Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas

Ilustraciones, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/16954
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/16954
https://repositorio.ucaldas.edu.co/
Palabra clave:
Ecosistemas
Bosques
Nucleación
Productividad
Sucesión ecológica
Restauración
Rights
License
http://purl.org/coar/access_right/c_14cb
id REPOUCALDA_4b46a2ff03e74a430cdf2f903887d959
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/16954
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
title Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
spellingShingle Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
Ecosistemas
Bosques
Nucleación
Productividad
Sucesión ecológica
Restauración
title_short Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
title_full Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
title_fullStr Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
title_full_unstemmed Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
title_sort Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, Caldas
dc.contributor.none.fl_str_mv Ramírez-García, Mónica
Castaño-Rubiano, Natalia
BIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)
dc.subject.none.fl_str_mv Ecosistemas
Bosques
Nucleación
Productividad
Sucesión ecológica
Restauración
topic Ecosistemas
Bosques
Nucleación
Productividad
Sucesión ecológica
Restauración
description Ilustraciones, gráficas
publishDate 2021
dc.date.none.fl_str_mv 2021-08-11T16:41:28Z
2021-08-11T16:41:28Z
2023-02-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/16954
Universidad de Caldas
Repositorio institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co/
url https://repositorio.ucaldas.edu.co/handle/ucaldas/16954
https://repositorio.ucaldas.edu.co/
identifier_str_mv Universidad de Caldas
Repositorio institucional Universidad de Caldas
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv Albornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleationdriven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214(5), 765-776. https://doi.org/10.1007/s11258-013-0206-x
Alvarez‐Añorve, M. Y., Quesada, M., Sánchez‐Azofeifa, G. A., Avila‐Cabadilla, L. D., & Gamon, J. A. (2012). Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. American journal of botany, 99(5), 816-826. https://doi.org/10.3732/ajb.1100200
Arroyo‐Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F., Morante-Filho, J., Santos, B., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I., Ferry, J. W., Nowakowski, J & Tscharntke, T. (2020). Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404-1420. https://doi.org/10.1111/ele.13535
Audino, L. D., Louzada, J., & Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biological Conservation, 169, 248-257. https://doi.org/10.1016/j.biocon.2013.11.023
Aussenac, R., Bergeron, Y., Gravel, D., & Drobyshev, I. (2019). Interactions among trees: A key element in the stabilising effect of species diversity on forest growth. Functional Ecology, 33(2), 360-367. https://doi.org/10.1111/1365-2435.13257
Bakker, E. S., & Olff, H. (2003). Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. Journal of Vegetation science, 14(4), 465-474. https://doi.org/10.1111/j.1654-1103.2003.tb02173.x
Barros, M. F., Ribeiro, E. M., Vanderlei, R. S., de Paula, A. S., Silva, A. B., Wirth, R., Cianciaruso, M. V. & Tabarelli, M. (2021). Resprouting drives successional pathways and the resilience of Caatinga dry forest in human-modified landscapes. Forest Ecology and Management, 482, 118881. https://doi.org/10.1016/j.foreco.2020.118881
Bartha, S., Meiners, S. J., Pickett, S. T., & Cadenasso, M. L. (2003). Plant colonization windows in a mesic old field succession. Applied Vegetation Science, 6(2), 205-212. https://doi.org/10.1111/j.1654-109X.2003.tb00581.x
Beisel, J. N., Thomas, S., Usseglio-Polatera, P., & Moreteau, J. C. (1996). Assessing changes in community structure by dominance indices: a comparative analysis. Journal of Freshwater Ecology, 11(3), 291-299. https://doi.org/10.1080/02705060.1996.9664451
Blake, J. G. (1990). Quantifying abundance of fruits for birds in tropical habitats. Studies in Avian Biology, (13), 73-79.
Bowen, M. E., McAlpine, C. A., House, A. P. N., & Smith, G. C. (2007). Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biological Conservation 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012
Bullock, S. H. (1995). Plant reproduction in neotropical dry forests. In Seasonally dry tropical forests, 277-303.
Cabral, A. C., De Miguel, J. M., Rescia, A. J., Schmitz, M. F., & Pineda, F. D. (2003). Shrub encroachment in Argentinean savannas. Journal of Vegetation Science, 14(2), 145-152. https://doi.org/10.1111/j.1654-1103.2003.tb02139.x
Campbell, V., Murphy, G., & Romanuk, T. N. (2011). Experimental design and the outcome and interpretation of diversity–stability relations. Oikos, 120(3), 399-408. https://doi.org/10.1111/j.1600-0706.2010.18768.x
Cantillo, E. E., & Rangel, J. O. (2002). Caracterización estructural, ordenación y dinámica de la vegetación en la zona de captación de aguas de la microcuenca El Tigre-municipio de Norcasia, Caldas. Colombia forestal, 7(15), 9-28. https://doi.org/10.14483/2256201X.3304
Caplat, P., Edelaar, P., Dudaniec, R. Y., Green, A. J., Okamura, B., Cote, J., Ekroos, J., Jonsson, P. R., Londahl, J., Tesson, S. V. & Petit, E.J. (2016). Looking beyond the mountain: dispersal barriers in a changing world. Frontiers in Ecology and the Environment, 14(5), 261-268. https://doi.org/10.1002/fee.1280
Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Héctor, A., Srivastava, D. S., Loreau, M. & Weis, J. J. (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, 104(46), 18123-18128. https://doi.org/10.1073/pnas.0709069104
Carnevale, N. J., & Montagnini, F. (2002). Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. Forest ecology and management, 163(1-3), 217-227. https://doi.org/10.1016/S0378-1127(01)00581-3
Caruso, T., & Migliorini, M. (2006). A new formulation of the geometric series with applications to oribatid (Acari, Oribatida) species assemblages from human-disturbed Mediterranean areas. Ecological Modelling, 195 (3-4), 402-406. https://doi.org/10.1016/j.ecolmodel.2005.11.042
Cequinel, A., Capellesso, E. S., Marcilio-Silva, V., Cardoso, F. C., & Marques, M. C. (2018). Determinism in tree turnover during the succession of a tropical forest. Perspectives in Plant Ecology, Evolution and Systematics, 34, 120-128. https://doi.org/10.1016/j.ppees.2018.08.007
Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., & Mack, M. C. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242. https://doi.org/10.1038/35012241
Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., & Mack, M. C. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242. https://doi.org/10.1038/35012241
Chapman, C. A. (1995). Primate seed dispersal: coevolution and conservation implications. Evolutionary Anthropology: Issues, News, and Reviews, 4(3), 74-82. https://doi.org/10.1002/evan.1360040303
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T. & Lescure, J. P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. https://doi.org/10.1007/s00442-005-0100-x
Chazdon, R. L. (2008). Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458-1460. https://doi.org/10.1126/science.1155365
Chazdon, R. L. 2008. Chance and determinism in tropical forest succession. In W. P. Carson and S. A. Schnitzer (Eds.) Tropical forest community ecology. pp. 384– 408. Blackwell, Malden, Massachusetts.
Chiarucci, A., Bacaro, G., & Scheiner, S. M. (2011). Old and new challenges in using species diversity for assessing biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2426-2437. https://doi.org/10.1098/rstb.2011.0065
Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M., & Chey, V. K. (2000). The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bulletin of Entomological Research, 90(6), 475-496. https://doi.org/10.1017/S0007485300000602
Cifuentes, H. M., & Padilla, B. R. (2001). Dicotiledóneas de La Planada, Colombia: lista de especies. Biota Colombiana, 2(1), 59-74.
Clark, D. A., & Clark, D. B. (1984). Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. The American Naturalist, 124(6), 769-788. https://doi.org/10.1086/284316
Clifford, H. T., & Stephenson, W. (1975). An introduction to numerical classification (Vol. 240). New York: Academic press.
Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of populations, 298, 312.
Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302- 1310. https://doi.org/10.1126/science.199.4335.1302
Corbin, J. D., & Holl, K. D. (2012). Applied nucleation as a forest restoration strategy. Forest Ecology and Management, 265(37-46). https://doi.org/10.1016/j.foreco.2011.10.013
Couvet, D. (2002). Deleterious effects of restricted gene flow in fragmented populations. Conservation Biology, 16(2), 369-376. https://doi.org/10.1046/j.1523-1739.2002.99518.x
Cutler, N. A., Belyea, L. R., & Dugmore, A. J. (2008). The spatiotemporal dynamics of a primary succession. Journal of Ecology, 96(2), 231-246. https://doi.org/10.1111/j.1365- 2745.2007.01344.x
Damschen, E. I., Brudvig, L. A., Haddad, N. M., Levey, D. J., Orrock, J. L., & Tewksbury, J. J. (2008). The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences, 105(49), 19078-19083. https://doi.org/10.1073/pnas.0802037105
Dener, E., Ovadia, O., Shemesh, H., Altman, A., Chen, S. C., & Giladi, I. (2021). Direct and indirect effects of fragmentation on seed dispersal traits in a fragmented agricultural landscape. Agriculture, Ecosystems & Environment, 309, 107273. https://doi.org/10.1016/j.agee.2020.107273
Deng, L., Liu, S., Kim, D. G., Peng, C., Sweeney, S., & Shangguan, Z. (2017). Past and future carbon sequestration benefits of China’s grain for green program. Global Environmental Change, 47(13–20). https://doi.org/10.1016/j.gloenvcha.2017.09.006
DeWalt, S. J., & Chave, J. (2004). Structure and biomass of four lowland Neotropical forests. Biotropica, 36(1), 7-19. https://doi.org/10.1111/j.1744-7429.2004.tb00291.x
DeWalt, S. J., Maliakal, S. K., & Denslow, J. S. (2003). Changes in vegetation structure and composition along a tropical forest chrono sequence: implications for wildlife. Forest Ecology and Management, 182(1-3), 139-151. https://doi.org/10.1016/S0378- 1127(03)00029-X
Díaz, M., & Granadillo, E. (2005). The significance of episodic rains for reproductive phenology and productivity of trees in semiarid regions of northwestern Venezuela. Trees, 19(3), 336- 348. https://doi.org/10.1007/s00468-004-0405-0
Díaz-Páez, M., & Polanía, J. (2017). Experiencia piloto de nucleación con especies nativas para restaurar una zona degradada por ganadería en el norte de Antioquia, Colombia. Biota Colombiana, 18(1 Sup), 60-69. https://doi.org/10.21068/c2017.v18s01a03
Dillis, C., Marshall, A. J., Webb, C. O., & Grote, M. N. (2018). Prolific fruit output by the invasive tree Bellucia pentamera Naudin (Melastomataceae) is enhanced by selective logging disturbance. Biotropica, 50(4), 598-605. https://doi.org/10.1111/btp.12545
Duarte-Jaramillo, D. (Noviembre, 2018). Evaluación de diferentes tratamientos de nucleación como estrategia de restauración ecológica, en su etapa inicial, en áreas de bosque alto andino invadidas por Pteridium aquilinum (L.) Khun. [Tesis de pregrado]. Pontificia Universidad Javeriana. Bogota D.C.
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics, (34), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P., & Foster, R. B. (2011). Directional changes in the species composition of a tropical forest. Ecology, 92(4), 871-882. https://doi.org/10.1890/10-0724.1
Ferreira, M. C., Walter, B. M., & Vieira, D. L. (2015). Topsoil translocation for Brazilian savanna restoration: propagation of herbs, shrubs, and trees. Restoration ecology, 23(6), 723-728. https://doi.org/10.1111/rec.12252
Foster, S., & Janson, C. H. (1985). The relationship between seed size and establishment conditions in tropical woody plants. Ecology, 66(3), 773-780. https://doi.org/10.2307/1940538
Franks, S. J. (2003). Facilitation in multiple life-history stages: evidence for nucleated succession in coastal dunes. Plant Ecology, 168(1), 1-11. https://doi.org/10.1023/A:1024426608966
Gandolfi, S., Joly, C. A., & Rodrigues, R. R. (2007). Permeability-impermeability: canopy trees as biodiversity filters. Scientia Agricola, 64 (4), 433-438. https://doi.org/10.1590/S0103- 90162007000400015
Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., & Bartomeus, I. (2013). Wild pollinators enhance fruit set of crops regardless of honeybee abundance. Science, 339(6127), 1608-1611. https://doi.org/10.1126/science.1230200
Gehring, C., Denich, M., & Vlek, P. L. (2005). Resilience of secondary forest regrowth after slashand-burn agriculture in central Amazonia. Journal of Tropical Ecology, 519- 527.https://doi.org/10.1017/SO266467405002543
Gentry, A. H., & Emmons, L. H. (1987). Geographical variation in fertility, phenology, and composition of the understory of Neotropical forests. Biotropica, 216-227. https://doi.org/10.2307/2388339
George, L. O., & Bazzaz, F. A. (1999). The fern understory as an ecological filter: growth and survival of canopy‐tree seedlings. Ecology, 80(3), 846-856. https://doi.org/10.1890/0012- 9658(1999)080[0846:TFUAAE]2.0.CO;2
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378-381. https://doi.org/10.1038/nature10425
Gonzales-Pinto, A. (2017). Estructura y diversidad florística de la zona terrestre de un humedal urbano en Bogotá (Colombia). Revista Luna Azul, (45), 201-226. https://doi.org/10.17151/luaz.2017.45.11
Gorresen, P. M., & Willig, M. R. (2004). Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy, 85(4), 688-697. https://doi.org/10.1644/BWG-125
Gross, K., Cardinale, B. J., Fox, J. W., Gonzalez, A., Loreau, M., Wayne Polley, H., Reich, P.B. & van Ruijven, J. (2014). Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. The American Naturalist, 183(1), 1-12. https://doi.org/10.1086/673915
Guariguata M. R. & Kattan G. H. (2002). Ecología y Conservación de Bosques Neotropicales. Costa Rica: Asociación de Editoriales Universitarias de América Latina y el Caribe.
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052
Hammer, O., Harper, A. T. D., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Windows. Oslo, Norway.
Hamrick, J. L. (2004). Response of forest trees to global environmental changes. Forest ecology and management, 197(1-3), 323-335. https://doi.org/10.1016/j.foreco.2004.05.023
Hanya, G., & Aiba, S. I. (2010). Fruit fall in tropical and temperate forests: implications for frugivore diversity. Ecological Research, 25(6), 1081-1090. https://doi.org/10.1007/s11284-010-0733-z
Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., Scherer-Lorenzen, M., Spehn, E.M., Bazeley-White, E., Weilenmann, M., & Caldeira, M. C. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91(8), 2213-2220. https://doi.org/10.1890/09-1162.1
Hemingway, C. A., & Overdorff, D. J. (1999). Sampling Effects on Food Availability Estimates: Phenological Method, Sample Size, and Species Composition. Biotropica, 31(2), 354-364. https://doi.org/10.1111/j.1744-7429.1999.tb00147.x
Hillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89(6), 1510-1520. https://doi.org/10.1890/07-1053.1
Holdridge, L. (1982). Life zone ecology. Tropical Science Center, San José, Costa Rica
Holl, K. D., & Aide, T. M. (2011). When and where to actively restore ecosystems?. Forest Ecology and Management, 261(10), 1558-1563. https://doi.org/10.1016/j.foreco.2010.07.004
Holl, K. D., & Zahawi, R. A. (2014). Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 319, 36-43. https://doi.org/10.1016/j.foreco.2014.01.024
Holl, K. D., Crone, E. E., & Schultz, C. B. (2003). Landscape restoration: moving from generalities to methodologies. BioScience, 53(5), 491-502. https://doi.org/10.1641/0006- 3568(2003)053[0491:LRMFGT]2.0.CO;2
Holl, K. D., Stout, V. M., Reid, J. L., & Zahawi, R. A. (2013). Testing heterogeneity–diversity relationships in tropical forest restoration. Oecologia, 173(2), 569-578. https://doi.org/10.1007/s00442-013-2632-9
Howorth, R. T., & Pendry, C. A. (2006). Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodiversity & Conservation, 15(2), 693-715. https://doi.org/10.1007/s10531-004-1061-9
Jackson, S. T., & Hobbs, R. J. (2009). Ecological restoration in the light of ecological history. Science, (325) 567–569. https://doi.org/10.1126/science.1172977
Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(940), 501-528. https://doi.org/10.1086/282687
Johst, K., Brandl, R., & Eber, S. (2002). Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos, 98(2), 263-270. https://doi.org/10.1034/j.1600- 0706.2002.980208.x
Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78(7), 1946-1957. https://doi.org/10.1890/0012- 9658(1997)078[1946:PANEOO]2.0.CO;2
Lasky, J. R., Uriarte, M., Boukili, V. K., & Chazdon, R. L. (2014). Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, 111(15), 5616-5621. https://doi.org/10.1073/pnas.1319342111
Letcher, S. G., & Chazdon, R. L. (2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica, 41(5), 608- 617. https://doi.org/10.1111/j.1744-7429.2009.00517.x
Liu, X., Liu, X., Shao, X., Songer, M., He, B., He, X., & Zhu, Y. (2018). Plant diversity patterns of temperate forests with logging and restoration practices in northwest China. Ecological Engineering, 124, 116-122. https://doi.org/10.1016/j.ecoleng.2018.09.017
Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Paz, H., PérezGarcía, E. A., Romero-Pérez, I. E., Tauro, A. & Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94(6), 1211- 1216. https://doi.org/10.1890/12-1850.1
Lortie, C. J., Brooker, R. W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F. I., & Callaway, R. M. (2004). Rethinking plant community theory. Oikos, 107(2), 433-438. https://doi.org/10.1111/j.0030-1299.2004.13250.x
MADS, Ministerio de Ambiente y Desarrollo Sostenible de Colombia. (2012). Manual para la asignación de compensaciones por pérdida de biodiversidad. Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, D.C., Colombia.
MADS, Ministerio de Ambiente y Desarrollo Sostenible de Colombia. (2015). Plan Nacional de Restauración: restauración ecológica, rehabilitación y recuperación de áreas disturbadas. Bogotá, D.C., Colombia.
MADS, Ministerio de Ambiente y Desarrollo sostenible. (2017). Plan de acción de biodiversidad para la implementación de la Política Nacional para la Gestión Integral de la Biodiversidad y sus Servicios Ecosistémicos 2016-2030. Bogotá, D.C., Colombia.
Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton University Press, New Jersey, 179 pp.
