Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale
Figuras, tablas, fotografías
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/21935
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/21935
- Palabra clave:
- 610 - Medicina y salud
3. Ciencias Médicas y de la Salud
Acari
Climate change
Conservation
Distribution
Hosts
Insecta
Mammalia
Vectors
Ciencias médicas
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUCALDA_506684282d02d4384891ae80bc9f85b6 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/21935 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
title |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
spellingShingle |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale 610 - Medicina y salud 3. Ciencias Médicas y de la Salud Acari Climate change Conservation Distribution Hosts Insecta Mammalia Vectors Ciencias médicas |
title_short |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
title_full |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
title_fullStr |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
title_full_unstemmed |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
title_sort |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale |
dc.contributor.none.fl_str_mv |
Ramírez Chaves, Héctor Emilio Rivera Páez, Fredy Rios Vasquez, Luz Amalia GEBIOME Genética, biodiversidad y manejo de ecosistemas (Categoría A1) Noguera-Urbano, Elkin Cortés-Vecino, Jesús A. Fernandes Martins, Thiago |
dc.subject.none.fl_str_mv |
610 - Medicina y salud 3. Ciencias Médicas y de la Salud Acari Climate change Conservation Distribution Hosts Insecta Mammalia Vectors Ciencias médicas |
topic |
610 - Medicina y salud 3. Ciencias Médicas y de la Salud Acari Climate change Conservation Distribution Hosts Insecta Mammalia Vectors Ciencias médicas |
description |
Figuras, tablas, fotografías |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-02-04T19:41:13Z 2025-02-04T19:41:13Z 2025-02-04 2026-02 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado http://purl.org/coar/resource_type/c_db06 Text info:eu-repo/semantics/doctoralThesis |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/21935 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/21935 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
Acevedo-Gutiérrez, L. Y., Paternina, L. E., Labruna, M. B., & Rodas, J. D. (2021). Presence of two species of the Amblyomma cajennense complex (Acari: Ixodidae) and probable zones of sympatry in northwestern Colombia. Ticks Tick. Borne. Dis., 12, 101815. Acevedo-Gutiérrez, L. Y., Paternina, L. E., Londoño, A. F., Parra-Henao, G., & Rodas, J. D. (2018). Potential models of the geographic and climatic distribution of the Amblyomma cajennense complex (Acari: Ixodidae), a potential vector of Rickettsia rickettsii in Colombia. Biomédica, 38, 534–544 Acosta, J., Urquijo, L., Díaz, A., Sepúlveda, M., Mantilla, G., Heredia, D. & Villalobos, R. (2006). Brote de rickettsiosis en Necoclí, Antioquia, febrero-marzo de 2006. IQEN. 11, 177–92. Aguilar-Domínguez, M., Moo-Llanes, D. A., Sánchez-Montes, S., Becker, I., Feria-Arroyo, T. P., de León, A. P., & Romero-Salas, D. (2021). Potential distribution of Amblyomma mixtum (Koch, 1844) in climate change scenarios in the Americas. Ticks Tick. Borne. Dis., 12, 101812. Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. Alkishe, A. A., Peterson, A. T., & Samy, A. M. (2017). Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PloS one, 12, e0189092. Alkishe, A., Cobos, M. E., Peterson, A. T., & Samy, A. M. (2020). Recognizing sources of uncertainty in disease vector ecological niche models: An example with the tick Rhipicephalus sanguineus sensu lato. PECON, 18, 91–102. Álvarez-Hernández, G., Paddock, C. D., Walker, D. H., Valenzuela, J. G., Calleja-López, J. T., Rivera-Rosas, C. N., & Sotelo-Mundo, R. R. (2024). Rocky Mountain spotted fever is a neglected tropical disease in Latin America. PLOS Negl. Trop. Dis. 18, e0012276. Bacon, E. A., Kopsco, H., Gronemeyer, P., Mateus-Pinilla, N., & Smith, R. L. (2022). Effects of climate on the variation in abundance of three tick species in Illinois. J. Med. Entomol., 59, 700–709. Beati, L., Nava, S., Burkman, E. J., Barros-Battesti, D. M., Labruna, M. B., Guglielmone, A. A., Cáceres, A. G., Guzmán-Cornejo, C. M., León, R., Durden, L. A., & Faccini, J. L. (2013). Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evolutionary Biology, 13, 1–20. Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 1–12. Bermúdez, S. E., Castro, A. M., Trejos, D., García, G. G., Gabster, A., Miranda, R. J., & Paternina, L. E. (2016). Distribution of spotted fever group rickettsiae in hard ticks (Ixodida: Ixodidae) from Panamanian urban and rural environments (2007–2013). EcoHealth, 13, 274–284. Bozinovic, F., Medina, N. R., Alruiz, J. M., Cavieres, G., & Sabat, P. (2016). Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly. J. Comp. Physiol. B. 186, 581–587 Cabezas-Cruz, A., Estrada-Peña, A., & De La Fuente, J. (2019). The good, the bad and the tick. Front. cell dev. biol., 7, 79. Cardona-Romero, M., Martínez-Sánchez, E. T., Londoño, J. A., Tobón-Escobar, W. D., Ossa-López, P. A., Pérez-Cárdenas, J. E., & Rivera-Páez, F. A. (2020). Rickettsia parkeri strain Atlantic rainforest in ticks (Acari: Ixodidae) of wild birds in Arauca, Orinoquia region of Colombia. IJP-PAW, 13, 106–113. Centro Internacional de Agricultura Tropical - CIAT (1973) Annual Report 1973. Available from: https://cgspace.cgiar.org/handle/10568/65072 CDC - Centers for Disease Control and Prevention. (2024). Rocky Mountain Spotted Fever: Clinical Overview for Healthcare Providers. Retrieved December 24, 2024, from https://www.cdc.gov/rocky-mountain-spotted-fever/hcp/clinical-verview/index.html Chen, Z. & Liu, J. (2022). A review of argasid ticks and associated pathogens of China. Front. Veterinary Sciences, 9, 865664. Clarke-Crespo, E., Moreno-Arzate, C. N., & López-González, C. A. (2020). Ecological niche models of four hard tick genera (Ixodidae) in Mexico. Animals, 10(4), 649 Cortés-Vecino, J. A. (2018). Control integrado de garrapatas y su importancia en salud pública. Biomédica, 38, 452–455. Cotes-Perdomo, A. P., Nava, S., Castro, L. R., Rivera-Paéz, F. A., Cortés-Vecino, J. A., & Uribe, J. E. (2023). Phylogenetic relationships of the Amblyomma cajennense complex (Acari: Ixodidae) at mitogenomic resolution. Ticks Tick. Borne. Dis., 14, 102125. Cumming, G. S. (1999). Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida). Bulletin of Entomological Research, 89, 303–327. Dantas-Torres, F. (2007). Rocky Mountain spotted fever. Lancet Infect Dis, 7, 724-732 de la Fuente, J., Estrada-Peña, A., Venzal, J. M., Kocan, K.M., & Sonenshine, D.E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci., 13, 6938–6946. De Oliveira, S.V., Romero-Alvarez, D., Martins, T.F., Dos Santos, J.P., Labruna, M.B., Gazeta, G.S., & Gurgel-Gonçalves, R. (2017). Amblyomma ticks and future climate: Range contraction due to climate warming. Acta Tropica, 176, 340–348. Diamond, S. E., Nichols, L. M., McCoy, N., Hirsch, C., Pelini, S. L., Sanders, N. J., & Dunn, R. R. (2012). A physiological trait‐based approach to predicting the responses of species to experimental climate warming. Ecology, 93, 2305–2312. Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., & Saleem, M. (2017). An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67, 534–545 Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst., 40, 677–697. Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, J. R., Leathiwick, A. L., Li, J., Lohmann, L. G., Loiselle B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC, J., Overton, M., Townsend Peterson, A., Philips, J. S., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G., & Peterson, A. T. (2014). Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health, 9, 221–229. Estrada-Peña, A. (2008). Climate, niche, ticks, and models: what they are and how we should interpret them. Parasitol. Res., 103, 87–95. Estrada-Peña, A., Guglielmone, A. A., & Mangold, A. J. (2004). The distribution and ecological 'preferences' of the tick Amblyomma cajennense (Acari: Ixodidae), an ectoparasite of humans and other mammals in the Americas. Ann. trop. med. parasitol., 98, 283–292. Estrada-Peña, A., Tarragona, E. L., Vesco, U., De Meneghi, D., Mastropaolo, M., Mangold, A. J., & Nava, S. (2014). Divergent environmental preferences and areas of sympatry of tick species in the Amblyomma cajennense complex (Ixodidae). IJP, 44, 1081– 1089. Faccini-Martínez, Á. A., Costa, F. B., Hayama-Ueno, T. E., Ramírez-Hernández, A., Cortés- Vecino, J. A., Labruna, M. B., & Hidalgo, M. (2015). Rickettsia rickettsii in Amblyomma patinoi ticks, Colombia. Emerg. Infect. Dis., 21, 537–539. Fei, S. W., Zhao, H. Q., Yin, J. X., Sun, Z. S., Xue, J. B., Lv, S., & Kassegne, K. (2024). Identification of habitat suitability for the dominant zoonotic tick species Haemaphysalis flava on Chongming Island, China. SOH, 100068. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 4302–4315. Fuentes, M. A. P., Cárdenas, M. V. P., Anaya, A. M. D., & Medellín, M. O. P. (2015). Impacto de Amblyomma cajennense sobre la salud animal y sus alternativas de control biológico y químico. Conexión Agropecuaria JDC, 5, 51–66. Gage, K. L., Burkot, T. R., Eisen, R. J., & Hayes, E. B. (2008). Climate and vectorborne diseases. Am. J. Prev. Med., 35, 436–450. García, P. R., Scaccia, L., & Salvati, L. (2023). An accuracy assessment of three forest cover databases in Colombia. Environ Ecol Stat, 30, 443–475. Gil-Lora, E. J., Patiño-Gallego, J. J., Acevedo-Gutiérrez, L. Y., Montoya-Ruiz, C., Rodas- González, J. D. (2019). Infección y enfermedad por Rickettsia spp. del grupo de las fiebres manchadas en pacientes febriles del Urabá antioqueño, Colombia. Iatreia, 32, 167–176. Gómez-Quintero, C. H., Faccini-Martínez, Á. A., Botero-García, C. A., Lozano, M., Sánchez-Lerma, L., Miranda, J. & Hidalgo, M. (2017). Probable case of spotted fever group rickettsial infection in a new suspected endemic area, Colombia. J. Infect. Public Health, 10, 353–356. Guglielmone, A.A., Beati, L., Barros-Battesti, D.M., Labruna, M.B., Nava, S., Venzal, J.M., Mangold, A.J., Szabó, M.P., Martins, J.R., González-Acuña, D. & Estrada-Peña, A., 2006. Ticks (Ixodidae) on humans in South America. Exp. Appl. Acarol., 40, 83–100. Guglielmone, A.A., Estrada-Peña, A., Keirans, J.E., & Robbins, R.G. (2003). Ticks (Acari: Ixodida) of the neotropical zoogeographic region. In: Special Publication of the Integrated Consortium on Ticks and Tick-Borne Diseases-2. Houten (The Netherlands): Atalanta. Guglielmone, Alberto A., Nava, S., & Robbins, R. G. (2023). Geographic distribution of the hard ticks (Acari: Ixodida: Ixodidae) of the world by countries and territories. Zootaxa, 5251, 001–274 Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C., & Palacio, R. D. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. PNAS, 115, 7985–7990. Hekimoglu, O., Elverici, C., & Kuyucu, A. C. (2023). Predicting climate-driven distribution shifts in Hyalomma marginatum (Ixodidae). Parasitology, 150, 883–893. Hidalgo, M., Lizarazo, D., Ovalle, M. V., Castañeda, E., Heredia, D., Zambrano, P. & Valbuena, G. (2007). Brote de rickettsiosis en Los Córdobas, Departamento de Córdoba, febrero-marzo 2007. IQEN, 12, 367–378. Hidalgo, M., Miranda, J., Heredia, D., Zambrano, P., Vesga, J. F., Lizarazo, D., Mattar, S., & Valbuena, G. (2011). Outbreak of Rocky mountain spotted fever in Córdoba, Colombia. Memórias do Instituto Oswaldo Cruz, 106, 117–118. Illoldi-Rangel, P., & Escalante, T. (2008). De los modelos de nicho ecológico a las áreas de distribución geográfica. Biogeografía, 3, 7–12. Illoldi-Rangel, P., Rivaldi, C. L., Sissel, B., Trout Fryxell, R., Gordillo-Pérez, G., Rodríguez- Moreno, A., & Sarkar, S. (2012). Species distribution models and ecological suitability analysis for potential tick vectors of Lyme disease in Mexico. J. Trop. Med., 2012, 959101 ICA - Instituto Colombiano Agropecuario (2024). Censo Pecuario Nacional. Retrieved on December 24, 2024, from https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos- 2016/censo-2018 Kass, J. M., Vilela, B., Aiello‐Lammens, M. E., Muscarella, R., Merow, C., & Anderson, R. P. (2018). Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. MEE, 9, 1151–1156 Kessler, W. H., De Jesus, C., Wisely, S. M., & Glass, G. E. (2022). Ensemble models for tick vectors: standard surveys compared with convenience samples. Diseases, 10, 1–18 Léger, E., Vourc’h, G., Vial, L., Chevillon, C., & McCoy, K. D. (2013). Changing distributions of ticks: causes and consequences. Exp. Appl. Acarol., 59, 219–244. Leighton, P. A., Koffi, J. K., Pelcat, Y., Lindsay, L. R., & Ogden, N. H. (2012). Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J. Appl. Ecol, 49, 457–464. Linthicum, K. J., Logan, T. M., Bailey, C. L., Gordon, S. W., Peters, C. J., Monath, T. P., & Dohm, D. J. (1991). Venezuelan equine encephalomyelitis virus infection in and transmission by the tick Amblyomma cajennense (Arachnida: Ixodidae). J. Med. Entomol., 28, 405–409. McCoy, K. D., Léger, E., & Dietrich, M. (2013). Host specialization in ticks and transmission of tick-borne diseases: a review. Front. Cell. Infect. Microbiol., 3, 1–12. Martínez-Diaz, H. C. M., Gil-Mora, J., Betancourt-Ruiz, P., Silva-Ramos, C. R., Matiz- González, J. M., Villalba-Perez, M. A., Ospina-Pinto, M. C., Ramirez-Hernández, A., Olaya-M, L. A., Volaños, E., Cuervo, C., Benavides, E., & Hidalgo, M. (2023). Molecular detection of tick-borne rickettsial pathogens in ticks collected from domestic animals from Cauca, Colombia. Acta Tropica, 238, 106773. Martínez-Diaz, H. C., Forero-Becerra, E., Hidalgo, M., & Labruna, M. B. (2021). Experimental infection and vector competence of Amblyomma patinoi, a member of the Amblyomma cajennense species complex, for the human pathogen Rickettsia rickettsii. Ticks Tick. Borne. Dis., 12, 101751. Martinez-Meyer, E. (2005). Climate change and biodiversity: some considerations in forecasting shifts in species' potential distributions. Biodivers inform, 2, 