Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo
Ilustraciones, gráficas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22407
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22407
- Palabra clave:
- Fermentación de café
Beneficio húmedo
Diversidad fúngica
Hongos filamentosos
Ocratoxina A
Coffee fermentation
Wet fermentation
Fungal diversity
Filamentous fungí
Ochratoxin A
Biología
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUCALDA_526ffe9bb713c3f0654eac49e9597f66 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22407 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
title |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
spellingShingle |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo Fermentación de café Beneficio húmedo Diversidad fúngica Hongos filamentosos Ocratoxina A Coffee fermentation Wet fermentation Fungal diversity Filamentous fungí Ochratoxin A Biología |
title_short |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
title_full |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
title_fullStr |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
title_full_unstemmed |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
title_sort |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. Castillo |
dc.contributor.none.fl_str_mv |
Peñuela Martínez, Aida Esther Toro Castaño, Daniel R. Ortiz, Juan Carlos Peñuela Martínez, Aida E. Osorio Giraldo, Carol V. |
dc.subject.none.fl_str_mv |
Fermentación de café Beneficio húmedo Diversidad fúngica Hongos filamentosos Ocratoxina A Coffee fermentation Wet fermentation Fungal diversity Filamentous fungí Ochratoxin A Biología |
topic |
Fermentación de café Beneficio húmedo Diversidad fúngica Hongos filamentosos Ocratoxina A Coffee fermentation Wet fermentation Fungal diversity Filamentous fungí Ochratoxin A Biología |
description |
Ilustraciones, gráficas |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06-12T23:14:12Z 2025-06-12T23:14:12Z 2026-07-30 2026-07-30 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22407 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22407 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Akbar, A., Medina, A., & Magan, N. (2020). Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms, 8(9), Article 9. https://doi.org/10.3390/microorganisms8091268 Alster, C. J., Allison, S. D., Johnson, N. G., Glassman, S. I., & Treseder, K. K. (2021). Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Communications, 1(1), 43. https://doi.org/10.1038/s43705-021-00045-9 AOAC 2004.10-2008. Ochratoxin A in green coffee. (2004). Arias, E. L., & Piñeros, P. A. (2008). Aislamiento e identificación de hongos filamentosos de muestra de suelo de los páramos de Guasca y Cruz Verde [Pontificia Universidad Javeriana]. http://repository.javeriana.edu.co/handle/10554/8233 Barnett, H. L., & Hunter, B. B. (1986). Illustrated Genera of Imperfect Fungi. APS Press. Beugre, G. C., Kadjo, A. C., Yao, K. M., Kone, K. M., Piro-Metayer, I., Poss, C., Durand, N., Fontana, A., & Guehi, T. S. (2023). Sensory Quality of Coffee Beverrage Produced Thereof Linked to the Inhibition of Molds Growth and Ochratoxin a Removal from Coffee Cherries Using Lactobacillus Plantarum Strains. Current Journal of Applied Science and Technology, 42(13), 10-20. https://doi.org/10.9734/cjast/2023/v42i134112 Cardoso, W. S., Agnoletti, B., de Freitas, R., & Pinheiro, F. de A. (2021). Biochemical Aspects of Coffee Fermentation | Request PDF. En Quality Determinants In Coffee Production (pp. 149-208). https://doi.org/10.1007/978-3-030-54437-9_4 Czapek-Dox Modified Agar. (2020). da Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, 109482. https://doi.org/10.1016/j.foodres.2020.109482 de Carvalho Neto, D. P., de Melo Pereira, G. V., Finco, A. M. O., Letti, L. A. J., da Silva, B. J. G., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Bioscience, 26, 80-87. https://doi.org/10.1016/j.fbio.2018.10.005 de Melo Pereira, G. V., de Mello Sampaio, V., Wiele, N., da Silva Vale, A., de Carvalho Neto, D. P., Souza, A. de F. D. de, Nogueira dos Santos, D. V., Ruiz, I. R., Rogez, H., & Soccol, C. R. (2024). How