Margalef, R. (1977). Ecología. Ediciones Omega. Barcelona, 951 p
Marquete, R. (2007). O gênero Casearia Jacq. no estado do Rio de Janeiro (Brasil). Journal of Neotropical Biology, 3(1), 101-102). https://doi.org/10.5216/rbn.v13i1.26435
Maser, C., Thomas, J. W., & Anderson, R. G. (1984). Wildlife habitats in managed rangelands - the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2). Gen. Tech. Rep. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Mazancourt, C., Isbell, F., Larocque, A., Berendse, F., De Luca, E., Grace, J. B., Haegeman, B., Wayne Polley, H., Roscher, C., Schmid, B. & Tilman, D. (2013). Predicting ecosystem stability from community composition and biodiversity. Ecology letters, 16(5), 617-625. https://doi.org/10.1111/ele.12088
McConkey, K. R., Prasad, S., Corlett, R. T., Campos-Arceiz, A., Brodie, J. F., Rogers, H., & Santamaria, L. (2012). Seed dispersal in changing landscapes. Biological Conservation, 146(1), 1-13. https://doi.org/10.1016/j.biocon.2011.09.018
Metzger, J. P., Alves, L. F., Goulart, W., Teixeira, A. M. G., Simões, S. J. C., & Catharino, E. L. (2006). An important biological area, but still poorly known: The Morro Grande Forest 43 Reserve. Biota Neotropica, 6(2), 45–78. https://doi.org/10.1590/S1676- 06032006000200003
Montagnini, F. (2008). Management for sustainability and restoration of degraded pastures in the Neotropics. In Post-agricultural succession in the Neotropics (pp. 265-295). Springer, New York, NY. https://doi.org/10.1007/978-0-387-33642-8_13
Moonen, P. C., Verbist, B., Bosela, F. B., Norgrove, L., Dondeyne, S., Van Meerbeek, K., Kearsley, E., Verbeeck, H., Vermeir, P., Boeckx, P., & Muys, B. (2019). Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Science of The Total Environment, 659, 101-114. https://doi.org/10.1016/j.scitotenv.2018.12.138
Morellato, L. P. C., Abernethy, K., & Mendoza, I. (2018). Rethinking tropical phenology: insights from long‐term monitoring and novel analytical methods. Biotropica, 50(3), 371-373. https://doi.org/10.1111/btp.12562
Morellato, L. P. C., Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G. G., Cancian, L. F., Carstensen, D. W., Escobar, D. F., Leite, P. T., & Mendoza, I. (2016). Linking plant phenology to conservation biology. Biological Conservation, (195) 60-72. https://doi.org/10.1016/j.biocon.2015.12.033
Moreno-Mateos, D., Barbier, E. B., Jones, P. C., Jones, H. P., Aronson, J., López-López, J. A., McCrackin, M. L., Meli, P., Montoya, D., & Benayas, J. M. R. (2017). Anthropogenic ecosystem disturbance and the recovery debt. Nature Communications, 8(1), 1-6. https://doi.org/10.1038/ncomms14163
Muller‐Landau, H. C., Wright, S. J., Calderón, O., Condit, R., & Hubbell, S. P. (2008). Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology, 96(4), 653-667. https://doi.org/10.1111/j.1365-2745.2008.01399.x
Muller‐Landau, H.C. & Hardesty, B.D. (2005). Seed dispersal of woody plants in tropical forests: concepts, examples, and future directions. Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity (eds D. Burslem, M. Pinard & S. Hartley), pp. 267– 309. Cambridge University Press, Cambridge.
Muniz-Castro, M. A., Williams-Linera, G., & Benayas, J. M. R. (2006). Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. Journal of Tropical Ecology, 22(4), 431-440. https://doi.org/10.1017/S0266467406003221
Murcia, C., Guariguata, M. R., Quintero-Vallejo, E., & Ramírez, W. (2017). La restauración ecológica en el marco de las compensaciones por pérdida de biodiversidad en Colombia: Un análisis crítico (Vol. 176). CIFOR. https://doi.org/10.17528/cifor/006611
Murcia, C., Guariguata, M., & Montes, E. (2015). Estado del monitoreo de la restauración ecológica en Colombia. En Aguilar-Garavito, M., & Ramírez, W. Monitoreo a procesos de 44 restauración ecológica, aplicado a ecosistemas terrestres. (pp. 18-26). Instituto de Investigación Alexander Von Humboldt. Bogotá, Colombia
Naranjo, F. A. C., David, H., & Gómez, S. E. H. (2010). Flora de la Miel: Central Hidroeléctrica Miel I, Oriente de Caldas: guía ilustrada. Universidad de Antioquia.
Naranjo, F. A. C., David, H., Hoyos, S. G., & Palacio, F. R. (2011). Flora de embalses: Central Hidroeléctricas de ISAGEN en el oriente Antioqueño San Carlos, Jaguas y Calderas: guía ilustrada. Universidad de Antioquia.
Nathan, R., & Muller-Landau, H. (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution, 15, 278–285. https://doi.org/10.1016/S0169-5347(00)01874-7
Norden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de la Cerda, I., Van Breugel, M., Lebrija-Trejos, E., Meave, J. A., Vandermeer, J., Williamson, G. B., & Finegan, B. (2015). Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences, 112(26), 8013-8018. https://doi.org/10.1073/pnas.1500403112
Norgrove, L., & Beck, J. (2016). Biodiversity function and resilience in tropical agroforestry systems including shifting cultivation. Current Forestry Reports, 2(1), 62-80 https://doi.org/10.1007/s40725-016-0032-1
Orozco-Zamora, C., & Montagnini, F. (2006). Lluvia de semillas y sus agentes dispersores en plantaciones forestales de nueve especies nativas en parcelas puras y mixtas en la Estación Biológica La Selva, Costa Rica. Recursos Naturales y Ambiente (CATIE). 49-50 p. 131- 140.
Ouyang, S., Xiang, W., Wang, X., Zeng, Y., Lei, P., Deng, X., & Peng, C. (2016). Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management, (372), 291-302. https://doi.org/10.1016/j.foreco.2016.04.020
Pardini, R., De Souza, S. M., Braga-Neto, R., & Metzger, J. P. (2005). The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological conservation, 124(2), 253-266. https://doi.org/10.1016/j.biocon.2005.01.033
Pardini, R., Faria, D., Accacio, G. M., Laps, R. R., Mariano-Neto, E., Paciencia, M. L., Dixo, M., & Baumgarten, J. (2009). The challenge of maintaining Atlantic forest biodiversity: a multitaxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation, 142(6), 1178-1190. https://doi.org/10.1016/j.biocon.2009.02.010
Phillips, O. L., Hall, P., Gentry, A. H., Sawyer, S. A., & Vasquez, R. (1994). Dynamics and species richness of tropical rain forests. Proceedings of the National Academy of Sciences, 91(7), 2805-2809. https://doi.org/10.1073/pnas.91.7.2805
Pinotti, B. T., Pagotto, C. P., & Pardini, R. (2012). Habitat structure and food resources for wildlife across successional stages in a tropical forest. Forest ecology and management, 283, 119- 127. https://doi.org/10.1016/j.foreco.2012.07.020
Pinto, E., Pérez, A. J., Ulloa, C. U., & Cuesta, F. (2018). Árboles representativos de los bosques montanos del noroccidente de Pichincha, Ecuador. Consorcio para el Desarrollo Sostenible de la Ecorregión Andina-CONDESAN.
Polgar, C. A., & Primack, R. B. (2011). Leaf‐out phenology of temperate woody plants: from trees to ecosystems. New phytologist, 191(4), 926-941. https://doi.org/10.1111/j.1469- 8137.2011.03803.x
Prach, K., & Walker, L. R. (2011). Four opportunities for studies of ecological succession. Trends in Ecology & Evolution, 26(3), 119-123. https://doi.org/10.1016/j.tree.2010.12.007
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. H. (2018). Trends in global agricultural land use: implications for environmental health and food security. Annual review of plant biology, (69) 789-815. https://doi.org/10.1146/annurev-arplant-042817-040256
Razola, I., & Rey Benayas, J. M. (2009). Effects of woodland islets introduced in a Mediterranean agricultural landscape on local bird communities. Web Ecology, 9(1), 44-53. https://doi.org/10.5194/we-9-44-2009
Rey Benayas, J. M., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, (325) 1121– 1124. https://doi.org/10.1126/science.1172460
Rivera, G., Elliott, S., Caldas, L. S., Nicolossi, G., Coradin, V. T., & Borchert, R. (2002). Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees, 16(7), 445-456. https://doi.org/10.1007/s00468-002-0185-3
Robiglio, V., & Sinclair, F. (2011). Maintaining the conservation value of shifting cultivation landscapes requires spatially explicit interventions. Environmental management, 48(2), 289-306. https://doi.org/10.1007/s00267-010-9611-2
Robinson, G. R., & Handel, S. N. (2000). Directing spatial patterns of recruitment during an experimental urban woodland reclamation. Ecological Applications, 10, 174–188. https://doi.org/10.1890/1051-0761(2000)010[0174:DSPORD]2.0.CO;2
Rodriguez da Silva, U. D. S., & Matos, D. M. D. S. (2006). The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. 46 Biodiversity and Conservation, 15(9), 3035-3043. https://doi.org/10.1007/s10531-005- 4877-z
Rodríguez, S. B., Freitas, M. G., Campos-Filho, E. M., do Carmo, G. H. P., da Veiga, J. M., Junqueira, R. G. P., & Vieira, D. L. M. (2019). Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. Forest Ecology and Management, 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559
Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J., & Teixeira, L. H. (2020). Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecological Engineering, 158, 106031. https://doi.org/10.1016/j.ecoleng.2020.106031
Saldarriaga, J. G., West, D. C., Tharp, M. L., & Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. The Journal of Ecology, 938-958. https://doi.org/10.2307/2260625
Schmitz, O. J. (2003). Top predator control of plant biodiversity and productivity in an old‐field ecosystem. Ecology Letters, 6(2), 156-163. https://doi.org/10.1046/j.1461- 0248.2003.00412.x
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.2307/2333709
Shoo, L. P., Freebody, K., Kanowski, J., & Catterall, C. P. (2016). Slow recovery of tropical old‐ field rainforest regrowth and the value and limitations of active restoration. Conservation Biology, 30(1), 121-132. https://doi.org/10.1111/cobi.12606
Siminski, A., Fantini, A. C., Guries, R. P., Ruschel, A. R., & Dos Reis, M. S. (2011). Secondary forest succession in the Mata Atlántica, Brazil: floristic and phytosociological trends. International Scholarly Research Notices, 2011: 1–19. https://doi.org/10.5402/2011/759893
Stevens, R. D., & Willig, M. R. (2002). Geographical ecology at the community level: perspectives on the diversity of New World bats. Ecology, 83(2), 545-560. https://doi.org/10.1890/0012- 9658(2002)083[0545:GEATCL]2.0.CO;2
Stevenson, P. R. (2002). Frugivory and seed dispersal by woolly monkeys at Tinigua National Park, Colombia. Ph.D. thesis, State University of New York at Stony Brook
Stevenson, P. R. (2004). Phenological patterns of woody vegetation at Tinigua Park, Colombia: methodological comparisons with emphasis on fruit production/Patrones fenológicos de vegetación leñosa en el Parque Tinigua, Colombia: comparaciones metodológicas con énfasis en la producción de frutos. Caldasia, 125-150.
