Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático
Figuras, tablas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22352
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22352
- Palabra clave:
- 570 - Biología
1. Ciencias Naturales
Akt/mTOR
Glioma
PINK1
Cannabinoides
Adenocarcinoma prostático
U87MG
PC3
Biología
Investigación médica
Biología molecular
Cáncer
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUCALDA_25b7f9e1e989cbaa631f6705e94f51c5 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22352 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
title |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
spellingShingle |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático 570 - Biología 1. Ciencias Naturales Akt/mTOR Glioma PINK1 Cannabinoides Adenocarcinoma prostático U87MG PC3 Biología Investigación médica Biología molecular Cáncer |
title_short |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
title_full |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
title_fullStr |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
title_full_unstemmed |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
title_sort |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático |
dc.contributor.none.fl_str_mv |
Arboleda, Gonzalo Turizo Smith, Andrés David Velásquez Méndez, Karen Lizzette Universidad de Caldas |
dc.subject.none.fl_str_mv |
570 - Biología 1. Ciencias Naturales Akt/mTOR Glioma PINK1 Cannabinoides Adenocarcinoma prostático U87MG PC3 Biología Investigación médica Biología molecular Cáncer |
topic |
570 - Biología 1. Ciencias Naturales Akt/mTOR Glioma PINK1 Cannabinoides Adenocarcinoma prostático U87MG PC3 Biología Investigación médica Biología molecular Cáncer |
description |
Figuras, tablas |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06-10T15:55:17Z 2025-06-10T15:55:17Z 2025-06-10 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22352 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22352 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Alberts, B., Bray, D., & Hopkin, K. (2006). Introducción a la biología celular. Ed. Médica Panamericana. Aldecoa, F., & Ávila, J. (2021). La vía canónica PI3K/AKT/mTOR y sus alteraciones en cáncer. Horizonte Médico (Lima), 21(4). Allen, M., Bjerke, M., Edlund, H., Nelander, S., & Westermark, B. (2016). Origin of the U87MG glioma cell line: Good news and bad news. Science translational medicine, 8(354), 354re3-354re3. Alzahrani, A. S. (2019). PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. In Seminars in cancer biology (Vol. 59, pp. 125-132). Academic Press. Antonini, M., Aguzzi, C., Fanelli, A., Frassineti, A., Zeppa, L., Morelli, M. B., ... & Luongo, M. (2023). The effects of a combination of Medical Cannabis, Melatonin, and oxygen ozone therapy on Glioblastoma Multiforme: a Case Report. reports, 6(2), 22. Bermúdez Garcell, A. J., Serrano Gámez, N. B., Teruel Ginés, R., Leyva Montero, M. D. L. Á., & Naranjo Coronel, A. A. (2019). Biología del cáncer. Correo Científico Médico, 23(4), 1394-1416. Borhani, S., Mozdarani, H., Babalui, S., Bakhshandeh, M., & Nosrati, H. (2017). In vitro radiosensitizing effects of temozolomide on U87MG cell lines of human glioblastoma multiforme. Iranian journal of medical sciences, 42(3), 258. Bozulic, L., Surucu, B., Hynx, D., & Hemmings, B. A. (2008). PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Molecular cell, 30(2), 203-213. Chen, H., Zhou, L., Wu, X., Li, R., Wen, J., Sha, J., & Wen, X. (2016). The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front Biosci (Landmark Ed), 21(5), 1084 1091. Contreras Zárate, MJ (2016). Efecto del silenciamiento de los genes PINK1 y Parkin sobre la dinámica y autofagia mitocondrial en un modelo de neuronas dopaminérgicas (Tesis doctoral). Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378. Davis, M. P. (2016). Cannabinoids for symptom management and cancer therapy: the evidence. Journal of the National Comprehensive Cancer Network, 14(7), 915-922. De Petrocellis, L., Ligresti, A., Schiano Moriello, A., Iappelli, M., Verde, R., Stott, C. G., ... & Di Marzo, V. (2013). Non‐THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro‐apoptotic effects and underlying mechanisms. British journal of pharmacology, 168(1), 79-102. de Vaca, R. P. C., Cárdenas-Cárdenas, E., Mondragón-Terán, P., & Solís, A. A. E. V. (2018). Biología molecular del cáncer y las nuevas herramientas en oncología. Revista de Especialidades Médico-Quirúrgicas, 22(4), 171-181. Fayard, E., Tintignac, L. A., Baudry, A., & Hemmings, B. A. (2005). Protein kinase B/Akt at a glance. Journal of cell science, 118(24), 5675-5678. Fraguas‐Sánchez, A. I., Martín‐Sabroso, C., & Torres‐Suárez, A. I. (2018). Insights into the effects of the endocannabinoid system in cancer: a review. British journal of pharmacology, 175(13), 2566-2580. Fu, Z., Zhao, P. Y., Yang, X. P., Li, H., Hu, S. D., Xu, Y. X., & Du, X. H. (2023). Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Frontiers in pharmacology, 14, 1094020. Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., ... & Kroemer, G. (2012). Molecular mechanisms of cisplatin resistance. Oncogene, 31(15), 1869-1883. Gao, Y., Wu, Y., Zhang, N., Yuan, H., Wang, F., Xu, H., ... & Cao, X. (2021). IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87-MG cells. Molecular Medicine Reports, 23(5), 354. Gupta, A., Anjomani-Virmouni, S., Koundouros, N., Dimitriadi, M., Choo-Wing, R., Valle, A., ... & Poulogiannis, G. (2017). PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-nitrosylation. Molecular cell, 65(6), 999-1013. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell, 144(5), 646-674. Happold, C., Roth, P., Wick, W., Schmidt, N., Florea, A. M., Silginer, M., ... & Weller, M. (2012). Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. Journal of neurochemistry, 122(2), 444-455. Hart, J. R., & Vogt, P. K. (2011). Phosphorylation of AKT: a mutational analysis. Oncotarget, 2(6), 467. Hori, Y. S., Hosoda, R., Akiyama, Y., Sebori, R., Wanibuchi, M., Mikami, T., ... & Kuno, A. (2015). Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. Journal of neuro-oncology, 122, 11-20. Huang, W., Ding, X., Ye, H., Wang, J., Shao, J., & Huang, T. (2018). Hypoxia enhances the migration and invasion of human glioblastoma U87 cells through PI3K/Akt/mTOR/HIF 1α pathway. Neuroreport, 29(18), 1578-1585. Javid, F. A., Phillips, R. M., Afshinjavid, S., Verde, R., & Ligresti, A. (2016). Cannabinoid pharmacology in cancer research: A new hope for cancer patients?. European journal of pharmacology, 775, 1-14 Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F., & Jones, L. W. (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC 3). Investigative urology, 17(1), 16-23. Kawakami, Y., Nishimoto, H., Kitaura, J., Maeda-Yamamoto, M., Kato, R. M., Littman, D. R., ... & Kawakami, T. (2004). Protein Kinase C βII Regulates Akt Phosphorylation on Ser-473 in a Cell Type-and Stimulus-specific Fashion*. Journal of Biological Chemistry, 279(46), 47720-47725. Kimbrough‐Allah, M. N., Millena, A. C., & Khan, S. A. (2018). Differential role of PTEN in transforming growth factor β (TGF‐β) effects on proliferation and migration in prostate cancer cells. The Prostate, 78(5), 377-389. Koltai, H., & Shalev, N. (2022). Anti-Cancer Activity of Cannabis sativa Phytocannabinoids: Molecular Mechanisms and Potential in the Fight against Ovarian Cancer and Stem Cells. https://doi.org/10.3390/cancers14174299 Cancers, 14(17), 4299. Lanskikh, D., Kuziakova, O., Baklanov, I., Penkova, A., Doroshenko, V., Buriak, I., ... & Kumeiko, V. (2024). Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells, 13(24), 2085. Levine, B., & Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell, 176(1), 11-42. Ligresti, A., Moriello, A. S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., ... & Di Marzo, V. (2006). Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. The Journal of pharmacology and experimental therapeutics, 318(3), 1375-1387. Litvinov, I. V., Antony, L., Dalrymple, S. L., Becker, R., Cheng, L., & Isaacs, J. T. (2006). PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. The Prostate, 66(12), 1329-1338. Litvinov, I. V., Antony, L., Dalrymple, S. L., Becker, R., Cheng, L., & Isaacs, J. T. (2006). PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. The Prostate, 66(12), 1329-1338. Liu, J., Zhang, C., Hu, W., & Feng, Z. (2019). Tumor suppressor p53 and metabolism. Journal of molecular cell biology, 11(4), 284-292. Liu, S. L., Wang, Z. G., Hu, Y., Xin, Y., Singaram, I., Gorai, S., ... & Cho, W. (2018). Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3, 4 bisphophate: isoform-and site-specific activation of Akt. Molecular cell, 71(6), 1092-1104. Lopez Alvarez, E. M. (2019). Métodos para determinar la viabilidad celular con aplicación en odontología. Lynch, D. K., Ellis, C. A., Edwards, P. A., & Hiles, I. D. (1999). Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene, 18(56), 8024-8032. Morales, P., & Jagerovic, N. (2021). Cannabinoid-based Anti-cancer Strategies: Slowly Approaching the Bedside. In Frontiers in Anti-Cancer Drug Discovery: Volume 12 (pp. 1 36). Bentham Science Publishers. Munson, A. E., Harris, L. S., Friedman, M. A., Dewey, W. L., & Carchman, R. A. (1975). Antineoplastic activity of cannabinoids. Journal of the National Cancer Institute, 55(3), 597-602. Murata, H., Sakaguchi, M., Jin, Y., Sakaguchi, Y., Futami, J. I., Yamada, H., ... & Huh, N. H. (2011). A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. Journal of Biological Chemistry, 286(9), 7182-7189. Nigro, E., Formato, M., Crescente, G., & Daniele, A. (2021). Cancer Initiation, Progression and Resistance: Are Phytocannabinoids from Cannabis sativa L. Promising Compounds? Molecules, 26(9), 2668. O'Flanagan, C. H., & O'Neill, C. (2014). PINK1 signalling in cancer biology. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1846(2), 590-598. Ortega, M. A., Fraile-Martínez, O., Asúnsolo, Á., Buján, J., García-Honduvilla, N., & Coca, S. (2020). Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. Journal of oncology, 2020(1), 9258396. Paul-Samojedny, M., Kokocińska, D., Samojedny, A., Mazurek, U., Partyka, R., Lorenz, Z., & Wilczok, T. (2005). Expression of cell survival/death genes: Bcl-2 and Bax at the rate of colon cancer prognosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1741(1-2), 25-29. Samuels, Y., & Waldman, T. (2010). Oncogenic mutations of PIK3CA in human cancers. Phosphoinositide 3-kinase in Health and Disease: Volume 2, 21-41. Segretín, M. E. (2003). Los cultivos celulares y sus aplicaciones I (cultivos de células animales). Argen Bio. Seltzer, E. S., Watters, A. K., MacKenzie, D., Granat, L. M., & Zhang, D. (2020). Cannabidiol (CBD) as a promising anti-cancer drug. Cancers, 12(11), 3203. Sepulveda, D. E., Vrana, K. E., Kellogg, J. J., Bisanz, J. E., Desai, D., Graziane, N. M., & Raup-Konsavage, W. M. (2024). The potential of cannabichromene (CBC) as a therapeutic agent. The Journal of Pharmacology and Experimental Therapeutics, 391(2), 206-213. Sharma, S., Salehi, F., Scheithauer, B. W., Rotondo, F., Syro, L. V., & Kovacs, K. (2009). Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer research, 29(10), 3759-3768. Shrivastava, A., Kuzontkoski, P. M., Groopman, J. E., & Prasad, A. (2011). Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Molecular cancer therapeutics, 10(7), 1161-1172. Solinas, M., Massi, P., Cinquina, V., Valenti, M., Bolognini, D., Gariboldi, M., ... & Parolaro, D. (2013). Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One, 8(10), e76918. Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G. F., Holmes, A. B., ... & Hawkins, P. T. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science, 279(5351), 710-714. Tai, S., Sun, Y., Squires, J. M., Zhang, H., Oh, W. K., Liang, C. Z., & Huang, J. (2011). PC3 is a cell line characteristic of prostatic small cell carcinoma. The Prostate, 71(15), 1668-1679. Takeda, S., Okajima, S., Miyoshi, H., Yoshida, K., Okamoto, Y., Okada, T., ... & Aramaki, H. (2012). Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration. Toxicology letters, 214(3), 314-319. Toker, A., & Newton, A. C. (2000). Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. Journal of Biological Chemistry, 275(12), 8271-8274. Toomey, S., Carr, A., Mezynski, M. J., Elamin, Y., Rafee, S., Cremona, M., ... & Hennessy, B. T. (2020). Identification and clinical impact of potentially actionable somatic oncogenic mutations in solid tumor samples. Journal of translational medicine, 18, 1-14. Ucbek, A., Özünal, Z. G., Uzun, Ö., & Gepdiremen, A. (2014). Effect of metformin on the human T98G glioblastoma multiforme cell line. Experimental and therapeutic medicine, 7(5), 1285-1290. Vargas, N., & González, C. (2016). Técnicas de cultivos celulares e ingeniería de tejidos. Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México, D.F. Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., ... & Zhao, G. (2023). The mitophagy pathway and its implications inhuman diseases. Signal transduction and targeted therapy, 8(1), 304. Yang, J. M., Schiapparelli, P., Nguyen, H. N., Igarashi, A., Zhang, Q., Abbadi, S., ... & Iijima, M. (2017). Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein localization. Oncogene, 36(26), 3673-3685. stability and nuclear Zanni, R., & Iglesias, M. C. R. (2016). Diseño por Topología molecular y ensayos farmacológicos de nuevos inhibidores frente a WNT/β-CATENINA Y PI3K/Akt/mTOR (Doctoral dissertation, Universitat de València, Facultat de Farmàcia). |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
33 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145020222046208 |
spelling |
Efecto de los cannabinoides CBC y CBDA sobre la vía PINK1/AKT/mTOR y la viabilidad de modelos in vitro de glioma maligno y adenocarcinoma prostático570 - Biología1. Ciencias NaturalesAkt/mTORGliomaPINK1CannabinoidesAdenocarcinoma prostáticoU87MGPC3BiologíaInvestigación médicaBiología molecularCáncerFiguras, tablasEl cáncer está definido como un conjunto de enfermedades en las que las células pierden la capacidad de seguir las limitaciones normales del crecimiento y adquieren la habilidad de invadir o propagarse a otras áreas del organismo. A pesar de los tratamientos estándar, los resultados clínicos siguen siendo desalentadores, lo que resalta la necesidad de nuevas estrategias terapéuticas. Los cannabinoides CBDA y CBC podrían ser una alternativa debido a sus propiedades anti-tumorales al modular la expresión de proteínas clave en el crecimiento, invasión, angiogénesis y supervivencia celular, como la vía AKT/mTOR. El objetivo de este estudio fue evaluar el efecto de los cannabinoides CBC y CBDA sobre la viabilidad y citotoxicidad en las líneas celulares de glioma maligno (U87 MG) y adenocarcinoma prostático (PC3). Para esto se determinó el IC50 de los cannabinoides mediante el ensayo MTT y se evaluó la activación de la vía AKT/mTOR mediante inmunofluorescencia. También se determinaron los niveles de expresión de los genes pro-apoptótico (BAX) y anti-apoptótico (BCL2) mediante RT-qPCR. Los cannabinoides redujeron significativamente la expresión de PINK1, la fosforilación de mTOR