42–55. Martínez-Sánchez, E. T., Cardona-Romero, M., Ortiz-Giraldo, M., Tobón-Escobar, W. D., Moreno-López, D., Ossa-López, P. A., Pérez-Cárdenas, J. E., Labruna, M. B., Martins, T. F., Rivera-Páez, F. A. & Castaño-Villa, G. J. (2020). Associations 183 between wild birds and hard ticks (Acari: Ixodidae) in Colombia. Ticks Tick. Borne. Dis., 11, 101534 Mastropaolo, M., Nava, S., Guglielmone, A. A., & Mangold, A. J. (2011). Biological differences between two allopatric populations of Amblyomma cajennense (Acari: Ixodidae) in Argentina. Exp. Appl. Acarol., 53, 371–375. Miranda, A. M., Flórez, S., & Mattar, S. (2001). Alta seroprevalencia de rickettsiosis en trabajadores del campo en el municipio de Ciénaga de Oro, Córdoba. IQEN. 7, 71– 75. Miranda, J. L., Sánchez, L., Amaya, K., Máttar, S. (2011). Primera prueba serológica de Rickettsia sp. del grupo de la fiebre manchada en el Departamento del Meta. Biomédica, 31, 103–113. Molina-Hoyos, K., Montoya-Ruíz, C., Aguilar, P. V., Pérez-Doria, A., Díaz, F. J., & Rodas, J. D. (2024). Virome analyses of Amblyomma cajennense and Rhipicephalus microplus ticks collected in Colombia. Acta Trop., 253, 107158. Moo-Llanes, D. A., López-Ordóñez, T., Torres-Monzón, J. A., Mosso-González, C., Casas- Martínez, M., & Samy, A. M. (2021). Assessing the potential distributions of the invasive mosquito vector Aedes albopictus and its natural Wolbachia infections in Mexico. Insects, 12, 1–16. Nava, S., Beati, L., Labruna, M. B., Cáceres, A. G., Mangold, A. J., & Guglielmone, A. A. (2014). Reassessment of the taxonomic status of Amblyomma cajennense (Fabricius, 1787) with the description of three new species, Amblyomma tonelliae n. sp., Amblyomma interandinum n. sp. and Amblyomma patinoi n. sp., and reinstatement of Amblyomma mixtum Koch, 1844, and Amblyomma sculptum Berlese, 1888 (Ixodida: Ixodidae). Ticks Tick. Borne. Dis., 5, 252–276. Nava, S., & Guglielmone, A. A. (2013). A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae). Bull. Entomol. Res., 103, 216–224. Nava, S., Venzal, J. M., Acuña, D. G., Martins, T. F., & Guglielmone, A. A. (2017). Ticks of the Southern Cone of America: diagnosis, distribution, and hosts with taxonomy, ecology and sanitary importance. Academic Press. pp. 1–83. Ogden, N. H., St-Onge, L., Barker, I. K., Brazeau, S., Bigras-Poulin, M., Charron, D. F., & Thompson, R. (2008). Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. Int. J. Health Geogr., 7, 1–15. Oorebeek, M., & Kleindorfer, S. (2008). Climate or host availability: what determines the seasonal abundance of ticks?. Parasitol. Res., 103, 871–875. Pacheco, O., Giraldo, M., Martínez, M., Hidalgo, M., Galeano, A., Echeverri, I., & Rey, G. (2008). Estudio de brote febril hemorrágico en el corregimiento de Alto de Mulatos- Distrito Especial Portuario de Turbo, Antioquia, enero de 2008. IQEN, 13, 145–160. Pascoe, E. L., Marcantonio, M., Caminade, C., & Foley, J. E. (2019). Modeling potential habitat for Amblyomma tick species in California. Insects, 10, 1–19. Patiño, L. (1941). Nuevas observaciones sobre un tercer foco de fiebre petequial (maculosa) en el hemisferio americano. Boletin Oficina Sanitaria Panamericana, 20, 1112–24 Patiño, L., Afanador, A. & Paul, J. H. (1937). A Spotted Fever in Tobia, Colombia. ASTMH, 17, 639–53 Pérez-Otáñez, X., Rodríguez-Hidalgo, R., Enríquez, S., Celi-Erazo, M., Benítez, W., Saegerman, C., & Vanwambeke, S. O. (2024). High-resolution prediction models for Rhipicephalus microplus and Amblyomma cajennense s.l. ticks affecting cattle and their spatial distribution in continental Ecuador using bioclimatic factors. Exp. Appl. Acarol., 92, 439–462. Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model., 213, 63–72 Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB- 49). Princeton University Press. pp. 328. Phillips, S. (2021). Fitting 'Maxent' Species Distribution Models with 'glmnet'. https://github.com/mrmaxent/maxnet Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40, 887–893. Piotrowski, M., & Rymaszewska, A. (2020). Expansion of tick-borne rickettsioses in the world. Microorganisms, 8, 1906. Polo, G., Gamarra, J., Robayo-Sánchez, L. N., Cortés-Vecino, J. A., & Ramírez-Hernández, A. (2024). Impact of climate change on the geographical distribution of ticks of public health significance in Colombia: Amblyomma ovale (Ixodida: Ixodidae), the Amblyomma maculatum (Ixodida: Ixodidae) complex and the Amblyomma cajennense (Ixodida: Ixodidae) complex. J. Med. Entomol., tjae100. Porretta, D., Mastrantonio, V., Amendolia, S., Gaiarsa, S., Epis, S., Genchi, C., & Urbanelli, S. (2013). Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit. & Vectors., 6, 1–8. Porter, W. P., & Kearney, M. (2009). Size, shape, and the thermal niche of endotherms. PNAS, 106, 19666–19672. Quintero, V, J. C., Mignone, J., Osorio Q, L., Cienfuegos-Gallet, A. V., & Rojas A, C. (2021). Housing conditions linked to tick (Ixodida: Ixodidae) infestation in rural areas of Colombia: A potential risk for rickettsial transmission. J. Med. Entomol., 58, 439– 449. Quintero-Vélez, J. C., Aguirre-Acevedo, D. C., Rodas, J. D., Arboleda, M., Troyo, A., Vega Aguilar, F., & Rojas Arbeláez, C. (2018). Epidemiological characterization of incident cases of Rickettsia infection in rural areas of Urabá region, Colombia. PLOS Negl. Trop. Dis., 12, e0006911. Requena-García, F., Cabrero-Sañudo, F., Olmeda-García, S., González, J., & Valcárcel, F. (2017). Influence of environmental temperature and humidity on questing ticks in central Spain. Exp. Appl. Acarol., 71, 277–290. Rippstein, G., Amézquita, E., Escobar, G., & Grollier, C. (2001). Agroecología y Biodiversidad de las Sabanas en los Llanos Orinetales de Colombia. CIAT. pp. 302. Rivera-Páez, F. A., Labruna, M. B., Martins, T. F., Sampieri, B. R., & Camargo-Mathias, M. I. (2016). Amblyomma mixtum Koch, 1844 (Acari: Ixodidae): First record confirmation in Colombia using morphological and molecular analyses. Ticks Tick. Borne. Dis., 7, 842–848 Rivera-Páez, F. A., Martins, T. F., Ossa-López, P. A., Sampieri, B. R., & Camargo-Mathias, M. I. (2018). Detection of Rickettsia spp. in ticks (Acari: Ixodidae) of domestic animals in Colombia. Ticks Tick. Borne. Dis., 9, 819–823. Rizzoli, A., Tagliapietra, V., Cagnacci, F., Marini, G., Arnoldi, D., Rosso, F., & Rosà, R. (2019). Parasites and wildlife in a changing world: The vector-host-pathogen interaction as a learning case. IJP-PAW, 9, 394–401. Rochlin, I. & Toledo, A. (2020). Emerging tick-borne pathogens of public health importance: a mini-review. J. Med. Microbiol., 69, 781–791. Segura, J. A., Saldarriaga, L. J., Cerón, J. M., Osorio, L. R., Rueda, Z. V., & Gutiérrez, L. A. (2022). Hard tick species (Acari: Ixodidae) and infestation in two livestock agroecosystems from Antioquia, Colombia. Exp. Appl. Acarol., 86, 235–255 Sillero, N., Campos, J. C., Arenas-Castro, S., & Barbosa, A. M. (2023). A curated list of R packages for ecological niche modelling. Ecol. Model., 476, 110242. Sonenshine, D. E. (2018). Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health, 15, 1–9. Springer, Y. P., Jarnevich, C. S., Barnett, D. T., Monaghan, A. J., & Eisen, R. J. (2015). Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am J Trop Med Hyg., 93, 875–890 Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., & Roeckner, E. (2013). Atmospheric component of the MPI‐M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146–172. van Oort, B. E., Hovelsrud, G. K., Risvoll, C., Mohr, C. W., & Jore, S. (2020). A mini-review of Ixodes ticks climate sensitive infection dispersion risk in the Nordic region. Int. J. Environ. Res. Public Health., 17, 5387. Wang, K., Sun, J., Cheng, G., & Jiang, H. (2011). Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau. JMS, 8, 808–816. Wang, T., Yang, X., Jia, Q., Dong, N., Wang, H., Hu, Y., & Liu, J. (2017). Cold tolerance and biochemical response of unfed Dermacentor silvarum ticks to low temperature. Ticks Tick Borne Dis., 8, 757–763. Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl., 21, 335–342. Wimberly, M. C., Yabsley, M. J., Baer, A. D., Dugan, V. G., & Davidson, W. R. (2008). Spatial heterogeneity of climate and land‐cover constraints on distributions of tickborne pathogens. Glob. Ecol. Biogeogr., 17, 189–202. Zamudio-Solórzano, A., & Soler-Tovar, D. (2020). 9. Factores asociados a la ocurrencia en humanos de infección por R. rickettsii transmitida por garrapatas en Colombia. In Enfermedades Rickettsiales en Latinoamérica. Fondo Editorial Biogénesis, pp. 168–187. |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_f1cf |
dc.format.none.fl_str_mv |
325 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias para la Salud Manizales, Caldas, Colombia Doctorado en Ciencias |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias para la Salud Manizales, Caldas, Colombia Doctorado en Ciencias |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145056823640064 |
spelling |
Ectoparasites associated with mammals in Colombia: Diversity, distribution, and interactions from the regional (Arauca) to the national scale610 - Medicina y salud3. Ciencias Médicas y de la SaludAcariClimate changeConservationDistributionHostsInsectaMammaliaVectorsCiencias médicasFiguras, tablas, fotografíasMammals are hosts to a diverse community of ectoparasites including mites, ticks, flies, lice and fleas, among others, some of which are vectors of diseases caused by bacteria, cestodes, nematodes, protozoa and viruses. The interactions between mammals and their ectoparasites have a significant impact on both human and animal health worldwide. Although Colombia is home to a high diversity of mammals, with 551 recorded species, information on the diversity of the associated ectoparasites is limited and dispersed. Expanding this knowledge is crucial for understanding the ecological needs of these species, as well as for anticipating the effects of environmental change on the incidence of ectoparasite-borne diseases, thus contributing to the management and conservation of biodiversity. In this context, the present research integrates five studies focused on evaluating the diversity, distribution and interactions between ectoparasites and mammals at different landscape scales, from local (Arauca Department), to regional (Orinoquia), national (Colombia), and continental (America), through an integrative approach that combines morphological and molecular tools. In addition, an analysis of the association patterns is provided, including aspects of biogeography and ecology. In the first study, the records of bugs of the family Polyctenidae in America were reviewed, highlighting 16 species of Hesperoctenes, primarily associated with bats of the Molossidae family. A field sampling was carried out that allowed for the first time recording the presence of Hesperoctenes hermsi in Colombia, with new associations, and to expand the distribution of Hesperoctenes fumarius in the Department of Arauca. In the second study, records of ectoparasitic flies (Nycteribiidae and Streblidae) and their relationships with bats in the Orinoquía region were examined. A total of 124 species of Streblidae and 12 species of Nycteribiidae, were documented associated with 102 species of bats. Interaction network analyses revealed a high level of specialization between ectoparasitic flies and bats, suggesting ecological niche partitioning that has led to specific morphological and ecological adaptations in different body regions of host bats. In the third study, morphological, morphometric and molecular traits of Dermacentor nitens ticks from different regions of Colombia were evaluated, suggesting the possible existence of at least two species within D. nitens, highlighting the need for future studies to confirm this hypothesis. In the fourth work, the diversity and interactions of ectoparasites associated with wild and domestic mammals in the Department of Arauca, located in the Orinoquía region of Colombia, were analyzed. To achieve this, records obtained through a systematic review of the literature, a review of biological collections, and field work were compiled. A total of 51 species of ectoparasites associated with 34 species of mammals in Arauca were documented. Within this diversity of ectoparasites, the first records of 15 species of ectoparasites (eight mites, three fleas, and four lice) associated with 14 species of wild mammals (seven bats, four rodents, and two marsupials) and one domestic mammal (Sus domesticus) were presented. The mammal-ectoparasite interaction network for the Department of Arauca revealed the separation of three distinguishable groups: the first represented by hard ticks associated mainly with domestic mammals, the second, by the greater richness of ectoparasites exclusive to bats, and the third, by mites, lice, and fleas associated with rodents and marsupials. Finally, the distribution of Amblyomma patinoi, a vector of Rickettsia rickettsii, in Colombia was studied, confirming its presence in 79 localities distributed in 34 municipalities and seven departments of the Caribbean and Andean regions of Colombia. New records were identified in two additional departments and a high climatic suitability was observed in regions of the Caribbean and inter-Andean valleys, with potential expansions in areas not recorded in the Neotropics under climate change scenarios. However, geographical conditions, such as altitude, could limit its distribution to higher elevations. Overall, by integrating various methodologies and approaches, this study offers new insights and important records that enrich the taxonomic and ecological information on ectoparasites associated with mammals at different scales (Arauca Department, Orinoquia region, Colombia, and America), expanding the understanding of their role in the dynamics of biodiversity.Los mamíferos son hospederos de una variada comunidad de ectoparásitos que incluyen ácaros, garrapatas, moscas, piojos y pulgas, entre otros, algunos de los cuales son vectores de enfermedades causadas por bacterias, cestodos, nematodos, protozoos y virus. Estas interacciones entre los mamíferos y sus