Fungi_and_Food_SpoilagePlate Count Agar. (s. f.).Potato Dextrose Agar. (s. f.)Reglamento (CE) N.o 1881/2006 de la Comisión Europea, de 19 de diciembre de 2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. (2006). https://eur-lex.europa.eu/eli/reg/2022/1370/ojRojas-Pablo, M., Toledo-Hernández, E., Rodríguez-Barrera, M. A., Toribio-Jiménez, J., Torreblanca-Ramírez, C., Rosas-Guerrero, V. M., Salgado-Souto, S. A., Álvarez-Fitz, P., Bolaños-Dircio, A., & Romero-Ramírez, Y. (2024). Bacillus licheniformis M2-7 Decreases Ochratoxin A Concentrations in Coffee Beans During Storage. Current Microbiology, 81(2), 62. https://doi.org/10.1007/s00284-023-03575-8Schoch, C. L., Shoemaker, R. A., Seifert, K. A., Hambleton, S., Spatafora, J. W., & Crous, P. W. (2017). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia, 98(6), 1041-1052. https://doi.org/10.1080/15572536.2006.11832632Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2024). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), 5. https://doi.org/10.3390/fermentation11010005Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2025). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), Article 1. https://doi.org/10.3390/fermentation11010005Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008a). Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiology, 25(8), 951-957. https://doi.org/10.1016/j.fm.2008.07.003Silva, C. F., Batista, L. R., & Schwan, R. F. (2008b). Incidence and distribution of filamentous fungi during fermentation, drying and storage of coffee (Coffea arabica L.) beans. Brazilian Journal of Microbiology, 39, 521-526. https://doi.org/10.1590/S1517- 83822008000300022Teixeira, Brandão, R. M., Barbosa, R. B., Cardoso, M. D. G., Batista, L. R., & Silva, C. F. (2021). Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. LWT, 148, 111610. https://doi.org/10.1016/j.lwt.2021.111610Teixeira, Cassimiro, D. M. D. J., De Souza, J. G. D. L., Castro, C. R. D. S., Schwan, R. F., Batista, L. R., & Silva, C. F. (2024). Inhibition of Aspergillus spp. Growth and ochratoxin A production in Conilon and Arabica coffees based-medium by Saccharomyces cerevisiae. International Journal of Food Microbiology, 425, 110875. https://doi.org/10.1016/j.ijfoodmicro.2024.110875Velmourougane, K. (2013). Impact of Natural Fermentation on Physicochemical, Microbiological and Cup Quality Characteristics of Arabica and Robusta Coffee. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83(2), 233-239. https://doi.org/10.1007/s40011-012-0130-1Yeast Extract Glucose Chloramphenicol Agar (FIL-IDF). (s. f.).https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/224072025-06-13T08:00:23Z