Stevenson, P. R., & Vargas, I. N. (2008). Sample size and appropriate design of fruit and seed traps in tropical forests. Journal of Tropical Ecology, 24(1), 95-105. https://doi.org/10.1017/S0266467407004646
Stevenson, P. R., Castellanos, M. C., Pizarro, J. C., & Garavito, M. (2002). Effects of seed dispersal by three ateline monkey species on seed germination at Tinigua National Park, Colombia. International Journal of Primatology, 23(6), 1187-1204. https://doi.org/10.1023/A:1021118618936
Stevenson, P. R., Quiñones, M. J., & Ahumada, J. A. (1998). Annual variation in fruiting pattern using two different methods in a lowland tropical forest, Tinigua National Park, Colombia. Biotropica, 30(1), 129-134.
Suganuma, M. S., & Durigan, G. (2015). Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restoration Ecology, 23(3), 238-251. https://doi.org/10.1111/rec.12168
Sung, Y. H., Karraker, N. E., & Hau, B. C. (2012). Terrestrial herpetofaunal assemblages in secondary forests and exotic Lophostemon confertus plantations in South China. Forest Ecology and Management, 270, 71-77. https://doi.org/10.1016/j.foreco.2012.01.011
Teixeira, L. H., Weisser, W., & Ganade, G. (2016). Facilitation and sand burial affect plant survival during restoration of a tropical coastal sand dune degraded by tourist cars. Restoration Ecology, 24(3), 390-397. https://doi.org/10.1111/rec.12327
Toribio, M. M., Martínez, C., Cecconc, E., & Guariguata, M. R. (2017). Planes actuales de restauración ecológica en Latinoamérica: Avances y omisiones. Revista de Ciencias Ambientales, 51(2), 1-30. https://doi.org/10.15446/ga.v22n2.82227
Torres-Rodríguez, S., Díaz-Triana, J. E., Villota, A., Gómez, W., & Avella-M, A. (2019). Diagnóstico ecológico, formulación e implementación de estrategias para la restauración de un bosque seco tropical interandino (Huila, Colombia). Caldasia, 41(1), 42-59. https://dx.doi.org/10.15446/caldasia.v41n1.71275
Trujillo-Miranda, A. L., Toledo-Aceves, T., López-Barrera, F., & Gerez-Fernández, P. (2018). Active versus passive restoration: Recovery of cloud forest structure, diversity, and soil condition in abandoned pastures. Ecological Engineering, 117, 50-61. https://doi.org/10.1016/j.ecoleng.2018.03.011
Trujillo-Miranda, A. L., Toledo-Aceves, T., López-Barrera, F., & Gerez-Fernández, P. (2018). Active versus passive restoration: Recovery of cloud forest structure, diversity, and soil condition in abandoned pastures. Ecological Engineering, 117, 50-61. https://doi.org/10.1016/j.ecoleng.2018.03.011
Van Breugel, M., Hall, J. S., Craven, D., Bailon, M., Hernández, A., Abbene, M., & Van Breugel, P. (2013). Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PloS one, 8(12), e82433. https://doi.org/10.1371/journal.pone.0082433
Van der Pijl, L. (1972). Principles of Dispersal in Higher Plants. (2da. ed.). Berlin, Heidelberg: by Springer-Verlag.
Van Oijen, D., Feijen, M., Hommel, P., Den Ouden, J., & De Waal, R. (2005). Effects of tree species composition on within‐forest distribution of understorey species. Applied Vegetation Science, 8(2), 155-166. https://doi.org/10.1111/j.1654-109X.2005.tb00641.x
Velázquez-Escamilla, T. L., Díaz-Castelazo, C., Ruiz-Guerra, B., & Velázquez-Rosas, N. (2019). Síndromes de dispersión de semillas en comunidades de bosque mesófilo de montaña, en la región centro de Veracruz, México. Botanical Sciences, 97(4), 568-578.
Vieira, D. C. M., & Gandolfi, S. (2006). Chuva de sementes e regeneração natural sob três espécies arbóreas em uma floresta em processo de restauração. Brazilian Journal of Botany, 29(4), 541-554. http://dx.doi.org/10.1590/S0100-84042006000400004
Walker, L. R., Walker, J., & Hobbs, R. J. (2007). Linking Restoration and Ecological Succession. Springer, New York, NY.
Wilsey, B. J., Chalcraft, D. R., Bowles, C. M., & Willig, M. R. (2005). Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology, 86(5), 1178-1184. https://doi.org/10.1890/04-0394
Wood, S. L., Rhemtulla, J. M., & Coomes, O. T. (2017). Cropping history trumps fallow duration in long‐term soil and vegetation dynamics of shifting cultivation systems. Ecological Applications, 27(2), 519-531. https://doi.org/10.1002/eap.1462
Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, 96(4), 1463-1468. https://doi.org/10.1073/pnas.96.4.1463
Yu, Q., Rao, X., Chu, C., Liu, S., Lin, Y., Sun, D., Tan, X., Hanif, A. & Shen, W. (2020). Species dominance rather than species asynchrony determines the temporal stability of productivity in four subtropical forests along 30 years of restoration. Forest Ecology and Management, 457. https://doi.org/10.1016/j.foreco.2019.117687
Zahawi, R. A., & Augspurger, C. K. (2006). Tropical forest restoration: tree islands as recruitment foci in degraded lands of Honduras. Ecological Applications, 16(2), 464-478. https://doi.org/10.1890/1051-0761(2006)016[0464:TFRTIA]2.0.CO;2
Zahawi, R. A., Holl, K. D., Cole, R. J., & Reid, J. L. (2013). Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology, 50(1), 88-96. https://doi.org/10.1111/1365-2664.12014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Biología
publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145059463954432
spelling Productividad de frutos en un bosque nativo y en núcleos de restauración del área de influencia del Proyecto Trasvase Manso, Norcasia, CaldasEcosistemasBosquesNucleaciónProductividadSucesión ecológicaRestauraciónIlustraciones, gráficasspa: La conversión de ecosistemas naturales en campos agrícolas y zonas de pastoreo puede ser mitigada realizando procesos de restauración ecológica como la nucleación, y con el uso de herramientas como los estudios de productividad, siendo las trampas de caída de frutos una forma de obtener datos cuantitativos en unidades estándar. En este contexto evaluó la variación en los patrones de productividad de frutos en tres tipos diferentes de coberturas vegetales (VSB, VSA, DB) y en núcleos de restauración ecológica y sus conectores (RE) del área de influencia del transvase Manso, Norcasia-Caldas. Se ubicaron 160 trampas de malla colgante en 4000 metros de transectos, durante un periodo de cinco meses. Los frutos y semillas depositados en cada trampa fueron procesados, se les asignó una identidad taxonómica y un síndrome de dispersión. Con esta información se encontró que el valor de riqueza específica fue mayor para la VSA y la uniformidad en el aporte a la productividad fue mayor para el tipo de cobertura de BD. Al examinar la productividad se encontró que la VSA y los RE contribuyeron en mayor proporción (28% y 27%, respectivamente), frente a las otras coberturas. El grado de similitud, evaluado con distancias euclidianas, encontró que los estadios tempranos de la sucesión en RE-VSB están relacionados entre sí, al igual que el estadio más tardío de la sucesión y el bosque maduro en la VSA-BD. La relación productividad-precipitación, evaluada con una regresión lineal simple, no tuvo una relación significativa y los ANOVA para los síndromes de dispersión por tipo de cobertura no tuvieron diferencia, pero sí se encontró diferencia significativa cuando se compararon los síndromes entre ellos. En conclusión, algunas especies tuvieron un marcado protagonismo en el aporte a la productividad en los estados tempranos de la sucesión y, por el contrario, en el bosque conservado los aportes se registraron de manera uniforme respecto al tiempo de muestreo. La restauración por nucleación impulsó la trayectoria sucesional, promoviendo características importantes a nivel de paisaje como el ensamblaje y la dispersión. Llevó los ecosistemas intervenidos a estados más conservados, y jugó un papel importante en las dinámicas de productividad, con altos aportes de los estados tempranos de la sucesión a la productividad total. Además, recuperó parte de la complejidad vegetal, con especies de sucesión tardía, apoyando así el restablecimiento de la funcionalidad en el ecosistema.eng: The conversion of natural ecosystems in agricultural fields and grazing areas can be mitigated by carrying out ecological restoration processes such as nucleation, and with the use of tools such as productivity studies, with fruit fall traps being a way of obtaining quantitative data in standard units. In this context, it evaluated the variation in fruit productivity patterns in three different types of plant covers (VSB, VSA, DB) and in ecological restoration nuclei and their connectors (RE) in the area of ​​influence of the Manso, Norcasia-Caldas transfer. . 