ectoparásitos tienen un impacto significativo en la salud tanto humana como animal a nivel mundial. Aunque Colombia alberga una alta diversidad de mamíferos con 551 especies registradas, la información sobre la diversidad de sus ectoparásitos es limitada y dispersa. Ampliar este conocimiento es crucial para comprender las necesidades ecológicas de estas especies, así como para prever los efectos del cambio ambiental en la incidencia de las enfermedades transmitidas por ectoparásitos, contribuyendo así a la gestión y conservación de la biodiversidad. En este contexto, la presente investigación integró cinco estudios centrados en evaluar la diversidad, distribución e interacciones entre ectoparásitos y mamíferos a diferentes escalas de paisaje desde lo local (Departamento de Arauca), regional (Orinoquia), nacional (Colombia), hasta continental (América), mediante un enfoque integrativo que combina herramientas morfológicas y moleculares. Además, se ofrece un análisis de los patrones de asociación, incluyendo aspectos de biogeografía y ecología. En el primer estudio, se revisaron los registros de chinches de la familia Polyctenidae en América, destacando 16 especies de Hesperoctenes, principalmente asociadas con murciélagos de la familia Molossidae. Se realizó un muestreo de campo que permitió registrar, por primera vez, la presencia de Hesperoctenes hermsi en Colombia, con nuevas asociaciones, y ampliar la distribución de Hesperoctenes fumarius en el Departamento de Arauca. En el segundo estudio, se examinaron los registros de moscas ectoparásitas (Nycteribiidae y Streblidae) y sus relaciones con murciélagos en la región de la Orinoquía. Se documentaron 124 especies de Streblidae y 12 de Nycteribiidae asociadas a 102 especies de murciélagos. Los análisis de redes de interacción revelaron una alta especialización entre moscas ectoparásitas y murciélagos, sugiriendo una partición de nicho ecológico que ha llevado a adaptaciones morfológicas y ecológicas específicas en diferentes regiones del cuerpo de los murciélagos hospederos. En el tercer estudio se evaluaron caracteres morfológicos, morfométricos y moleculares de la garrapata Dermacentor nitens de diferentes regiones de Colombia, y se sugiere la existencia de al menos dos posibles especies dentro de lo que se considera D. nitens, destacando la necesidad de futuros estudios para confirmar esta hipótesis. En el cuarto trabajo, se analizó la diversidad e interacciones de ectoparásitos asociados con mamíferos silvestres y domésticos en el Departamento de Arauca. Para lograr esto, se recopilaron registros obtenidos a través de la revisión sistemática de la literatura, la revisión de colecciones biológicas y el trabajo de campo. Se documentaron 51 especies de ectoparásitos asociadas a 34 especies de mamíferos en Arauca. Dentro de esta diversidad de ectoparásitos, se presentaron los primeros registros de 15 especies de ectoparásitos (ocho de ácaros, cuatro de piojos y tres de pulgas) asociados a 14 especies de mamíferos silvestres (siete murciélagos, cuatro roedores y dos marsupiales), y a una doméstica (Sus domesticus). La red de interacción mamífero-ectoparásito para el Departamento de Arauca mostró la separación de tres grupos diferenciables: el primero representado por garrapatas duras asociadas principalmente a mamíferos domésticos, el segundo por la mayor riqueza de ectoparásitos exclusivos de murciélagos, y el tercero por ácaros, piojos y pulgas asociados con roedores y marsupiales. Finalmente, se estudió la distribución de la garrapata Amblyomma patinoi, vector de la bacteria Rickettsia rickettsii, en Colombia, y se comprobó su presencia en 79 localidades distribuidas en 34 municipios y siete departamentos de las regiones Caribe y Andina de Colombia. Se identificaron nuevos registros en dos departamentos adicionales y se observó una alta idoneidad climática en regiones del Caribe y valles interandinos, con posibles expansiones en áreas no registradas en el Neotrópico bajo escenarios de cambio climático. Sin embargo, se propone que condiciones geográficas como la altitud podrían limitar su distribución a mayores elevaciones. A nivel general, al integrar diversas metodologías y enfoques, este estudio ofrece nuevos conocimientos y registros importantes que enriquecen la información taxonómica y ecológica de los ectoparásitos asociados a mamíferos a diferentes escalas (Departamento de Arauca, región de la Orinoquía, Colombia y América), ampliando la comprensión sobre su papel en la dinámica de la biodiversidad.Chapter I. Distribution and noteworthy records of parasitic bugs genus Hesperoctenes (Hemiptera: Polyctenidae) associated with bats (Chiroptera) in Colombia / Introduction / Materials and methods / Study area / Bats and Polyctenids capture / Morphological identification of bats and Polyctenids / Molecular identification of Polyctenids / Distribution and host association update / Results / New records / Morphological description of Polyctenids / Molecular evaluation of Polyctenids / Distribution and host association update / Discussion / Chapter II. Exploring the relationship between bats (Mammalia, Chiroptera) and ectoparasitic flies (Diptera, Hippoboscoidea) of the Orinoquia Region in South America / Introduction / Materials and methods /Study Area / Richness of bats and ectoparasite flies in the Orinoco Region and new records from Colombia / Bat-Ectoparasite Network Structure and Complex Network Metrics / Results / Richness of bats and ectoparasite flies in the Orinoco Region / New records/ Bat-Ectoparasite Network Structure and Complex Network Metrics/ Discussion /Chapter III. Morphological and molecular data suggest the presence of cryptic diversity within Dermacentor nitens (Acari: Ixodidae) in Colombia/ Introduction / Materials and methods / Specimen sampling and identification / Morphological evaluation /Molecular evaluation and phylogenetic analyses / Results / Morphological analysis and description of discrete characters / Morphometric analyses/ Molecular evaluation and phylogenetic analyses / Discussion / Chapter IV. Diversity and interactions between ectoparasites associated with mammals (Mammalia) in the Department of Arauca, Colombia / Introduction / Materials and methods / Study area / Ectoparasite diversity / Identification of mammals and ectoparasites / Interaction network of ectoparasites and host mammals/ Results / Ectoparasite diversity: Review of literatura and collections /Ectoparasite diversity: Field sampling / Interaction netw/ Chapter V. Current and potential distribution of the Neotropical hard tick Amblyomma patinoi (Ixodida: Ixodidae) / Introduction / Materials and methods / Occurrence data and region accesible M /Current and potential distribution of Amblyomma patinoi/ Climate change scenarios / Result /Occurrence data and current distribution of Amblyomma patinoi /Potential distribution of Amblyomma patinoi/ Climate /Ocurrence data and current distribution/Potential distributio /Climate changed scenarios / CONCLUSIONS / RECOMMENDATIONS / SUPPLEMENTARY MATERIAL / PARTICIPATION