y Akt, y la proliferación celular. Sin embargo, los análisis de expresión génica sugieren que la muerte celular inducida no parece ser apoptótica. Los cannabinoides impactan las vías de proliferación y supervivencia celular y afectan la función mitocondrial, conduciendo a la muerte celular. Estos compuestos podrían ser una opción terapéutica prometedora para el tratamiento del glioma maligno y adenocarcinoma prostático.Cancer is defined as a group of diseases in which cells lose the ability to follow normal growth constraints and have the ability to invade or spread to other areas of the body. Despite standard treatments, clinical outcomes remain discouraging, highlighting the need for new therapeutic strategies. The cannabinoids CBDA and CBC could be an alternative due to their anti-tumor properties by modulating the expression of key proteins in growth, invasion, angiogenesis, and cell survival, such as the AKT/mTOR pathway. The objective of this study was to evaluate the effect of the cannabinoids CBC and CBDA on the viability and cytotoxicity in malignant glioma (U87 MG) and prostatic adenocarcinoma (PC3) cell lines. For this, the IC50 of the cannabinoids was determined using the MTT assay, and the activation of the AKT/mTOR pathway was evaluated by immunofluorescence. The expression levels of the pro-apoptotic (BAX) and anti-apoptotic (BCL2) genes were also determined by RT-qPCR. The cannabinoids significantly reduced the expression of PINK1, the phosphorylation of mTOR and Akt, and cell proliferation. However, gene expression analyses suggest that the induced cell death does not appear to be apoptotic. Cannabinoids impact cell proliferation and survival pathways and affect mitochondrial function, leading to cell death. These compounds could be a promising therapeutic option for the treatment of malignant glioma and prostatic adenocarcinoma.PregradoPara este estudio se planteó una investigación basada en las líneas celulares U87MG (glioma maligno) y PC3 (adenocarcinoma prostático). Se cultivaron en medio DMEM suplementado con suero fetal bovino al 10% y penicilina/estreptomicina al 1% durante 24 horas o hasta alcanzar una confluencia entre el 80% y 90%. Se realizó un conteo celular en cámara Neubauer utilizando azul de tripán y en este punto las células fueron expuestas a diferentes concentraciones de CBDA y CBC durante 24 horas, para determinar el índice IC50, y evaluar la viabilidad mediante MTT. Se realizaron pruebas de inmunofluorescencia para evaluar la activación de la vía AKT/mTOR, potencial de membrana mitocondrial (PMM) para evaluar el efecto del CBC y CBDA sobre el funcionamiento del potencial mitocondrial, y se determinaron los niveles de expresión de los genes pro-apoptóticos (BAX) y anti-apoptótico (BCL2) mediante RT-qPCR con el fin de evaluar muerte por apoptosis, todas estas pruebas se hicieron con tratamiento de CBDA y CBC a la concentración establecida por el IC50. El análisis estadístico de los datos se realizó mediante el programa RStudio, se utilizaron pruebas de normalidad y según si eran paramétricos o no paramétricos se analizaron las diferencias con las pruebas wilcoxon y T test respectivamente.Biólogo(a)Muerte celular en neurodegeneración, cáncer y sepsisUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesManizalesBiologíaArboleda, GonzaloTurizo Smith, Andrés DavidVelásquez Méndez, Karen LizzetteUniversidad de CaldasLedesma Gallego, Maria Del Mar2025-06-10T15:55:17Z2025-06-10T15:55:17Z2025-06-10Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis33 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22352Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAlberts, B., Bray, D., & Hopkin, K. (2006). Introducción a la biología celular. Ed. Médica Panamericana.Aldecoa, F., & Ávila, J. (2021). La vía canónica