160 hanging mesh traps were located in 4000 meters of transects, during a period of five months. The fruits and seeds deposited in each trap were processed, a taxonomic identity and a dispersal syndrome were assigned to them. With this information, it was found that the specific richness value was higher for the VSA and the uniformity in the contribution to productivity was higher for the type of BD coverage. When examining productivity, it was found that VSA and RE contributed in a higher proportion (28% and 27%, respectively), compared to the other coverages. The degree of similarity, evaluated with Euclidean distances, found that the early stages of the succession in RE-VSB are related to each other, as are the later stages of the succession and the mature forest in the VSA-BD. The productivity-precipitation relationship, evaluated with a simple linear regression, did not have a significant relationship and the ANOVAs for the dispersion syndromes by type of coverage did not differ, but a significant difference was found when the syndromes were compared between them. In conclusion, some species had a marked role in the contribution to productivity in the early stages of the succession and, on the contrary, in the conserved forest the contributions were registered in a uniform way with respect to the sampling time. Nucleation restoration boosted the successional trajectory, promoting important landscape-level features such as assemblage and dispersal. It brought the intervened ecosystems to more conserved states, and played an important role in productivity dynamics, with high contributions from the early stages of the succession to total productivity. In addition, it recovered part of the plant complexity, with species of late succession, thus supporting the restoration of functionality in the ecosystem.Contenido /Resumen/ 1. Introducción / 2. Materiales y métodos / 2.1. Área de estudio/ 2.2. Métodos de muestreo. / 2.3. Análisis estadísticos. / 3. Resultados/ 3.1 Productividad / 3.2. Medidas de diversidad y similitud / 3.3. Dispersión / 4. Discusión / 4.1. Productividad. / 4.2. Medidas de diversidad y similitud / 4.3. Dispersión. / 5. Conclusiones / 6. Referencias/7. Anexos.UniversitarioBiólogo(a)AmbientalFacultad de Ciencias Exactas y NaturalesManizalesBiologíaRamírez-García, MónicaCastaño-Rubiano, NataliaBIONAT: Grupo de investigación en Biodiversidad y Recursos Naturales (Categoría A1)Suarez Muñoz, Jhojan2021-08-11T16:41:28Z2021-08-11T16:41:28Z2023-02-02Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/16954Universidad de CaldasRepositorio institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaAlbornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleationdriven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214(5), 765-776. https://doi.org/10.1007/s11258-013-0206-xAlvarez‐Añorve, M. Y., Quesada, M., Sánchez‐Azofeifa, G. A., Avila‐Cabadilla, L. D., & Gamon, J. A. (2012). Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. American journal of botany, 99(5), 816-826. https://doi.org/10.3732/ajb.1100200Arroyo‐Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F., Morante-Filho, J., Santos, B., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I., Ferry, J. W., Nowakowski, J & Tscharntke, T. (2020). Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404-1420. https://doi.org/10.1111/ele.13535Audino, L. D., Louzada, J., & Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biological Conservation, 169, 248-257. https://doi.org/10.1016/j.biocon.2013.11.023Aussenac, R., Bergeron, Y., Gravel, D., & Drobyshev, I. (2019). Interactions among trees: A key element in the stabilising effect of species diversity on forest growth. Functional Ecology, 33(2), 360-367. https://doi.org/10.1111/1365-2435.13257Bakker, E. S., & Olff, H. (2003). Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. Journal of Vegetation science, 14(4), 465-474. https://doi.org/10.1111/j.1654-1103.2003.tb02173.xBarros, M. F., Ribeiro, E. M., Vanderlei, R. S., de Paula, A. S., Silva, A. B., Wirth, R., Cianciaruso, M. V. & Tabarelli, M. (2021). Resprouting drives successional pathways and the resilience of Caatinga dry forest in human-modified landscapes. Forest Ecology and Management, 482, 118881. https://doi.org/10.1016/j.foreco.2020.118881Bartha, S., Meiners, S. J., Pickett, S. T., & Cadenasso, M. L. (2003). Plant colonization windows in a mesic old field succession. Applied Vegetation Science, 6(2), 205-212. https://doi.org/10.1111/j.1654-109X.2003.tb00581.xBeisel, J. N., Thomas, S., Usseglio-Polatera, P., & Moreteau, J. C. (1996). Assessing changes in community structure by dominance indices: a comparative analysis. Journal of Freshwater Ecology, 11(3), 291-299. https://doi.org/10.1080/02705060.1996.9664451Blake, J. G. (1990). Quantifying abundance of fruits for birds in tropical habitats. Studies in Avian Biology, (13), 73-79.Bowen, M. E., McAlpine, C. A., House, A. P. N., & Smith, G. C. (2007). Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biological Conservation 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012Bullock, S. H. (1995). Plant reproduction in neotropical dry forests. In Seasonally dry tropical forests, 277-303.Cabral, A. C., De Miguel, J. M., Rescia, A. J., Schmitz, M. F., & Pineda, F. D. (2003). Shrub encroachment in Argentinean savannas. Journal of Vegetation Science, 14(2), 145-152. https://doi.org/10.1111/j.1654-1103.2003.tb02139.xCampbell, V., Murphy, G., & Romanuk, T. N. (2011). Experimental design and the outcome and interpretation of diversity–stability relations. Oikos, 120(3), 399-408. https://doi.org/10.1111/j.1600-0706.2010.18768.xCantillo, E. E., & Rangel, J. O. (2002). Caracterización estructural, ordenación y dinámica de la vegetación en la zona de captación de aguas de la microcuenca El Tigre-municipio de Norcasia, Caldas. Colombia forestal, 7(15), 9-28. https://doi.org/10.14483/2256201X.3304Caplat, P., Edelaar, P., Dudaniec, R. Y., Green, A. J., Okamura, B., Cote, J., Ekroos, J., Jonsson, P. R., Londahl, J., Tesson, S. V. & Petit, E.J. (2016). Looking beyond the mountain: dispersal barriers in a changing world. Frontiers in Ecology and the Environment, 14(5), 261-268. https://doi.org/10.1002/fee.1280Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Héctor, A., Srivastava, D. S., Loreau, M. & Weis, J. J. (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, 104(46), 18123-18128. https://doi.org/10.1073/pnas.0709069104Carnevale, N. J., & Montagnini, F. (2002). Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. Forest ecology and management, 163(1-3), 217-227. https://doi.org/10.1016/S0378-1127(01)00581-3Caruso, T., & Migliorini, M. (2006). A new formulation of the geometric series with applications to oribatid (Acari, Oribatida) species assemblages from human-disturbed Mediterranean areas. Ecological Modelling, 195 (3-4), 402-406. https://doi.org/10.1016/j.ecolmodel.2005.11.042Cequinel, A., Capellesso, E. S., Marcilio-Silva, V., Cardoso, F. C., & Marques, M. C. (2018). Determinism in tree turnover during the succession of a tropical forest. Perspectives in Plant Ecology, Evolution and Systematics, 34, 120-128. https://doi.org/10.1016/j.ppees.2018.08.007Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., & Mack, M. C. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242. https://doi.org/10.1038/35012241Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., & Mack, M. C. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242. https://doi.org/10.1038/35012241Chapman, C. A. (1995). Primate seed dispersal: coevolution and conservation implications. Evolutionary Anthropology: Issues, News, and Reviews, 4(3), 74-82. https://doi.org/10.1002/evan.1360040303Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T. & Lescure, J. P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. https://doi.org/10.1007/s00442-005-0100-xChazdon, R. L. (2008). Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458-1460. https://doi.org/10.1126/science.1155365Chazdon, R. L. 2008. Chance and determinism in tropical forest succession. In W. P. Carson and S. A. Schnitzer (Eds.) Tropical forest community ecology. pp. 384– 408. Blackwell, Malden, Massachusetts.Chiarucci, A., Bacaro, G., & Scheiner, S. M. (2011). Old and new challenges in using species diversity for assessing biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2426-2437. https://doi.org/10.1098/rstb.2011.0065Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M., & Chey, V. K. (2000). The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bulletin of Entomological Research, 90(6), 475-496. https://doi.org/10.1017/S0007485300000602Cifuentes, H. M., & Padilla, B. R. (2001). Dicotiledóneas de La Planada, Colombia: lista de especies. Biota Colombiana, 2(1), 59-74.Clark, D. A., & Clark, D. B. (1984). Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. The American Naturalist, 124(6), 769-788. https://doi.org/10.1086/284316Clifford, H. T., & Stephenson, W. (1975). An introduction to numerical classification (Vol. 240). New York: Academic press.Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of populations, 298, 312.Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302- 1310. https://doi.org/10.1126/science.199.4335.1302Corbin, J. D., & Holl, K. D. (2012). Applied nucleation as a forest restoration strategy. Forest Ecology and Management, 265(37-46). https://doi.org/10.1016/j.foreco.2011.10.013Couvet, D. (2002). Deleterious effects of restricted gene flow in fragmented populations. Conservation Biology, 16(2), 369-376. https://doi.org/10.1046/j.1523-1739.2002.99518.xCutler, N. A., Belyea, L. R., & Dugmore, A. J. (2008). The spatiotemporal dynamics of a primary succession. Journal of Ecology, 96(2), 231-246. https://doi.org/10.1111/j.1365- 2745.2007.01344.xDamschen, E. I., Brudvig, L. A., Haddad, N. M., Levey, D. J., Orrock, J. L., & Tewksbury, J. J. (2008). The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences, 105(49), 19078-19083. https://doi.org/10.1073/pnas.0802037105Dener, E., Ovadia, O., Shemesh, H., Altman, A., Chen, S. C., & Giladi, I. (2021). Direct and indirect effects of fragmentation on seed dispersal traits in a fragmented agricultural landscape. Agriculture, Ecosystems & Environment, 309, 107273. https://doi.org/10.1016/j.agee.2020.107273Deng, L., Liu, S., Kim, D. G., Peng, C., Sweeney, S., & Shangguan, Z. (2017). Past and future carbon sequestration benefits of China’s grain for green program. Global Environmental Change, 47(13–20). https://doi.org/10.1016/j.gloenvcha.2017.09.006DeWalt, S. J., & Chave, J. (2004). Structure and biomass of four lowland Neotropical forests. Biotropica, 36(1), 7-19. https://doi.org/10.1111/j.1744-7429.2004.tb00291.xDeWalt, S. J., Maliakal, S. K., & Denslow, J. S. (2003). Changes in vegetation structure and composition along a tropical forest chrono sequence: implications for wildlife. Forest Ecology and Management, 182(1-3), 139-151. https://doi.org/10.1016/S0378- 1127(03)00029-XDíaz, M., & Granadillo, E. (2005). The significance of episodic rains for reproductive phenology and productivity of trees in semiarid regions of northwestern Venezuela. Trees, 19(3), 336- 348. https://doi.org/10.1007/s00468-004-0405-0Díaz-Páez, M., & Polanía, J. (2017). Experiencia piloto de nucleación con especies nativas para restaurar una zona degradada por ganadería en el norte de Antioquia, Colombia. Biota Colombiana, 18(1 Sup), 60-69. https://doi.org/10.21068/c2017.v18s01a03Dillis, C., Marshall, A. J., Webb, C. O., & Grote, M. N. (2018). Prolific fruit output by the invasive tree Bellucia pentamera Naudin (Melastomataceae) is enhanced by selective logging disturbance. Biotropica, 50(4), 598-605. https://doi.org/10.1111/btp.12545Duarte-Jaramillo, D. (Noviembre, 2018). Evaluación de diferentes tratamientos de nucleación como estrategia de restauración ecológica, en su etapa inicial, en áreas de bosque alto andino invadidas por Pteridium aquilinum (L.) Khun. [Tesis de pregrado]. Pontificia Universidad Javeriana. Bogota D.C.Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics, (34), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P., & Foster, R. B. (2011). Directional changes in the species composition of a tropical forest. Ecology, 92(4), 871-882. https://doi.org/10.1890/10-0724.1Ferreira, M. C., Walter, B. M., & Vieira, D. L. (2015). Topsoil translocation for Brazilian savanna restoration: propagation of herbs, shrubs, and trees. Restoration ecology, 23(6), 723-728. https://doi.org/10.1111/rec.12252Foster, S., & Janson, C. H. (1985). The relationship between seed size and establishment conditions in tropical woody plants. Ecology, 66(3), 773-780. https://doi.org/10.2307/1940538Franks, S. J. (2003). Facilitation in multiple life-history stages: evidence for nucleated succession in coastal dunes. Plant Ecology, 168(1), 1-11. https://doi.org/10.1023/A:1024426608966Gandolfi, S., Joly, C. A., & Rodrigues, R. R. (2007). Permeability-impermeability: canopy trees as biodiversity filters. Scientia Agricola, 64 (4), 433-438. https://doi.org/10.1590/S0103- 90162007000400015Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., & Bartomeus, I. (2013). Wild pollinators enhance fruit set of crops regardless of honeybee abundance. Science, 339(6127), 1608-1611. https://doi.org/10.1126/science.1230200Gehring, C., Denich, M., & Vlek, P. L. (2005). Resilience of secondary forest regrowth after slashand-burn agriculture in central Amazonia. Journal of Tropical Ecology, 519- 527.https://doi.org/10.1017/SO266467405002543Gentry, A. H., & Emmons, L. H. (1987). Geographical variation in fertility, phenology, and composition of the understory of Neotropical forests. Biotropica, 216-227. https://doi.org/10.2307/2388339George, L. O., & Bazzaz, F. A. (1999). The fern understory as an ecological filter: growth and survival of canopy‐tree seedlings. Ecology, 80(3), 846-856. https://doi.org/10.1890/0012- 9658(1999)080[0846:TFUAAE]2.0.CO;2Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378-381. https://doi.org/10.1038/nature10425Gonzales-Pinto, A. (2017). Estructura y diversidad florística de la zona terrestre de un humedal urbano en Bogotá (Colombia). Revista Luna Azul, (45), 201-226. https://doi.org/10.17151/luaz.2017.45.11Gorresen, P. M., & Willig, M. R. (2004). Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy, 85(4), 688-697. https://doi.org/10.1644/BWG-125Gross, K., Cardinale, B. J., Fox, J. W., Gonzalez, A., Loreau, M., Wayne Polley, H., Reich, P.B. & van Ruijven, J. (2014). Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. The American Naturalist, 183(1), 1-12. https://doi.org/10.1086/673915Guariguata M. R. & Kattan G. H. (2002). Ecología y Conservación de Bosques Neotropicales. Costa Rica: Asociación de Editoriales Universitarias de América Latina y el Caribe.Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052Hammer, O., Harper, A. T. D., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Windows. Oslo, Norway.Hamrick, J. L. (2004). Response of forest trees to global environmental changes. Forest ecology and management, 197(1-3), 323-335. https://doi.org/10.1016/j.foreco.2004.05.023Hanya, G., & Aiba, S. I. (2010). Fruit fall in tropical and temperate forests: implications for frugivore diversity. Ecological Research, 25(6), 1081-1090. https://doi.org/10.1007/s11284-010-0733-zHector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., Scherer-Lorenzen, M., Spehn, E.M., Bazeley-White, E., Weilenmann, M., & Caldeira, M. C. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91(8), 2213-2220. https://doi.org/10.1890/09-1162.1Hemingway, C. A., & Overdorff, D. J. (1999). Sampling Effects on Food Availability Estimates: Phenological Method, Sample Size, and Species Composition. Biotropica, 31(2), 354-364. https://doi.org/10.1111/j.1744-7429.1999.tb00147.xHillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89(6), 1510-1520. https://doi.org/10.1890/07-1053.1Holdridge, L. (1982). Life zone ecology. Tropical Science Center, San José, Costa RicaHoll, K. D., & Aide, T. M. (2011). When and where to actively restore ecosystems?. Forest Ecology and Management, 261(10), 1558-1563. https://doi.org/10.1016/j.foreco.2010.07.004Holl, K. D., & Zahawi, R. A. (2014). Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 319, 36-43. https://doi.org/10.1016/j.foreco.2014.01.024Holl, K. D., Crone, E. E., & Schultz, C. B. (2003). Landscape restoration: moving from generalities to methodologies. BioScience, 53(5), 491-502. https://doi.org/10.1641/0006- 3568(2003)053[0491:LRMFGT]2.0.CO;2Holl, K. D., Stout, V. M., Reid, J. L., & Zahawi, R. A. (2013). Testing heterogeneity–diversity relationships in tropical forest restoration. Oecologia, 173(2), 569-578. https://doi.org/10.1007/s00442-013-2632-9Howorth, R. T., & Pendry, C. A. (2006). Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodiversity & Conservation, 15(2), 693-715. https://doi.org/10.1007/s10531-004-1061-9Jackson, S. T., & Hobbs, R. J. (2009). Ecological restoration in the light of ecological history. Science, (325) 567–569. https://doi.org/10.1126/science.1172977Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(940), 501-528. https://doi.org/10.1086/282687Johst, K., Brandl, R., & Eber, S. (2002). Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos, 98(2), 263-270. https://doi.org/10.1034/j.1600- 0706.2002.980208.xJones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78(7), 1946-1957. https://doi.org/10.1890/0012- 9658(1997)078[1946:PANEOO]2.0.CO;2Lasky, J. R., Uriarte, M., Boukili, V. K., & Chazdon, R. L. (2014). Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, 111(15), 5616-5621. https://doi.org/10.1073/pnas.1319342111Letcher, S. G., & Chazdon, R. L. (2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica, 41(5), 608- 617. https://doi.org/10.1111/j.1744-7429.2009.00517.xLiu, X., Liu, X., Shao, X., Songer, M., He, B., He, X., & Zhu, Y. (2018). Plant diversity patterns of temperate forests with logging and restoration practices in northwest China. Ecological Engineering, 124, 116-122. https://doi.org/10.1016/j.ecoleng.2018.09.017Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Paz, H., PérezGarcía, E. A., Romero-Pérez, I. E., Tauro, A. & Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94(6), 1211- 1216. https://doi.org/10.1890/12-1850.1Lortie, C. J., Brooker, R. W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F. I., & Callaway, R. M. (2004). Rethinking plant community theory. Oikos, 107(2), 433-438. https://doi.org/10.1111/j.0030-1299.2004.13250.xMADS, Ministerio de Ambiente y Desarrollo Sostenible de Colombia. (2012). Manual para la asignación de compensaciones por pérdida de biodiversidad. Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, D.C., Colombia.MADS, Ministerio de Ambiente y Desarrollo Sostenible de Colombia. (2015). Plan Nacional de Restauración: restauración ecológica, rehabilitación y recuperación de áreas disturbadas. Bogotá, D.C., Colombia.MADS, Ministerio de Ambiente y Desarrollo sostenible. (2017). Plan de acción de biodiversidad para la implementación de la Política Nacional para la Gestión Integral de la Biodiversidad y sus Servicios Ecosistémicos 2016-2030. Bogotá, D.C., Colombia.Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton University Press, New Jersey, 179 pp.Margalef, R. (1977). Ecología. Ediciones Omega. Barcelona, 951 pMarquete, R. (2007). O gênero Casearia Jacq. no estado do Rio de Janeiro (Brasil). Journal of Neotropical Biology, 3(1), 101-102). https://doi.org/10.5216/rbn.v13i1.26435Maser, C., Thomas, J. W., & Anderson, R. G. (1984). Wildlife habitats in managed rangelands - the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2). Gen. Tech. Rep. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.Mazancourt, C., Isbell, F., Larocque, A., Berendse, F., De Luca, E., Grace, J. B., Haegeman, B., Wayne Polley, H., Roscher, C., Schmid, B. & Tilman, D. (2013). Predicting ecosystem stability from community composition and biodiversity. Ecology letters, 16(5), 617-625. https://doi.org/10.1111/ele.12088McConkey, K. R., Prasad, S., Corlett, R. T., Campos-Arceiz, A., Brodie, J. F., Rogers, H., & Santamaria, L. (2012). Seed dispersal in changing landscapes. Biological Conservation, 146(1), 1-13. https://doi.org/10.1016/j.biocon.2011.09.018Metzger, J. P., Alves, L. F., Goulart, W., Teixeira, A. M. G., Simões, S. J. C., & Catharino, E. L. (2006). An important biological area, but still poorly known: The Morro Grande Forest 43 Reserve. Biota Neotropica, 6(2), 45–78. https://doi.org/10.1590/S1676- 06032006000200003Montagnini, F. (2008). Management for sustainability and restoration of degraded pastures in the Neotropics. In Post-agricultural succession in the Neotropics (pp. 265-295). Springer, New York, NY. https://doi.org/10.1007/978-0-387-33642-8_13Moonen, P. C., Verbist, B., Bosela, F. B., Norgrove, L., Dondeyne, S., Van Meerbeek, K., Kearsley, E., Verbeeck, H., Vermeir, P., Boeckx, P., & Muys, B. (2019). Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Science of The Total Environment, 659, 101-114. https://doi.org/10.1016/j.scitotenv.2018.12.138Morellato, L. P. C., Abernethy, K., & Mendoza, I. (2018). Rethinking tropical phenology: insights from long‐term monitoring and novel analytical methods. Biotropica, 50(3), 371-373. https://doi.org/10.1111/btp.12562Morellato, L. P. C., Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G. G., Cancian, L. F., Carstensen, D. W., Escobar, D. F., Leite, P. T., & Mendoza, I. (2016). Linking plant phenology to conservation biology. Biological Conservation, (195) 60-72. https://doi.org/10.1016/j.biocon.2015.12.033Moreno-Mateos, D., Barbier, E. B., Jones, P. C., Jones, H. P., Aronson, J., López-López, J. A., McCrackin, M. L., Meli, P., Montoya, D., & Benayas, J. M. R. (2017). Anthropogenic ecosystem disturbance and the recovery debt. Nature Communications, 8(1), 1-6. https://doi.org/10.1038/ncomms14163Muller‐Landau, H. C., Wright, S. J., Calderón, O., Condit, R., & Hubbell, S. P. (2008). Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology, 96(4), 653-667. https://doi.org/10.1111/j.1365-2745.2008.01399.xMuller‐Landau, H.C. & Hardesty, B.D. (2005). Seed dispersal of woody plants in tropical forests: concepts, examples, and future directions. Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity (eds D. Burslem, M. Pinard & S. Hartley), pp. 267– 309. Cambridge University Press, Cambridge.Muniz-Castro, M. A., Williams-Linera, G., & Benayas, J. M. R. (2006). Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. Journal of Tropical Ecology, 22(4), 431-440. https://doi.org/10.1017/S0266467406003221Murcia, C., Guariguata, M. R., Quintero-Vallejo, E., & Ramírez, W. (2017). La restauración ecológica en el marco de las compensaciones por pérdida de biodiversidad en Colombia: Un análisis crítico (Vol. 176). CIFOR. https://doi.org/10.17528/cifor/006611Murcia, C., Guariguata, M., & Montes, E. (2015). Estado del monitoreo de la restauración ecológica en Colombia. En Aguilar-Garavito, M., & Ramírez, W. Monitoreo a procesos de 44 restauración ecológica, aplicado a ecosistemas terrestres. (pp. 18-26). Instituto de Investigación Alexander Von Humboldt. Bogotá, ColombiaNaranjo, F. A. C., David, H., & Gómez, S. E. H. (2010). Flora de la Miel: Central Hidroeléctrica Miel I, Oriente de Caldas: guía ilustrada. Universidad de Antioquia.Naranjo, F. A. C., David, H., Hoyos, S. G., & Palacio, F. R. (2011). Flora de embalses: Central Hidroeléctricas de ISAGEN en el oriente Antioqueño San Carlos, Jaguas y Calderas: guía ilustrada. Universidad de Antioquia.Nathan, R., & Muller-Landau, H. (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution, 15, 278–285. https://doi.org/10.1016/S0169-5347(00)01874-7Norden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de la Cerda, I., Van Breugel, M., Lebrija-Trejos, E., Meave, J. A., Vandermeer, J., Williamson, G. B., & Finegan, B. (2015). Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences, 112(26), 8013-8018. https://doi.org/10.1073/pnas.1500403112Norgrove, L., & Beck, J. (2016). Biodiversity function and resilience in tropical agroforestry systems including shifting cultivation. Current Forestry Reports, 2(1), 62-80 https://doi.org/10.1007/s40725-016-0032-1Orozco-Zamora, C., & Montagnini, F. (2006). Lluvia de semillas y sus agentes dispersores en plantaciones forestales de nueve especies nativas en parcelas puras y mixtas en la Estación Biológica La Selva, Costa Rica. Recursos Naturales y Ambiente (CATIE). 49-50 p. 131- 140.Ouyang, S., Xiang, W., Wang, X., Zeng, Y., Lei, P., Deng, X., & Peng, C. (2016). Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management, (372), 291-302. https://doi.org/10.1016/j.foreco.2016.04.020Pardini, R., De Souza, S. M., Braga-Neto, R., & Metzger, J. P. (2005). The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological conservation, 124(2), 253-266. https://doi.org/10.1016/j.biocon.2005.01.033Pardini, R., Faria, D., Accacio, G. M., Laps, R. R., Mariano-Neto, E., Paciencia, M. L., Dixo, M., & Baumgarten, J. (2009). The challenge of maintaining Atlantic forest biodiversity: a multitaxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation, 142(6), 1178-1190. https://doi.org/10.1016/j.biocon.2009.02.010Phillips, O. L., Hall, P., Gentry, A. H., Sawyer, S. A., & Vasquez, R. (1994). Dynamics and species richness of tropical rain forests. Proceedings of the National Academy of Sciences, 91(7), 2805-2809. https://doi.org/10.1073/pnas.91.7.2805Pinotti, B. T., Pagotto, C. P., & Pardini, R. (2012). Habitat structure and food resources for wildlife across successional stages in a tropical forest. Forest ecology and management, 283, 119- 127. https://doi.org/10.1016/j.foreco.2012.07.020Pinto, E., Pérez, A. J., Ulloa, C. U., & Cuesta, F. (2018). Árboles representativos de los bosques montanos del noroccidente de Pichincha, Ecuador. Consorcio para el Desarrollo Sostenible de la Ecorregión Andina-CONDESAN.Polgar, C. A., & Primack, R. B. (2011). Leaf‐out phenology of temperate woody plants: from trees to ecosystems. New phytologist, 191(4), 926-941. https://doi.org/10.1111/j.1469- 8137.2011.03803.xPrach, K., & Walker, L. R. (2011). Four opportunities for studies of ecological succession. Trends in Ecology & Evolution, 26(3), 119-123. https://doi.org/10.1016/j.tree.2010.12.007Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. H. (2018). Trends in global agricultural land use: implications for environmental health and food security. Annual review of plant biology, (69) 789-815. https://doi.org/10.1146/annurev-arplant-042817-040256Razola, I., & Rey Benayas, J. M. (2009). Effects of woodland islets introduced in a Mediterranean agricultural landscape on local bird communities. Web Ecology, 9(1), 44-53. https://doi.org/10.5194/we-9-44-2009Rey Benayas, J. M., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, (325) 1121– 1124. https://doi.org/10.1126/science.1172460Rivera, G., Elliott, S., Caldas, L. S., Nicolossi, G., Coradin, V. T., & Borchert, R. (2002). Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees, 16(7), 445-456. https://doi.org/10.1007/s00468-002-0185-3Robiglio, V., & Sinclair, F. (2011). Maintaining the conservation value of shifting cultivation landscapes requires spatially explicit interventions. Environmental management, 48(2), 289-306. https://doi.org/10.1007/s00267-010-9611-2Robinson, G. R., & Handel, S. N. (2000). Directing spatial patterns of recruitment during an experimental urban woodland reclamation. Ecological Applications, 10, 174–188. https://doi.org/10.1890/1051-0761(2000)010[0174:DSPORD]2.0.CO;2Rodriguez da Silva, U. D. S., & Matos, D. M. D. S. (2006). The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. 46 Biodiversity and Conservation, 15(9), 3035-3043. https://doi.org/10.1007/s10531-005- 4877-zRodríguez, S. B., Freitas, M. G., Campos-Filho, E. M., do Carmo, G. H. P., da Veiga, J. M., Junqueira, R. G. P., & Vieira, D. L. M. (2019). Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. Forest Ecology and Management, 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J., & Teixeira, L. H. (2020). Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecological Engineering, 158, 106031. https://doi.org/10.1016/j.ecoleng.2020.106031Saldarriaga, J. G., West, D. C., Tharp, M. L., & Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. The Journal of Ecology, 938-958. https://doi.org/10.2307/2260625Schmitz, O. J. (2003). Top predator control of plant biodiversity and productivity in an old‐field ecosystem. Ecology Letters, 6(2), 156-163. https://doi.org/10.1046/j.1461- 0248.2003.00412.xShapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.2307/2333709Shoo, L. P., Freebody, K., Kanowski, J., & Catterall, C. P. (2016). Slow recovery of tropical old‐ field rainforest regrowth and the value and limitations of active restoration. Conservation Biology, 30(1), 121-132. https://doi.org/10.1111/cobi.12606Siminski, A., Fantini, A. C., Guries, R. P., Ruschel, A. R., & Dos Reis, M. S. (2011). Secondary forest succession in the Mata Atlántica, Brazil: floristic and phytosociological trends. International Scholarly Research Notices, 2011: 1–19. https://doi.org/10.5402/2011/759893Stevens, R. D., & Willig, M. R. (2002). Geographical ecology at the community level: perspectives on the diversity of New World bats. Ecology, 83(2), 545-560. https://doi.org/10.1890/0012- 9658(2002)083[0545:GEATCL]2.0.CO;2Stevenson, P. R. (2002). Frugivory and seed dispersal by woolly monkeys at Tinigua National Park, Colombia. Ph.D. thesis, State University of New York at Stony BrookStevenson, P. R. (2004). Phenological patterns of woody vegetation at Tinigua Park, Colombia: methodological comparisons with emphasis on fruit production/Patrones fenológicos de vegetación leñosa en el Parque Tinigua, Colombia: comparaciones metodológicas con énfasis en la producción de frutos. Caldasia, 125-150.Stevenson, P. R., & Vargas, I. N. (2008). Sample size and appropriate design of fruit and seed traps in tropical forests. Journal of Tropical Ecology, 24(1), 95-105. https://doi.org/10.1017/S0266467407004646Stevenson, P. R., Castellanos, M. C., Pizarro, J. C., & Garavito, M. (2002). Effects of seed dispersal by three ateline monkey species on seed germination at Tinigua National Park, Colombia. International Journal of Primatology, 23(6), 1187-1204. https://doi.org/10.1023/A:1021118618936Stevenson, P. R., Quiñones, M. J., & Ahumada, J. A. (1998). Annual variation in fruiting pattern using two different methods in a lowland tropical forest, Tinigua National Park, Colombia. Biotropica, 30(1), 129-134.Suganuma, M. S., & Durigan, G. (2015). Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restoration Ecology, 23(3), 238-251. https://doi.org/10.1111/rec.12168Sung, Y. H., Karraker, N. E., & Hau, B. C. (2012). Terrestrial herpetofaunal assemblages in secondary forests and exotic Lophostemon confertus plantations in South China. Forest Ecology and Management, 270, 71-77. https://doi.org/10.1016/j.foreco.2012.01.011Teixeira, L. H., Weisser, W., & Ganade, G. (2016). Facilitation and sand burial affect plant survival during restoration of a tropical coastal sand dune degraded by tourist cars. Restoration Ecology, 24(3), 390-397. https://doi.org/10.1111/rec.12327Toribio, M. M., Martínez, C., Cecconc, E., & Guariguata, M. R. (2017). Planes actuales de restauración ecológica en Latinoamérica: Avances y omisiones. Revista de Ciencias Ambientales, 51(2), 1-30. https://doi.org/10.15446/ga.v22n2.82227Torres-Rodríguez, S., Díaz-Triana, J. E., Villota, A., Gómez, W., & Avella-M, A. (2019). Diagnóstico ecológico, formulación e implementación de estrategias para la restauración de un bosque seco tropical interandino (Huila, Colombia). Caldasia, 41(1), 42-59. https://dx.doi.org/10.15446/caldasia.v41n1.71275Trujillo-Miranda, A. L., Toledo-Aceves, T., López-Barrera, F., & Gerez-Fernández, P. (2018). Active versus passive restoration: Recovery of cloud forest structure, diversity, and soil condition in abandoned pastures. Ecological Engineering, 117, 50-61. https://doi.org/10.1016/j.ecoleng.2018.03.011Trujillo-Miranda, A. L., Toledo-Aceves, T., López-Barrera, F., & Gerez-Fernández, P. (2018). Active versus passive restoration: Recovery of cloud forest structure, diversity, and soil condition in abandoned pastures. Ecological Engineering, 117, 50-61. https://doi.org/10.1016/j.ecoleng.2018.03.011Van Breugel, M., Hall, J. S., Craven, D., Bailon, M., Hernández, A., Abbene, M., & Van Breugel, P. (2013). Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PloS one, 8(12), e82433. https://doi.org/10.1371/journal.pone.0082433Van der Pijl, L. (1972). Principles of Dispersal in Higher Plants. (2da. ed.). Berlin, Heidelberg: by Springer-Verlag.Van Oijen, D., Feijen, M., Hommel, P., Den Ouden, J., & De Waal, R. (2005). Effects of tree species composition on within‐forest distribution of understorey species. Applied Vegetation Science, 8(2), 155-166. https://doi.org/10.1111/j.1654-109X.2005.tb00641.xVelázquez-Escamilla, T. L., Díaz-Castelazo, C., Ruiz-Guerra, B., & Velázquez-Rosas, N. (2019). Síndromes de dispersión de semillas en comunidades de bosque mesófilo de montaña, en la región centro de Veracruz, México. Botanical Sciences, 97(4), 568-578.Vieira, D. C. M., & Gandolfi, S. (2006). Chuva de sementes e regeneração natural sob três espécies arbóreas em uma floresta em processo de restauração. Brazilian Journal of Botany, 29(4), 541-554. http://dx.doi.org/10.1590/S0100-84042006000400004Walker, L. R., Walker, J., & Hobbs, R. J. (2007). Linking Restoration and Ecological Succession. Springer, New York, NY.Wilsey, B. J., Chalcraft, D. R., Bowles, C. M., & Willig, M. R. (2005). Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology, 86(5), 1178-1184. https://doi.org/10.1890/04-0394Wood, S. L., Rhemtulla, J. M., & Coomes, O. T. (2017). Cropping history trumps fallow duration in long‐term soil and vegetation dynamics of shifting cultivation systems. Ecological Applications, 27(2), 519-531. https://doi.org/10.1002/eap.1462Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, 96(4), 1463-1468. https://doi.org/10.1073/pnas.96.4.1463Yu, Q., Rao, X., Chu, C., Liu, S., Lin, Y., Sun, D., Tan, X., Hanif, A. & Shen, W. (2020). Species dominance rather than species asynchrony determines the temporal stability of productivity in four subtropical forests along 30 years of restoration. Forest Ecology and Management, 457. https://doi.org/10.1016/j.foreco.2019.117687Zahawi, R. A., & Augspurger, C. K. (2006). Tropical forest restoration: tree islands as recruitment foci in degraded lands of Honduras. Ecological Applications, 16(2), 464-478. https://doi.org/10.1890/1051-0761(2006)016[0464:TFRTIA]2.0.CO;2Zahawi, R. A., Holl, K. D., Cole, R. J., & Reid, J. L. (2013). Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology, 50(1), 88-96. https://doi.org/10.1111/1365-2664.12014http://purl.org/coar/access_right/c_14cboai:repositorio.ucaldas.edu.co:ucaldas/169542024-09-21T02:15:12Z