yeast has transformed the coffee market by creating new flavors and aromas through modern post-harvest fermentation systems. Trends in Food Science & Technology, 151, 104641. https://doi.org/10.1016/j.tifs.2024.104641 de Melo Pereira, G. V., Neto, E., Soccol, V. T., Medeiros, A. B. P., Woiciechowski, A. L., & Soccol, C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International, 75, 348-356. https://doi.org/10.1016/j.foodres.2015.06.027 de Melo Pereira, G. V., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Andrade Lara, J. M. R., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60-66. https://doi.org/10.1016/j.ijfoodmicro.2014.07.008 de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Coral Medina, J. D., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9(1), 8794. https://doi.org/10.1038/s41598-019-45002- 8 Di Francesco, A., Zajc, J., & Stenberg, J. A. (2023). Aureobasidium spp.: Diversity, Versatility, and Agricultural Utility. Horticulturae, 9(1), Article 1. https://doi.org/10.3390/horticulturae9010059 Elhalis, H., Cox, J., & Zhao, J. (2023). Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 3(1), 100253. https://doi.org/10.1016/j.afres.2022.100253 Ferreira Ludmilla, J. C., de Souza Gomes, M., de Oliveira, L. M., & Santos, L. D. (2023). Coffee fermentation process: A review. Food Research International (Ottawa, Ont.), 169, 112793. https://doi.org/10.1016/j.foodres.2023.112793 Frąc, M., Kaczmarek, J., & Jędryczka, M. (2022). Metabolic Capacity Differentiates Plenodomus lingam from P. biglobosus Subclade ‘brassicae’, the Causal Agents of Phoma Leaf Spotting and Stem Canker of Oilseed Rape (Brassica napus) in Agricultural Ecosystems. Pathogens, 11(1), 50. https://doi.org/10.3390/pathogens11010050 Frisvad, J. C., Frank, J., Houbraken, J., Kujipers, A., & Samson, R. (2004). New ochratoxin A producing species of Aspergillus section Circumdati. STUDIES IN MYCOLOGY, 50(23-43). https://orbit.dtu.dk/en/publications/new-ochratoxin-a-producingspecies-of-aspergillus-section-circumd IARC, I. A. for R. on C. (1993). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS (Vol. 97). Iturrieta-González, I., Gené, J., Wiederhold, N., & García, D. (2020). Three new Curvularia species from clinical and environmental sources. Mycokeys, 68, 1-21. https://doi.org/10.3897/mycokeys.68.51667 Katati, B., van Diepeningen, A. D., Njapau, H., Kachapulula, P. W., Zwaan, B. J., & Schoustra, S. E. (2024). Niche partitioning association of fungal genera correlated with lower Fusarium and fumonisin-B1 levels in maize. BioControl, 69(2), 185-197. https://doi.org/10.1007/s10526-024-10249-2 Khalil, N. M., Rodríguez-Couto, S., & El-Ghany, M. N. A. (2021). Characterization of Penicillium crustosum l-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 203(5), 2625-2637. https://doi.org/10.1007/s00203-021-02198-6 Khaneghah, A. M., Fakhri, Y., Abdi, L., Coppa, C. F. S. C., Franco, L. T., & de Oliveira, C. A. F. (2019). The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and metaregression. Fungal Biology, 123(8), 611-617. https://doi.org/10.1016/j.funbio.2019.05.012 Kusumaningrum, H. D., & Rasyidah, M. M. (2019). Prevalence of spoilage mold in coffee before and after brewing. Food Research, 720-726. https://doi.org/10.26656/fr.2017.3(6).142 Lee, B.-H., Huang, C.-H., Liu, T.-Y., Liou, J.-S., Hou, C.-Y., & Hsu, W.-H. (2023). Microbial Diversity of Anaerobic-Fermented Coffee and Potential for Inhibiting Ochratoxin-Produced Aspergillus niger. Foods, 12(15), Article 15. https://doi.org/10.3390/foods12152967 Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 7(1-2), 149-163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x Lorenzoni, T. L., Da Luz, J. M. R., Veloso, T. G. R., Pereira, L. L., Menezes, K. M. S., Brioschi Júnior, D., Kasuya, M. C. M., & Da Silva, M. D. C. S. (2024). Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation. 