IN SPECIALIZED SCIENTIFIC EVENTSDoctoradoDoctor(a) en Ciencias de la SaludCaracterización de la diversidad genética de especiesEstudios sobre biodiversidad y gestión integral de los recursos naturalesSistemática y Ecología de Organismos Acuáticos y TerrestresUniversidad de CaldasFacultad de Ciencias para la SaludManizales, Caldas, ColombiaDoctorado en CienciasRamírez Chaves, Héctor EmilioRivera Páez, FredyRios Vasquez, Luz AmaliaGEBIOME Genética, biodiversidad y manejo de ecosistemas (Categoría A1)Noguera-Urbano, ElkinCortés-Vecino, Jesús A.Fernandes Martins, ThiagoOspina Pérez, Erika Mayerly2025-02-04T19:41:13Z2026-022025-02-04T19:41:13Z2025-02-04Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesis325 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/21935Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.coengspaAcevedo-Gutiérrez, L. Y., Paternina, L. E., Labruna, M. B., & Rodas, J. D. (2021). Presence of two species of the Amblyomma cajennense complex (Acari: Ixodidae) and probable zones of sympatry in northwestern Colombia. Ticks Tick. Borne. Dis., 12, 101815.Acevedo-Gutiérrez, L. Y., Paternina, L. E., Londoño, A. F., Parra-Henao, G., & Rodas, J. D. (2018). Potential models of the geographic and climatic distribution of the Amblyomma cajennense complex (Acari: Ixodidae), a potential vector of Rickettsia rickettsii in Colombia. Biomédica, 38, 534–544Acosta, J., Urquijo, L., Díaz, A., Sepúlveda, M., Mantilla, G., Heredia, D. & Villalobos, R. (2006). Brote de rickettsiosis en Necoclí, Antioquia, febrero-marzo de 2006. IQEN. 11, 177–92.Aguilar-Domínguez, M., Moo-Llanes, D. A., Sánchez-Montes, S., Becker, I., Feria-Arroyo, T. P., de León, A. P., & Romero-Salas, D. (2021). Potential distribution of Amblyomma mixtum (Koch, 1844) in climate change scenarios in the Americas. Ticks Tick. Borne. Dis., 12, 101812.Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545.Alkishe, A. A., Peterson, A. T., & Samy, A. M. (2017). Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PloS one, 12, e0189092.Alkishe, A., Cobos, M. E., Peterson, A. T., & Samy, A. M. (2020). Recognizing sources of uncertainty in disease vector ecological niche models: An example with the tick Rhipicephalus sanguineus sensu lato. PECON, 18, 91–102.Álvarez-Hernández, G., Paddock, C. D., Walker, D. H., Valenzuela, J. G., Calleja-López, J. T., Rivera-Rosas, C. N., & Sotelo-Mundo, R. R. (2024). Rocky Mountain spotted fever is a neglected tropical disease in Latin America. PLOS Negl. Trop. Dis. 18, e0012276.Bacon, E. A., Kopsco, H., Gronemeyer, P., Mateus-Pinilla, N., & Smith, R. L. (2022). Effects of climate on the variation in abundance of three tick species in Illinois. J. Med. Entomol., 59, 700–709.Beati, L., Nava, S., Burkman, E. J., Barros-Battesti, D. M., Labruna, M. B., Guglielmone, A. A., Cáceres, A. G., Guzmán-Cornejo, C. M., León, R., Durden, L. A., & Faccini, J. L. (2013). Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evolutionary Biology, 13, 1–20.Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 1–12.Bermúdez, S. E., Castro, A. M., Trejos, D., García, G. G., Gabster, A., Miranda, R. J., & Paternina, L. E. (2016). Distribution of spotted fever group rickettsiae in hard ticks (Ixodida: Ixodidae) from Panamanian urban and rural environments (2007–2013). EcoHealth, 13, 274–284.Bozinovic, F., Medina, N. R., Alruiz, J. M., Cavieres, G., & Sabat, P. (2016). Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly. J. Comp. Physiol. B. 186, 581–587Cabezas-Cruz, A., Estrada-Peña, A., & De La Fuente, J. (2019). The good, the bad and the tick. Front. cell dev. biol., 7, 79.Cardona-Romero, M., Martínez-Sánchez, E. T., Londoño, J. A., Tobón-Escobar, W. D., Ossa-López, P. A., Pérez-Cárdenas, J. E., & Rivera-Páez, F. A. (2020). Rickettsia parkeri strain Atlantic rainforest in ticks (Acari: Ixodidae) of wild birds in Arauca, Orinoquia region of Colombia. IJP-PAW, 13, 106–113.Centro Internacional de Agricultura Tropical - CIAT (1973) Annual Report 1973. Available from: https://cgspace.cgiar.org/handle/10568/65072CDC - Centers for Disease Control and Prevention. (2024). Rocky Mountain Spotted Fever: Clinical Overview for Healthcare Providers. Retrieved December 24, 2024, from https://www.cdc.gov/rocky-mountain-spotted-fever/hcp/clinical-verview/index.htmlChen, Z. & Liu, J. (2022). A review of argasid ticks and associated pathogens of China. Front. Veterinary Sciences, 9, 865664.Clarke-Crespo, E., Moreno-Arzate, C. N., & López-González, C. A. (2020). Ecological niche models of four hard tick genera (Ixodidae) in Mexico. Animals, 10(4), 649Cortés-Vecino, J. A. (2018). Control integrado de garrapatas y su importancia en salud pública. Biomédica, 38, 452–455.Cotes-Perdomo, A. P., Nava, S., Castro, L. R., Rivera-Paéz, F. A., Cortés-Vecino, J. A., & Uribe, J. E. (2023). Phylogenetic relationships of the Amblyomma cajennense complex (Acari: Ixodidae) at mitogenomic resolution. Ticks Tick. Borne. Dis., 14, 102125.Cumming, G. S. (1999). Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida). Bulletin of Entomological Research, 89, 303–327.Dantas-Torres, F. (2007). Rocky Mountain spotted fever. Lancet Infect Dis, 7, 724-732de la Fuente, J., Estrada-Peña, A., Venzal, J. M., Kocan, K.M., & Sonenshine, D.E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci., 13, 6938–6946.De Oliveira, S.V., Romero-Alvarez, D., Martins, T.F., Dos Santos, J.P., Labruna, M.B., Gazeta, G.S., & Gurgel-Gonçalves, R. (2017). Amblyomma ticks and future climate: Range contraction due to climate warming. Acta Tropica, 176, 340–348.Diamond, S. E., Nichols, L. M., McCoy, N., Hirsch, C., Pelini, S. L., Sanders, N. J., & Dunn, R. R. (2012). A physiological trait‐based approach to predicting the responses of species to experimental climate warming. Ecology, 93, 2305–2312.Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., & Saleem, M. (2017). An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67, 534–545Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst., 40, 677–697.Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, J. R., Leathiwick, A. L., Li, J., Lohmann, L. G., Loiselle B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC, J., Overton, M., Townsend Peterson, A., Philips, J. S., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G., & Peterson, A. T. (2014). Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health, 9, 221–229.Estrada-Peña, A. (2008). Climate, niche, ticks, and models: what they are and how we should interpret them. Parasitol. Res., 103, 87–95.Estrada-Peña, A., Guglielmone, A. A., & Mangold, A. J. (2004). The distribution and ecological 'preferences' of the tick Amblyomma cajennense (Acari: Ixodidae), an ectoparasite of humans and other mammals in the Americas. Ann. trop. med. parasitol., 98, 283–292.Estrada-Peña, A., Tarragona, E. L., Vesco, U., De Meneghi, D., Mastropaolo, M., Mangold, A. J., & Nava, S. (2014). Divergent environmental preferences and areas of sympatry of tick species in the Amblyomma cajennense complex (Ixodidae). IJP, 44, 1081– 1089.Faccini-Martínez, Á. A., Costa, F. B., Hayama-Ueno, T. E., Ramírez-Hernández, A., Cortés- Vecino, J. A., Labruna, M. B., & Hidalgo, M. (2015). Rickettsia rickettsii in Amblyomma patinoi ticks, Colombia. Emerg. Infect. Dis., 21, 537–539.Fei, S. W., Zhao, H. Q., Yin, J. X., Sun, Z. S., Xue, J. B., Lv, S., & Kassegne, K. (2024). Identification of habitat suitability for the dominant zoonotic tick species Haemaphysalis flava on Chongming Island, China. SOH, 100068.Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 4302–4315.Fuentes, M. A. P., Cárdenas, M. V. P., Anaya, A. M. D., & Medellín, M. O. P. (2015). Impacto de Amblyomma cajennense sobre la salud animal y sus alternativas de control biológico y químico. Conexión Agropecuaria JDC, 5, 51–66.Gage, K. L., Burkot, T. R., Eisen, R. J., & Hayes, E. B. (2008). Climate and vectorborne diseases. Am. J. Prev. Med., 35, 436–450.García, P. R., Scaccia, L., & Salvati, L. (2023). An accuracy assessment of three forest cover databases in Colombia. Environ Ecol Stat, 30, 443–475.Gil-Lora, E. J., Patiño-Gallego, J. J., Acevedo-Gutiérrez, L. Y., Montoya-Ruiz, C., Rodas- González, J. D. (2019). Infección y enfermedad por Rickettsia spp. del grupo de las fiebres manchadas en pacientes febriles del Urabá antioqueño, Colombia. Iatreia, 32, 167–176.Gómez-Quintero, C. H., Faccini-Martínez, Á. A., Botero-García, C. A., Lozano, M., Sánchez-Lerma, L., Miranda, J. & Hidalgo, M. (2017). Probable case of spotted fever group rickettsial infection in a new suspected endemic area, Colombia. J. Infect. Public Health, 10, 353–356.Guglielmone, A.A., Beati, L., Barros-Battesti, D.M., Labruna, M.B., Nava, S., Venzal, J.M., Mangold, A.J., Szabó, M.P., Martins, J.R., González-Acuña, D. & Estrada-Peña, A., 2006. Ticks (Ixodidae) on humans in South America. Exp. Appl. Acarol., 40, 83–100.Guglielmone, A.A., Estrada-Peña, A., Keirans, J.E., & Robbins, R.G. (2003). Ticks (Acari: Ixodida) of the neotropical zoogeographic region. In: Special Publication of the Integrated Consortium on Ticks and Tick-Borne Diseases-2. Houten (The Netherlands): Atalanta.Guglielmone, Alberto A., Nava, S., & Robbins, R. G. (2023). Geographic distribution of the hard ticks (Acari: Ixodida: Ixodidae) of the world by countries and territories. Zootaxa, 5251, 001–274Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C., & Palacio, R. D. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. PNAS, 115, 7985–7990.Hekimoglu, O., Elverici, C., & Kuyucu, A. C. (2023). Predicting climate-driven distribution shifts in Hyalomma marginatum (Ixodidae). Parasitology, 150, 883–893.Hidalgo, M., Lizarazo, D., Ovalle, M. V., Castañeda, E., Heredia, D., Zambrano, P. & Valbuena, G. (2007). Brote de rickettsiosis en Los Córdobas, Departamento de Córdoba, febrero-marzo 2007. IQEN, 12, 367–378.Hidalgo, M., Miranda, J., Heredia, D., Zambrano, P., Vesga, J. F., Lizarazo, D., Mattar, S., & Valbuena, G. (2011). Outbreak of Rocky mountain spotted fever in Córdoba, Colombia. Memórias do Instituto Oswaldo Cruz, 106, 117–118.Illoldi-Rangel, P., & Escalante, T. (2008). De los modelos de nicho ecológico a las áreas de distribución geográfica. Biogeografía, 3, 7–12.Illoldi-Rangel, P., Rivaldi, C. L., Sissel, B., Trout Fryxell, R., Gordillo-Pérez, G., Rodríguez- Moreno, A., & Sarkar, S. (2012). Species distribution models and ecological suitability analysis for potential tick vectors of Lyme disease in Mexico. J. Trop. Med., 2012, 959101ICA - Instituto Colombiano Agropecuario (2024). Censo Pecuario Nacional. Retrieved on December 24, 2024, from https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos- 2016/censo-2018Kass, J. M., Vilela, B., Aiello‐Lammens, M. E., Muscarella, R., Merow, C., & Anderson, R. P. (2018). Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. MEE, 9, 1151–1156Kessler, W. H., De Jesus, C., Wisely, S. M., & Glass, G. E. (2022). Ensemble models for tick vectors: standard surveys compared with convenience samples. Diseases, 10, 1–18Léger, E., Vourc’h, G., Vial, L., Chevillon, C., & McCoy, K. D. (2013). Changing distributions of ticks: causes and consequences. Exp. Appl. Acarol., 59, 219–244.Leighton, P. A., Koffi, J. K., Pelcat, Y., Lindsay, L. R., & Ogden, N. H. (2012). Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J. Appl. Ecol, 49, 457–464.Linthicum, K. J., Logan, T. M., Bailey, C. L., Gordon, S. W., Peters, C. J., Monath, T. P., & Dohm, D. J. (1991). Venezuelan equine encephalomyelitis virus infection in and transmission by the tick Amblyomma cajennense (Arachnida: Ixodidae). J. Med. Entomol., 28, 405–409.McCoy, K. D., Léger, E., & Dietrich, M. (2013). Host specialization in ticks and transmission of tick-borne diseases: a review. Front. Cell. Infect. Microbiol., 3, 1–12.Martínez-Diaz, H. C. M., Gil-Mora, J., Betancourt-Ruiz, P., Silva-Ramos, C. R., Matiz- González, J. M., Villalba-Perez, M. A., Ospina-Pinto, M. C., Ramirez-Hernández, A., Olaya-M, L. A., Volaños, E., Cuervo, C., Benavides, E., & Hidalgo, M. (2023). Molecular detection of tick-borne rickettsial pathogens in ticks collected from domestic animals from Cauca, Colombia. Acta Tropica, 238, 106773.Martínez-Diaz, H. C., Forero-Becerra, E., Hidalgo, M., & Labruna, M. B. (2021). Experimental infection and vector competence of Amblyomma patinoi, a member of the Amblyomma cajennense species complex, for the human pathogen Rickettsia rickettsii. Ticks Tick. Borne. Dis., 12, 101751.Martinez-Meyer, E. (2005). Climate change and biodiversity: some considerations in forecasting shifts in species' potential distributions. Biodivers inform, 2, 42–55.Martínez-Sánchez, E. T., Cardona-Romero, M., Ortiz-Giraldo, M., Tobón-Escobar, W. D., Moreno-López, D., Ossa-López, P. A., Pérez-Cárdenas, J. E., Labruna, M. B., Martins, T. F., Rivera-Páez, F. A. & Castaño-Villa, G. J. (2020). Associations 183 between wild birds and hard ticks (Acari: Ixodidae) in Colombia. Ticks Tick. Borne. Dis., 11, 101534Mastropaolo, M., Nava, S., Guglielmone, A. A., & Mangold, A. J. (2011). Biological differences between two allopatric populations of Amblyomma cajennense (Acari: Ixodidae) in Argentina. Exp. Appl. Acarol., 53, 371–375.Miranda, A. M., Flórez, S., & Mattar, S. (2001). Alta seroprevalencia de rickettsiosis en trabajadores del campo en el municipio de Ciénaga de Oro, Córdoba. IQEN. 7, 71– 75.Miranda, J. L., Sánchez, L., Amaya, K., Máttar, S. (2011). Primera prueba serológica de Rickettsia sp. del grupo de la fiebre manchada en el Departamento del Meta. Biomédica, 31, 103–113.Molina-Hoyos, K., Montoya-Ruíz, C., Aguilar, P. V., Pérez-Doria, A., Díaz, F. J., & Rodas, J. D. (2024). Virome analyses of Amblyomma cajennense and Rhipicephalus microplus ticks collected in Colombia. Acta Trop., 253, 107158.Moo-Llanes, D. A., López-Ordóñez, T., Torres-Monzón, J. A., Mosso-González, C., Casas- Martínez, M., & Samy, A. M. (2021). Assessing the potential distributions of the invasive mosquito vector Aedes albopictus and its natural Wolbachia infections in Mexico. Insects, 12, 1–16.Nava, S., Beati, L., Labruna, M. B., Cáceres, A. G., Mangold, A. J., & Guglielmone, A. A. (2014). Reassessment of the taxonomic status of Amblyomma cajennense (Fabricius, 1787) with the description of three new species, Amblyomma tonelliae n. sp., Amblyomma interandinum n. sp. and Amblyomma patinoi n. sp., and reinstatement of Amblyomma mixtum Koch, 1844, and Amblyomma sculptum Berlese, 1888 (Ixodida: Ixodidae). Ticks Tick. Borne. Dis., 5, 252–276.Nava, S., & Guglielmone, A. A. (2013). A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae). Bull. Entomol. Res., 103, 216–224.Nava, S., Venzal, J. M., Acuña, D. G., Martins, T. F., & Guglielmone, A. A. (2017). Ticks of the Southern Cone of America: diagnosis, distribution, and hosts with taxonomy, ecology and sanitary importance. Academic Press. pp. 1–83.Ogden, N. H., St-Onge, L., Barker, I. K., Brazeau, S., Bigras-Poulin, M., Charron, D. F., & Thompson, R. (2008). Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. Int. J. Health Geogr., 7, 1–15.Oorebeek, M., & Kleindorfer, S. (2008). Climate or host availability: what determines the seasonal abundance of ticks?. Parasitol. Res., 103, 871–875.Pacheco, O., Giraldo, M., Martínez, M., Hidalgo, M., Galeano, A., Echeverri, I., & Rey, G. (2008). Estudio de brote febril hemorrágico en el corregimiento de Alto de Mulatos- Distrito Especial Portuario de Turbo, Antioquia, enero de 2008. IQEN, 13, 145–160.Pascoe, E. L., Marcantonio, M., Caminade, C., & Foley, J. E. (2019). Modeling potential habitat for Amblyomma tick species in California. Insects, 10, 1–19.Patiño, L. (1941). Nuevas observaciones sobre un tercer foco de fiebre petequial (maculosa) en el hemisferio americano. Boletin Oficina Sanitaria Panamericana, 20, 1112–24Patiño, L., Afanador, A. & Paul, J. H. (1937). A Spotted Fever in Tobia, Colombia. ASTMH, 17, 639–53Pérez-Otáñez, X., Rodríguez-Hidalgo, R., Enríquez, S., Celi-Erazo, M., Benítez, W., Saegerman, C., & Vanwambeke, S. O. (2024). High-resolution prediction models for Rhipicephalus microplus and Amblyomma cajennense s.l. ticks affecting cattle and their spatial distribution in continental Ecuador using bioclimatic factors. Exp. Appl. Acarol., 92, 439–462.Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model., 213, 63–72Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB- 49). Princeton University Press. pp. 328.Phillips, S. (2021). Fitting 'Maxent' Species Distribution Models with 'glmnet'. https://github.com/mrmaxent/maxnetPhillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40, 887–893.Piotrowski, M., & Rymaszewska, A. (2020). Expansion of tick-borne rickettsioses in the world. Microorganisms, 8, 1906.Polo, G., Gamarra, J., Robayo-Sánchez, L. N., Cortés-Vecino, J. A., & Ramírez-Hernández, A. (2024). Impact of climate change on the geographical distribution of ticks of public health significance in Colombia: Amblyomma ovale (Ixodida: Ixodidae), the Amblyomma maculatum (Ixodida: Ixodidae) complex and the Amblyomma cajennense (Ixodida: Ixodidae) complex. J. Med. Entomol., tjae100.Porretta, D., Mastrantonio, V., Amendolia, S., Gaiarsa, S., Epis, S., Genchi, C., & Urbanelli, S. (2013). Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit. & Vectors., 6, 1–8.Porter, W. P., & Kearney, M. (2009). Size, shape, and the thermal niche of endotherms. PNAS, 106, 19666–19672.Quintero, V, J. C., Mignone, J., Osorio Q, L., Cienfuegos-Gallet, A. V., & Rojas A, C. (2021). Housing conditions linked to tick (Ixodida: Ixodidae) infestation in rural areas of Colombia: A potential risk for rickettsial transmission. J. Med. Entomol., 58, 439– 449.Quintero-Vélez, J. C., Aguirre-Acevedo, D. C., Rodas, J. D., Arboleda, M., Troyo, A., Vega Aguilar, F., & Rojas Arbeláez, C. (2018). Epidemiological characterization of incident cases of Rickettsia infection in rural areas of Urabá region, Colombia. PLOS Negl. Trop. Dis., 12, e0006911.Requena-García, F., Cabrero-Sañudo, F., Olmeda-García, S., González, J., & Valcárcel, F. (2017). Influence of environmental temperature and humidity on questing ticks in central Spain. Exp. Appl. Acarol., 71, 277–290.Rippstein, G., Amézquita, E., Escobar, G., & Grollier, C. (2001). Agroecología y Biodiversidad de las Sabanas en los Llanos Orinetales de Colombia. CIAT. pp. 302.Rivera-Páez, F. A., Labruna, M. B., Martins, T. F., Sampieri, B. R., & Camargo-Mathias, M. I. (2016). Amblyomma mixtum Koch, 1844 (Acari: Ixodidae): First record confirmation in Colombia using morphological and molecular analyses. Ticks Tick. Borne. Dis., 7, 842–848Rivera-Páez, F. A., Martins, T. F., Ossa-López, P. A., Sampieri, B. R., & Camargo-Mathias, M. I. (2018). Detection of Rickettsia spp. in ticks (Acari: Ixodidae) of domestic animals in Colombia. Ticks Tick. Borne. Dis., 9, 819–823.Rizzoli, A., Tagliapietra, V., Cagnacci, F., Marini, G., Arnoldi, D., Rosso, F., & Rosà, R. (2019). Parasites and wildlife in a changing world: The vector-host-pathogen interaction as a learning case. IJP-PAW, 9, 394–401.Rochlin, I. & Toledo, A. (2020). Emerging tick-borne pathogens of public health importance: a mini-review. J. Med. Microbiol., 69, 781–791.Segura, J. A., Saldarriaga, L. J., Cerón, J. M., Osorio, L. R., Rueda, Z. V., & Gutiérrez, L. A. (2022). Hard tick species (Acari: Ixodidae) and infestation in two livestock agroecosystems from Antioquia, Colombia. Exp. Appl. Acarol., 86, 235–255Sillero, N., Campos, J. C., Arenas-Castro, S., & Barbosa, A. M. (2023). A curated list of R packages for ecological niche modelling. Ecol. Model., 476, 110242.Sonenshine, D. E. (2018). Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health, 15, 1–9.Springer, Y. P., Jarnevich, C. S., Barnett, D. T., Monaghan, A. J., & Eisen, R. J. (2015). Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am J Trop Med Hyg., 93, 875–890Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., & Roeckner, E. (2013). Atmospheric component of the MPI‐M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146–172.van Oort, B. E., Hovelsrud, G. K., Risvoll, C., Mohr, C. W., & Jore, S. (2020). A mini-review of Ixodes ticks climate sensitive infection dispersion risk in the Nordic region. Int. J. Environ. Res. Public Health., 17, 5387.Wang, K., Sun, J., Cheng, G., & Jiang, H. (2011). Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau. JMS, 8, 808–816.Wang, T., Yang, X., Jia, Q., Dong, N., Wang, H., Hu, Y., & Liu, J. (2017). Cold tolerance and biochemical response of unfed Dermacentor silvarum ticks to low temperature. Ticks Tick Borne Dis., 8, 757–763.Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl., 21, 335–342.Wimberly, M. C., Yabsley, M. J., Baer, A. D., Dugan, V. G., & Davidson, W. R. (2008). Spatial heterogeneity of climate and land‐cover constraints on distributions of tickborne pathogens. Glob. Ecol. Biogeogr., 17, 189–202.Zamudio-Solórzano, A., & Soler-Tovar, D. (2020). 9. Factores asociados a la ocurrencia en humanos de infección por R. rickettsii transmitida por garrapatas en Colombia. In Enfermedades Rickettsiales en Latinoamérica. Fondo Editorial Biogénesis, pp. 168–187.https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/219352025-02-05T08:01:22Z |