PI3K/AKT/mTOR y sus alteraciones en cáncer. Horizonte Médico (Lima), 21(4).Allen, M., Bjerke, M., Edlund, H., Nelander, S., & Westermark, B. (2016). Origin of the U87MG glioma cell line: Good news and bad news. Science translational medicine, 8(354), 354re3-354re3.Alzahrani, A. S. (2019). PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. In Seminars in cancer biology (Vol. 59, pp. 125-132). Academic Press.Antonini, M., Aguzzi, C., Fanelli, A., Frassineti, A., Zeppa, L., Morelli, M. B., ... & Luongo, M. (2023). The effects of a combination of Medical Cannabis, Melatonin, and oxygen ozone therapy on Glioblastoma Multiforme: a Case Report. reports, 6(2), 22.Bermúdez Garcell, A. J., Serrano Gámez, N. B., Teruel Ginés, R., Leyva Montero, M. D. L. Á., & Naranjo Coronel, A. A. (2019). Biología del cáncer. Correo Científico Médico, 23(4), 1394-1416.Borhani, S., Mozdarani, H., Babalui, S., Bakhshandeh, M., & Nosrati, H. (2017). In vitro radiosensitizing effects of temozolomide on U87MG cell lines of human glioblastoma multiforme. Iranian journal of medical sciences, 42(3), 258.Bozulic, L., Surucu, B., Hynx, D., & Hemmings, B. A. (2008). PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Molecular cell, 30(2), 203-213.Chen, H., Zhou, L., Wu, X., Li, R., Wen, J., Sha, J., & Wen, X. (2016). The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front Biosci (Landmark Ed), 21(5), 1084 1091.Contreras Zárate, MJ (2016). Efecto del silenciamiento de los genes PINK1 y Parkin sobre la dinámica y autofagia mitocondrial en un modelo de neuronas dopaminérgicas (Tesis doctoral).Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378.Davis, M. P. (2016). Cannabinoids for symptom management and cancer therapy: the evidence. Journal of the National Comprehensive Cancer Network, 14(7), 915-922.De Petrocellis, L., Ligresti, A., Schiano Moriello, A., Iappelli, M., Verde, R., Stott, C. G., ... & Di Marzo, V. (2013). Non‐THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro‐apoptotic effects and underlying mechanisms. British journal of pharmacology, 168(1), 79-102.de Vaca, R. P. C., Cárdenas-Cárdenas, E., Mondragón-Terán, P., & Solís, A. A. E. V. (2018). Biología molecular del cáncer y las nuevas herramientas en oncología. Revista de Especialidades Médico-Quirúrgicas, 22(4), 171-181.Fayard, E., Tintignac, L. A., Baudry, A., & Hemmings, B. A. (2005). Protein kinase B/Akt at a glance. Journal of cell science, 118(24), 5675-5678.Fraguas‐Sánchez, A. I., Martín‐Sabroso, C., & Torres‐Suárez, A. I. (2018). Insights into the effects of the endocannabinoid system in cancer: a review. British journal of pharmacology, 175(13), 2566-2580.Fu, Z., Zhao, P. Y., Yang, X. P., Li, H., Hu, S. D., Xu, Y. X., & Du, X. H. (2023). Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Frontiers in pharmacology, 14, 1094020.Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., ... & Kroemer, G. (2012). Molecular mechanisms of cisplatin resistance. Oncogene, 31(15), 1869-1883.Gao, Y., Wu, Y., Zhang, N., Yuan, H., Wang, F., Xu, H., ... & Cao, X. (2021). IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87-MG cells. Molecular Medicine Reports, 23(5), 354.Gupta, A., Anjomani-Virmouni, S., Koundouros, N., Dimitriadi, M., Choo-Wing, R., Valle, A., ... & Poulogiannis, G. (2017). PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-nitrosylation. Molecular cell, 65(6), 999-1013.Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell, 144(5), 646-674.Happold, C., Roth, P., Wick, W., Schmidt, N., Florea, A. M., Silginer, M., ... & Weller, M. (2012). Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. Journal of neurochemistry, 122(2), 444-455.Hart, J. R., & Vogt, P. K. (2011). Phosphorylation of AKT: a mutational analysis. Oncotarget, 2(6), 467.Hori, Y. S., Hosoda, R., Akiyama, Y., Sebori, R., Wanibuchi, M., Mikami, T., ... & Kuno, A. (2015). Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. Journal of neuro-oncology, 122, 11-20.Huang, W., Ding, X., Ye, H., Wang, J., Shao, J., & Huang, T. (2018). Hypoxia enhances the migration and invasion of human glioblastoma U87 cells through PI3K/Akt/mTOR/HIF 1α pathway. Neuroreport, 29(18), 1578-1585.Javid, F. A., Phillips, R. M., Afshinjavid, S., Verde, R., & Ligresti, A. (2016). Cannabinoid pharmacology in cancer research: A new hope for cancer patients?. European journal of pharmacology, 775, 1-14Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F., & Jones, L. W. (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC 3). Investigative urology, 17(1), 16-23.Kawakami, Y., Nishimoto, H., Kitaura, J., Maeda-Yamamoto, M., Kato, R. M., Littman, D. R., ... & Kawakami, T. (2004). Protein Kinase C βII Regulates Akt Phosphorylation on Ser-473 in a Cell Type-and Stimulus-specific Fashion*. Journal of Biological Chemistry, 279(46), 47720-47725.Kimbrough‐Allah, M. N., Millena, A. C., & Khan, S. A. (2018). Differential role of PTEN in transforming growth factor β (TGF‐β) effects on proliferation and migration in prostate cancer cells. The Prostate, 78(5), 377-389.Koltai, H., & Shalev, N. (2022). Anti-Cancer Activity of Cannabis sativa Phytocannabinoids: Molecular Mechanisms and Potential in the Fight against Ovarian Cancer and Stem Cells. https://doi.org/10.3390/cancers14174299 Cancers, 14(17), 4299.Lanskikh, D., Kuziakova, O., Baklanov, I., Penkova, A., Doroshenko, V., Buriak, I., ... & Kumeiko, V. (2024). Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells, 13(24), 2085.Levine, B., & Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell, 176(1), 11-42.Ligresti, A., Moriello, A. S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., ... & Di Marzo, V. (2006). Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. The Journal of pharmacology and experimental therapeutics, 318(3), 1375-1387.Litvinov, I. V., Antony, L., Dalrymple, S. L., Becker, R., Cheng, L., & Isaacs, J. T. (2006). PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. The Prostate, 66(12), 1329-1338.Litvinov, I. V., Antony, L., Dalrymple, S. L., Becker, R., Cheng, L., & Isaacs, J. T. (2006). PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. The Prostate, 66(12), 1329-1338.Liu, J., Zhang, C., Hu, W., & Feng, Z. (2019). Tumor suppressor p53 and metabolism. Journal of molecular cell biology, 11(4), 284-292.Liu, S. L., Wang, Z. G., Hu, Y., Xin, Y., Singaram, I., Gorai, S., ... & Cho, W. (2018). Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3, 4 bisphophate: isoform-and site-specific activation of Akt. Molecular cell, 71(6), 1092-1104.Lopez Alvarez, E. M. (2019). Métodos para determinar la viabilidad celular con aplicación en odontología.Lynch, D. K., Ellis, C. A., Edwards, P. A., & Hiles, I. D. (1999). Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene, 18(56), 8024-8032.Morales, P., & Jagerovic, N. (2021). Cannabinoid-based Anti-cancer Strategies: Slowly Approaching the Bedside. In Frontiers in Anti-Cancer Drug Discovery: Volume 12 (pp. 1 36). Bentham Science Publishers.Munson, A. E., Harris, L. S., Friedman, M. A., Dewey, W. L., & Carchman, R. A. (1975). Antineoplastic activity of cannabinoids. Journal of the National Cancer Institute, 55(3), 597-602.Murata, H., Sakaguchi, M., Jin, Y., Sakaguchi, Y., Futami, J. I., Yamada, H., ... & Huh, N. H. (2011). A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. Journal of Biological Chemistry, 286(9), 7182-7189.Nigro, E., Formato, M., Crescente, G., & Daniele, A. (2021). Cancer Initiation, Progression and Resistance: Are Phytocannabinoids from Cannabis sativa L. Promising Compounds? Molecules, 26(9), 2668.O'Flanagan, C. H., & O'Neill, C. (2014). PINK1 signalling in cancer biology. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1846(2), 590-598.Ortega, M. A., Fraile-Martínez, O., Asúnsolo, Á., Buján, J., García-Honduvilla, N., & Coca, S. (2020). Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. Journal of oncology, 2020(1), 9258396.Paul-Samojedny, M., Kokocińska, D., Samojedny, A., Mazurek, U., Partyka, R., Lorenz, Z., & Wilczok, T. (2005). Expression of cell survival/death genes: Bcl-2 and Bax at the rate of colon cancer prognosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1741(1-2), 25-29.Samuels, Y., & Waldman, T. (2010). Oncogenic mutations of PIK3CA in human cancers. Phosphoinositide 3-kinase in Health and Disease: Volume 2, 21-41.Segretín, M. E. (2003). Los cultivos celulares y sus aplicaciones I (cultivos de células animales). Argen Bio.Seltzer, E. S., Watters, A. K., MacKenzie, D., Granat, L. M., & Zhang, D. (2020). Cannabidiol (CBD) as a promising anti-cancer drug. Cancers, 12(11), 3203.Sepulveda, D. E., Vrana, K. E., Kellogg, J. J., Bisanz, J. E., Desai, D., Graziane, N. M., & Raup-Konsavage, W. M. (2024). The potential of cannabichromene (CBC) as a therapeutic agent. The Journal of Pharmacology and Experimental Therapeutics, 391(2), 206-213.Sharma, S., Salehi, F., Scheithauer, B. W., Rotondo, F., Syro, L. V., & Kovacs, K. (2009). Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer research, 29(10), 3759-3768.Shrivastava, A., Kuzontkoski, P. M., Groopman, J. E., & Prasad, A. (2011). Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Molecular cancer therapeutics, 10(7), 1161-1172.Solinas, M., Massi, P., Cinquina, V., Valenti, M., Bolognini, D., Gariboldi, M., ... & Parolaro, D. (2013). Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One, 8(10), e76918.Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G. F., Holmes, A. B., ... & Hawkins, P. T. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science, 279(5351), 710-714.Tai, S., Sun, Y., Squires, J. M., Zhang, H., Oh, W. K., Liang, C. Z., & Huang, J. (2011). PC3 is a cell line characteristic of prostatic small cell carcinoma. The Prostate, 71(15), 1668-1679.Takeda, S., Okajima, S., Miyoshi, H., Yoshida, K., Okamoto, Y., Okada, T., ... & Aramaki, H. (2012). Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration. Toxicology letters, 214(3), 314-319.Toker, A., & Newton, A. C. (2000). Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. Journal of Biological Chemistry, 275(12), 8271-8274.Toomey, S., Carr, A., Mezynski, M. J., Elamin, Y., Rafee, S., Cremona, M., ... & Hennessy, B. T. (2020). Identification and clinical impact of potentially actionable somatic oncogenic mutations in solid tumor samples. Journal of translational medicine, 18, 1-14.Ucbek, A., Özünal, Z. G., Uzun, Ö., & Gepdiremen, A. (2014). Effect of metformin on the human T98G glioblastoma multiforme cell line. Experimental and therapeutic medicine, 7(5), 1285-1290.Vargas, N., & González, C. (2016). Técnicas de cultivos celulares e ingeniería de tejidos. Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México, D.F.Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., ... & Zhao, G. (2023). The mitophagy pathway and its implications inhuman diseases. Signal transduction and targeted therapy, 8(1), 304.Yang, J. M., Schiapparelli, P., Nguyen, H. N., Igarashi, A., Zhang, Q., Abbadi, S., ... & Iijima, M. (2017). Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein localization. Oncogene, 36(26), 3673-3685. stability and nuclearZanni, R., & Iglesias, M. C. R. (2016). Diseño por Topología molecular y ensayos farmacológicos de nuevos inhibidores frente a WNT/β-CATENINA Y PI3K/Akt/mTOR (Doctoral dissertation, Universitat de València, Facultat de Farmàcia).https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/223522025-06-11T08:00:45Z |