3 Biotech, 14(11), 272. https://doi.org/10.1007/s13205-024-04099-z Manamgoda, D. S., Cai, L., McKenzie, E. H. C., Crous, P. W., Madrid, H., Chukeatirote, E., Shivas, R. G., Tan, Y. P., & Hyde, K. D. (2012). A phylogenetic and taxonomic re-evaluation of the Bipolaris—Cochliobolus—Curvularia Complex. Fungal Diversity, 56(1), 131-144. https://doi.org/10.1007/s13225-012-0189-2 Muñoz, K., Vega, M., Rios, G., Geisen, R., & Degen, G. H. (2011). Mycotoxin production by different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based media. Mycotoxin Research, 27(4), 239-247. https://doi.org/10.1007/s12550- 011-0100-0 Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. https://doi.org/10.1007/s11947-011-0565-z Patiño Moscoso, M. A., Osorio Guerrero, K. V., Flórez Gómez, D. L., Sarmiento Moreno, L. F., Vargas Ramírez, D. N., & Mérida, M. J. (2023). Manual ilustrado de hongos presentes en semillas de cultivos semestrales: Arroz, maíz, soya y sorgo | Editorial AGROSAVIA. https://editorial.agrosavia.co/index.php/publicaciones/catalog/book/383 Peñuela-Martínez, A. E., García-Duque, J. F., & Sanz-Uribe, J. R. (2023a). Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation, 9(11), Article 11. https://doi.org/10.3390/fermentation9110976 Peñuela-Martínez, A. E., Pabón, J., & Sanz-Uribe, J. R. (2013). Método fermaestro: Para determinar la finalización de la fermentación del mucílago de café. Avances Técnicos Cenicafé, 431, 1-8. https://doi.org/10.38141/10779/0431 Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad—Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546 Peñuela-Martínez, A. E., Velasquez-Emiliani, A. V., & Angel, C. A. (2023b). Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation, 9(4), Article 4. https://doi.org/10.3390/fermentation9040343 Pereira, L. L., Junior, D. B., de Souza, L. H., & Gomes, W. S. (2021). Relationship Between Coffee Processing and Fermentation | Request PDF. En Quality Determinants In Coffee Production. https://doi.org/10.1007/978-3-030-54437-9_6 Pereira, T. S., Batista, N. N., Santos Pimenta, L. P., Martinez, S. J., Ribeiro, L. S., Oliveira Naves, J. A., & Schwan, R. F. (2022). Selfinduced anaerobiosis coffee fermentation: Impact on microbial communities, chemical composition and sensory quality of coffee. Food Microbiology, 103, 103962. https://doi.org/10.1016/j.fm.2021.103962 Pierzgalski, A., Bryła, M., Kanabus, J., Modrzewska, M., & Podolska, G. (2021). Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins, 13(11), Article 11. https://doi.org/10.3390/toxins13110768 Pitt, J. I., & Hocking, A. (2022). Fungi and Food Spoilage (4.a ed.). https://www.researchgate.net/publication/363241358_Fungi_and_Food_Spoilage Plate Count Agar. (s. f.). Potato Dextrose Agar. (s. f.) Reglamento (CE) N.o 1881/2006 de la Comisión Europea, de 19 de diciembre de 2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. (2006). https://eur-lex.europa.eu/eli/reg/2022/1370/oj Rojas-Pablo, M., Toledo-Hernández, E., Rodríguez-Barrera, M. A., Toribio-Jiménez, J., Torreblanca-Ramírez, C., Rosas-Guerrero, V. M., Salgado-Souto, S. A., Álvarez-Fitz, P., Bolaños-Dircio, A., & Romero-Ramírez, Y. (2024). Bacillus licheniformis M2-7 Decreases Ochratoxin A Concentrations in Coffee Beans During Storage. Current Microbiology, 81(2), 62. https://doi.org/10.1007/s00284-023-03575-8 Schoch, C. L., Shoemaker, R. A., Seifert, K. A., Hambleton, S., Spatafora, J. W., & Crous, P. W. (2017). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia, 98(6), 1041-1052. https://doi.org/10.1080/15572536.2006.11832632 Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2024). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), 5. https://doi.org/10.3390/fermentation11010005 Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2025). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), Article 1. https://doi.org/10.3390/fermentation11010005 Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008a). Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiology, 25(8), 951-957. https://doi.org/10.1016/j.fm.2008.07.003 Silva, C. F., Batista, L. R., & Schwan, R. F. (2008b). Incidence and distribution of filamentous fungi during fermentation, drying and storage of coffee (Coffea arabica L.) beans. Brazilian Journal of Microbiology, 39, 521-526. https://doi.org/10.1590/S1517- 83822008000300022 Teixeira, Brandão, R. M., Barbosa, R. B., Cardoso, M. D. G., Batista, L. R., & Silva, C. F. (2021). Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. LWT, 148, 111610. https://doi.org/10.1016/j.lwt.2021.111610 Teixeira, Cassimiro, D. M. D. J., De Souza, J. G. D. L., Castro, C. R. D. S., Schwan, R. F., Batista, L. R., & Silva, C. F. (2024). Inhibition of Aspergillus spp. Growth and ochratoxin A production in Conilon and Arabica coffees based-medium by Saccharomyces cerevisiae. International Journal of Food Microbiology, 425, 110875. https://doi.org/10.1016/j.ijfoodmicro.2024.110875 Velmourougane, K. (2013). Impact of Natural Fermentation on Physicochemical, Microbiological and Cup Quality Characteristics of Arabica and Robusta Coffee. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83(2), 233-239. https://doi.org/10.1007/s40011-012-0130-1 Yeast Extract Glucose Chloramphenicol Agar (FIL-IDF). (s. f.). |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_f1cf |
dc.format.none.fl_str_mv |
19 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Colombia, Caldas, Manizales Biología |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Colombia, Caldas, Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836144994230992896 |
spelling |
Caracterización de hongos filamentos presentes en fermentaciones prolongadas de Coffea arabica L. var. CastilloFermentación de caféBeneficio húmedoDiversidad fúngicaHongos filamentososOcratoxina ACoffee fermentationWet fermentationFungal diversityFilamentous fungíOchratoxin ABiologíaIlustraciones, gráficasLa fermentación es un proceso clave en la poscosecha del café, tanto por la degradación del mucílago, como por la formación de compuestos que enriquecen el perfil sensorial del grano. Sin embargo, fermentaciones prolongadas pueden comprometer la calidad e inocuidad del producto. En este estudio se identificaron géneros de hongos filamentosos presentes en fermentaciones prolongadas bajo dos condiciones de procesamiento, semianaerobio y anaerobio autoinducido (SIAF), utilizando café despulpado y en fruto. Para ello, se aplicaron técnicas microscópicas, metabólicas y metataxonómicas mediante secuenciación de la región ITS del ADNr de eucariotes. Adicionalmente, se identificó la presencia de Ocratoxina A mediante HPLC. Se identificaron 3,838 OTUs de hongos filamentosos distribuidos en 12 órdenes, 21 familias y 19 géneros. Penicillium y Aspergillus se presentaron en fermentaciones semianaerobias, y Fusarium y Beauveria en las anaerobias. Los niveles de OTA estuvieron por debajo de 0.8 ppb, indicando un bajo riesgo toxicológico. Los resultados sugieren que la contaminación por hongos filamentosos en fermentaciones prolongadas es mayormente ambiental y no compromete la inocuidad del café; no obstante, se observó una mayor presencia de géneros productores de micotoxinas en fermentaciones extendidas en el tiempo, especialmente en condiciones semianaerobias. Estos hallazgos aportan información clave para el control microbiológico de esta etapa del proceso, contribuyendo a mejorar la calidad y seguridad del producto final.Fermentation is a key postharvest process for coffee, both for the degradation of mucilage and for the formation of compounds that enrich the sensory profile of the bean. However, prolonged fermentations can compromise product quality and safety. In this study, genera of filamentous fungi present in prolonged fermentations were identified under two processing conditions: semi-anaerobic and self-induced anaerobic fermentation (SIAF), using pulped coffee and fruit. Microscopic, metabolic, and metataxonomic techniques were applied through sequencing of the ITS region of eukaryotic rDNA. Additionally, the presence of Ochratoxin A was identified by HPLC. A total of 3,838 OTUs of filamentous fungi were identified, distributed across 12 orders, 21 families, and 19 genera. Penicillium and Aspergillus were present in semi-anaerobic fermentations, and Fusarium and Beauveria in anaerobic fermentations. OTA levels were below 0.8 ppb, indicating a low toxicological risk. The results suggest that filamentous fungal contamination in prolonged fermentations is mostly environmental and does not compromise coffee safety; however, a higher presence of mycotoxin-producing genera was observed in prolonged fermentations, especially under semi-anaerobic conditions. These findings provide key information for microbiological control at this stage of the process, contributing to improved quality and safety of the final product.PregradoEn este estudio se identificaron géneros de hongos filamentosos presentes en fermentaciones prolongadas bajo dos condiciones de procesamiento, semianaerobio y anaerobio autoinducido (SIAF), utilizando café despulpado y en fruto. Para ello, se aplicaron técnicas microscópicas, metabólicas y metataxonómicas mediante secuenciación de la región ITS del ADNr de eucariotes. Adicionalmente, se identificó la presencia de Ocratoxina A mediante HPLCBiólogo(a)Agrícultura-FermentaciónUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesColombia, Caldas, ManizalesBiologíaPeñuela Martínez, Aida EstherToro Castaño, Daniel R.Ortiz, Juan CarlosPeñuela Martínez, Aida E.Osorio Giraldo, Carol V.Buitrago Zuluaga, Camila2025-06-12T23:14:12Z2026-07-302025-06-12T23:14:12Z2026-07-30Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a8519 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22407Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAkbar, A., Medina, A., & Magan, N. (2020). Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms, 8(9), Article 9. https://doi.org/10.3390/microorganisms8091268Alster, C. J., Allison, S. D., Johnson, N. G., Glassman, S. I., & Treseder, K. K. (2021). Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Communications, 1(1), 43. https://doi.org/10.1038/s43705-021-00045-9AOAC 2004.10-2008. Ochratoxin A in green coffee. (2004).Arias, E. L., & Piñeros, P. A. (2008). Aislamiento e identificación de hongos filamentosos de muestra de suelo de los páramos de Guasca y Cruz Verde [Pontificia Universidad Javeriana]. http://repository.javeriana.edu.co/handle/10554/8233Barnett, H. L., & Hunter, B. B. (1986). Illustrated Genera of Imperfect Fungi. APS Press.Beugre, G. C., Kadjo, A. C., Yao, K. M., Kone, K. M., Piro-Metayer, I., Poss, C., Durand, N., Fontana, A., & Guehi, T. S. (2023). Sensory Quality of Coffee Beverrage Produced Thereof Linked to the Inhibition of Molds Growth and Ochratoxin a Removal from Coffee Cherries Using Lactobacillus Plantarum Strains. Current Journal of Applied Science and Technology, 42(13), 10-20. https://doi.org/10.9734/cjast/2023/v42i134112Cardoso, W. S., Agnoletti, B., de Freitas, R., & Pinheiro, F. de A. (2021). Biochemical Aspects of Coffee Fermentation | Request PDF. En Quality Determinants In Coffee Production (pp. 149-208). https://doi.org/10.1007/978-3-030-54437-9_4Czapek-Dox Modified Agar. (2020).da Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, 109482. https://doi.org/10.1016/j.foodres.2020.109482de Carvalho Neto, D. P., de Melo Pereira, G. V., Finco, A. M. O., Letti, L. A. J., da Silva, B. J. G., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Bioscience, 26, 80-87. https://doi.org/10.1016/j.fbio.2018.10.005de Melo Pereira, G. V., de Mello Sampaio, V., Wiele, N., da Silva Vale, A., de Carvalho Neto, D. P., Souza, A. de F. D. de, Nogueira dos Santos, D. V., Ruiz, I. R., Rogez, H., & Soccol, C. R. (2024). How yeast has transformed the coffee market by creating new flavors and aromas through modern post-harvest fermentation systems. Trends in Food Science & Technology, 151, 104641. https://doi.org/10.1016/j.tifs.2024.104641de Melo Pereira, G. V., Neto, E., Soccol, V. T., Medeiros, A. B. P., Woiciechowski, A. L., & Soccol, C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International, 75, 348-356. https://doi.org/10.1016/j.foodres.2015.06.027de Melo Pereira, G. V., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Andrade Lara, J. M. R., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60-66. https://doi.org/10.1016/j.ijfoodmicro.2014.07.008de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Coral Medina, J. D., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9(1), 8794. https://doi.org/10.1038/s41598-019-45002- 8Di Francesco, A., Zajc, J., & Stenberg, J. A. (2023). Aureobasidium spp.: Diversity, Versatility, and Agricultural Utility. Horticulturae, 9(1), Article 1. https://doi.org/10.3390/horticulturae9010059Elhalis, H., Cox, J., & Zhao, J. (2023). Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 3(1), 100253. https://doi.org/10.1016/j.afres.2022.100253Ferreira Ludmilla, J. C., de Souza Gomes, M., de Oliveira, L. M., & Santos, L. D. (2023). Coffee fermentation process: A review. Food Research International (Ottawa, Ont.), 169, 112793. https://doi.org/10.1016/j.foodres.2023.112793Frąc, M., Kaczmarek, J., & Jędryczka, M. (2022). Metabolic Capacity Differentiates Plenodomus lingam from P. biglobosus Subclade ‘brassicae’, the Causal Agents of Phoma Leaf Spotting and Stem Canker of Oilseed Rape (Brassica napus) in Agricultural Ecosystems. Pathogens, 11(1), 50. https://doi.org/10.3390/pathogens11010050Frisvad, J. C., Frank, J., Houbraken, J., Kujipers, A., & Samson, R. (2004). New ochratoxin A producing species of Aspergillus section Circumdati. STUDIES IN MYCOLOGY, 50(23-43). https://orbit.dtu.dk/en/publications/new-ochratoxin-a-producingspecies-of-aspergillus-section-circumdIARC, I. A. for R. on C. (1993). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS (Vol. 97).Iturrieta-González, I., Gené, J., Wiederhold, N., & García, D. (2020). Three new Curvularia species from clinical and environmental sources. Mycokeys, 68, 1-21. https://doi.org/10.3897/mycokeys.68.51667Katati, B., van Diepeningen, A. D., Njapau, H., Kachapulula, P. W., Zwaan, B. J., & Schoustra, S. E. (2024). Niche partitioning association of fungal genera correlated with lower Fusarium and fumonisin-B1 levels in maize. BioControl, 69(2), 185-197. https://doi.org/10.1007/s10526-024-10249-2Khalil, N. M., Rodríguez-Couto, S., & El-Ghany, M. N. A. (2021). Characterization of Penicillium crustosum l-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 203(5), 2625-2637. https://doi.org/10.1007/s00203-021-02198-6Khaneghah, A. M., Fakhri, Y., Abdi, L., Coppa, C. F. S. C., Franco, L. T., & de Oliveira, C. A. F. (2019). The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and metaregression. Fungal Biology, 123(8), 611-617. https://doi.org/10.1016/j.funbio.2019.05.012Kusumaningrum, H. D., & Rasyidah, M. M. (2019). Prevalence of spoilage mold in coffee before and after brewing. Food Research, 720-726. https://doi.org/10.26656/fr.2017.3(6).142Lee, B.-H., Huang, C.-H., Liu, T.-Y., Liou, J.-S., Hou, C.-Y., & Hsu, W.-H. (2023). Microbial Diversity of Anaerobic-Fermented Coffee and Potential for Inhibiting Ochratoxin-Produced Aspergillus niger. Foods, 12(15), Article 15. https://doi.org/10.3390/foods12152967Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 7(1-2), 149-163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.xLorenzoni, T. L., Da Luz, J. M. R., Veloso, T. G. R., Pereira, L. L., Menezes, K. M. S., Brioschi Júnior, D., Kasuya, M. C. M., & Da Silva, M. D. C. S. (2024). Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation. 3 Biotech, 14(11), 272. https://doi.org/10.1007/s13205-024-04099-zManamgoda, D. S., Cai, L., McKenzie, E. H. C., Crous, P. W., Madrid, H., Chukeatirote, E., Shivas, R. G., Tan, Y. P., & Hyde, K. D. (2012). A phylogenetic and taxonomic re-evaluation of the Bipolaris—Cochliobolus—Curvularia Complex. Fungal Diversity, 56(1), 131-144. https://doi.org/10.1007/s13225-012-0189-2Muñoz, K., Vega, M., Rios, G., Geisen, R., & Degen, G. H. (2011). Mycotoxin production by different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based media. Mycotoxin Research, 27(4), 239-247. https://doi.org/10.1007/s12550- 011-0100-0Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. https://doi.org/10.1007/s11947-011-0565-zPatiño Moscoso, M. A., Osorio Guerrero, K. V., Flórez Gómez, D. L., Sarmiento Moreno, L. F., Vargas Ramírez, D. N., & Mérida, M. J. (2023). Manual ilustrado de hongos presentes en semillas de cultivos semestrales: Arroz, maíz, soya y sorgo | Editorial AGROSAVIA. https://editorial.agrosavia.co/index.php/publicaciones/catalog/book/383Peñuela-Martínez, A. E., García-Duque, J. F., & Sanz-Uribe, J. R. (2023a). Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation, 9(11), Article 11. https://doi.org/10.3390/fermentation9110976Peñuela-Martínez, A. E., Pabón, J., & Sanz-Uribe, J. R. (2013). Método fermaestro: Para determinar la finalización de la fermentación del mucílago de café. Avances Técnicos Cenicafé, 431, 1-8. https://doi.org/10.38141/10779/0431Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad—Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546Peñuela-Martínez, A. E., Velasquez-Emiliani, A. V., & Angel, C. A. (2023b). Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation, 9(4), Article 4. https://doi.org/10.3390/fermentation9040343Pereira, L. L., Junior, D. B., de Souza, L. H., & Gomes, W. S. (2021). Relationship Between Coffee Processing and Fermentation | Request PDF. En Quality Determinants In Coffee Production. https://doi.org/10.1007/978-3-030-54437-9_6Pereira, T. S., Batista, N. N., Santos Pimenta, L. P., Martinez, S. J., Ribeiro, L. S., Oliveira Naves, J. A., & Schwan, R. F. (2022). Selfinduced anaerobiosis coffee fermentation: Impact on microbial communities, chemical composition and sensory quality of coffee. Food Microbiology, 103, 103962. https://doi.org/10.1016/j.fm.2021.103962Pierzgalski, A., Bryła, M., Kanabus, J., Modrzewska, M., & Podolska, G. (2021). Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins, 13(11), Article 11. https://doi.org/10.3390/toxins13110768Pitt, J. I., & Hocking, A. (2022). Fungi and Food Spoilage (4.a ed.). https://www.researchgate.net/publication/363241358_Fungi_and_Food_SpoilagePlate Count Agar. (s. f.).Potato Dextrose Agar. (s. f.)Reglamento (CE) N.o 1881/2006 de la Comisión Europea, de 19 de diciembre de 2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. (2006). https://eur-lex.europa.eu/eli/reg/2022/1370/ojRojas-Pablo, M., Toledo-Hernández, E., Rodríguez-Barrera, M. A., Toribio-Jiménez, J., Torreblanca-Ramírez, C., Rosas-Guerrero, V. M., Salgado-Souto, S. A., Álvarez-Fitz, P., Bolaños-Dircio, A., & Romero-Ramírez, Y. (2024). Bacillus licheniformis M2-7 Decreases Ochratoxin A Concentrations in Coffee Beans During Storage. Current Microbiology, 81(2), 62. https://doi.org/10.1007/s00284-023-03575-8Schoch, C. L., Shoemaker, R. A., Seifert, K. A., Hambleton, S., Spatafora, J. W., & Crous, P. W. (2017). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia, 98(6), 1041-1052. https://doi.org/10.1080/15572536.2006.11832632Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2024). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), 5. https://doi.org/10.3390/fermentation11010005Shen, X., Wang, Q., Wang, H., Fang, G., Li, Y., Zhang, J., & Liu, K. (2025). Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation, 11(1), Article 1. https://doi.org/10.3390/fermentation11010005Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008a). Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiology, 25(8), 951-957. https://doi.org/10.1016/j.fm.2008.07.003Silva, C. F., Batista, L. R., & Schwan, R. F. (2008b). Incidence and distribution of filamentous fungi during fermentation, drying and storage of coffee (Coffea arabica L.) beans. Brazilian Journal of Microbiology, 39, 521-526. https://doi.org/10.1590/S1517- 83822008000300022Teixeira, Brandão, R. M., Barbosa, R. B., Cardoso, M. D. G., Batista, L. R., & Silva, C. F. (2021). Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. LWT, 148, 111610. https://doi.org/10.1016/j.lwt.2021.111610Teixeira, Cassimiro, D. M. D. J., De Souza, J. G. D. L., Castro, C. R. D. S., Schwan, R. F., Batista, L. R., & Silva, C. F. (2024). Inhibition of Aspergillus spp. Growth and ochratoxin A production in Conilon and Arabica coffees based-medium by Saccharomyces cerevisiae. International Journal of Food Microbiology, 425, 110875. https://doi.org/10.1016/j.ijfoodmicro.2024.110875Velmourougane, K. (2013). Impact of Natural Fermentation on Physicochemical, Microbiological and Cup Quality Characteristics of Arabica and Robusta Coffee. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83(2), 233-239. https://doi.org/10.1007/s40011-012-0130-1Yeast Extract Glucose Chloramphenicol Agar (FIL-IDF). (s. f.).https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/224072025-06-13T08:00:23Z |